
Mansoor M Amiji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/560384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of stimuli-responsive nanocarriers for drug and gene delivery. Journal of Controlled Release, 2008, 126, 187-204.	9.9	1,981
2	Chitosan-based gastrointestinal delivery systems. Journal of Controlled Release, 2003, 89, 151-165.	9.9	761
3	Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery. Pharmaceutical Research, 2007, 24, 1405-1414.	3.5	584
4	Exosome mediated communication within the tumor microenvironment. Journal of Controlled Release, 2015, 219, 278-294.	9.9	576
5	Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. International Journal of Pharmaceutics, 2002, 249, 127-138.	5.2	457
6	Coadministration of Paclitaxel and Curcumin in Nanoemulsion Formulations To Overcome Multidrug Resistance in Tumor Cells. Molecular Pharmaceutics, 2009, 6, 928-939.	4.6	416
7	Hyaluronic acid targeting of CD44 for cancer therapy: from receptor biology to nanomedicine. Journal of Drug Targeting, 2015, 23, 605-618.	4.4	415
8	Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treatment Reviews, 2008, 34, 592-602.	7.7	381
9	Preparation and characterization of freeze-dried chitosan-poly(ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach. Pharmaceutical Research, 1996, 13, 588-593.	3.5	343
10	Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers. Biomaterials, 1992, 13, 682-692.	11.4	339
11	Poly(ethylene oxide)-modified poly(É›-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. International Journal of Pharmaceutics, 2005, 293, 261-270.	5.2	322
12	Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opinion on Drug Delivery, 2006, 3, 205-216.	5.0	317
13	Surface modification of polymeric biomaterials with poly(ethylene oxide), albumin, and heparin for reduced thrombogenicity. Journal of Biomaterials Science, Polymer Edition, 1993, 4, 217-234.	3.5	315
14	Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials, 2013, 34, 3489-3502.	11.4	314
15	Role of integrated cancer nanomedicine in overcoming drug resistance. Advanced Drug Delivery Reviews, 2013, 65, 1784-1802.	13.7	288
16	Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Advanced Drug Delivery Reviews, 2010, 62, 305-315.	13.7	283
17	Enzyme immobilization in novel alginate–chitosan core-shell microcapsules. Biomaterials, 2004, 25, 1937-1945.	11.4	275
18	Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharmaceutical Research, 2002, 19, 1061-1067.	3.5	250

#	Article	IF	CITATIONS
19	Technologies and Standardization in Research on Extracellular Vesicles. Trends in Biotechnology, 2020, 38, 1066-1098.	9.3	250
20	pH-Responsive Polymer Microspheres: Rapid Release of Encapsulated Material within the Range of Intracellular pH. Angewandte Chemie - International Edition, 2001, 40, 1707-1710.	13.8	245
21	Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. International Journal of Pharmaceutics, 2008, 347, 93-101.	5.2	242
22	Poly(Ethylene Oxide)-Modified Poly(β-Amino Ester) Nanoparticles as a pH-Sensitive System for Tumor-Targeted Delivery of Hydrophobic Drugs: Part 2. In Vivo Distribution and Tumor Localization Studies. Pharmaceutical Research, 2005, 22, 2107-2114.	3.5	238
23	Modulation of Intracellular Ceramide Using Polymeric Nanoparticles to Overcome Multidrug Resistance in Cancer. Cancer Research, 2007, 67, 4843-4850.	0.9	202
24	Nanoparticle-based Endodontic Antimicrobial Photodynamic Therapy. Journal of Endodontics, 2010, 36, 322-328.	3.1	198
25	Poly(ethylene oxide)-modified poly(β-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. Journal of Controlled Release, 2003, 86, 223-234.	9.9	197
26	Local Immunomodulation Using an Adhesive Hydrogel Loaded with miRNA‣aden Nanoparticles Promotes Wound Healing. Small, 2019, 15, e1902232.	10.0	197
27	Repolarization of Tumor-Associated Macrophages in a Genetically Engineered Nonsmall Cell Lung Cancer Model by Intraperitoneal Administration of Hyaluronic Acid-Based Nanoparticles Encapsulating MicroRNA-125b. Nano Letters, 2018, 18, 3571-3579.	9.1	196
28	Tumor-Targeted Gene Delivery Using Poly(Ethylene Glycol)-Modified Gelatin Nanoparticles: In Vitro and in Vivo Studies. Pharmaceutical Research, 2005, 22, 951-961.	3.5	194
29	Nanotechnology solutions for mucosal immunization. Advanced Drug Delivery Reviews, 2010, 62, 394-407.	13.7	194
30	Surface functionalization of gold nanoparticles using hetero-bifunctional poly(ethylene glycol) spacer for intracellular tracking and delivery. International Journal of Nanomedicine, 2006, 1, 51-58.	6.7	190
31	Preparation and Evaluation of Thiol-Modified Gelatin Nanoparticles for Intracellular DNA Delivery in Response to Glutathione. Bioconjugate Chemistry, 2005, 16, 1423-1432.	3.6	187
32	A Review of Nanocarrier-Based CNS Delivery Systems. Current Drug Delivery, 2006, 3, 219-232.	1.6	187
33	Macrophage repolarization with targeted alginate nanoparticles containing IL-10 plasmid DNA for the treatment of experimental arthritis. Biomaterials, 2015, 61, 162-177.	11.4	187
34	Role of Nanotechnology in Pharmaceutical Product Development. Journal of Pharmaceutical Sciences, 2007, 96, 2547-2565.	3.3	181
35	Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8346-8351.	7.1	181
36	Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Advanced Drug Delivery Reviews, 2010, 62, 458-477.	13.7	179

#	Article	IF	CITATIONS
37	Poly(ethylene oxide)-Modified Poly(β-amino ester) Nanoparticles as a pH-Sensitive System for Tumor-Targeted Delivery of Hydrophobic Drugs. 1. In Vitro Evaluations. Molecular Pharmaceutics, 2005, 2, 357-366.	4.6	173
38	Nanoemulsions in Translational Research—Opportunities and Challenges in Targeted Cancer Therapy. AAPS PharmSciTech, 2014, 15, 694-708.	3.3	169
39	Multi-functional nanocarriers for targeted delivery of drugs and genes. Journal of Controlled Release, 2008, 130, 121-128.	9.9	165
40	Pyrene fluorescence study of chitosan self-association in aqueous solution. Carbohydrate Polymers, 1995, 26, 211-213.	10.2	157
41	Oral TNF-α gene silencing using a polymeric microsphere-based delivery system for the treatment of inflammatory bowel disease. Journal of Controlled Release, 2011, 150, 77-86.	9.9	157
42	Biodistribution and Targeting Potential of Poly(ethylene glycol)-modified Gelatin Nanoparticles in Subcutaneous Murine Tumor Model. Journal of Drug Targeting, 2004, 12, 585-591.	4.4	149
43	On the issue of transparency and reproducibility in nanomedicine. Nature Nanotechnology, 2019, 14, 629-635.	31.5	149
44	Exosomes as nanocarriers for immunotherapy of cancer and inflammatory diseases. Clinical Immunology, 2015, 160, 46-58.	3.2	148
45	Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS). Journal of Controlled Release, 2007, 119, 339-348.	9.9	147
46	Permeability and blood compatibility properties of chitosan-poly(ethylene oxide) blend membranes for haemodialysis. Biomaterials, 1995, 16, 593-599.	11.4	142
47	Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemotherapy and Pharmacology, 2007, 59, 477-484.	2.3	141
48	Doxorubicin loaded Polymeric Nanoparticulate Delivery System to overcome drug resistance in osteosarcoma. BMC Cancer, 2009, 9, 399.	2.6	139
49	Intracellular Delivery of Saquinavir in Biodegradable Polymeric Nanoparticles for HIV/AIDS. Pharmaceutical Research, 2006, 23, 2638-2645.	3.5	137
50	Pancreatic Cancer Cell Exosome-Mediated Macrophage Reprogramming and the Role of MicroRNAs 155 and 125b2 Transfection using Nanoparticle Delivery Systems. Scientific Reports, 2016, 6, 30110.	3.3	136
51	Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemotherapy and Pharmacology, 2009, 63, 711-722.	2.3	132
52	Development of EGFR-Targeted Polymer Blend Nanocarriers for Combination Paclitaxel/Lonidamine Delivery To Treat Multi-Drug Resistance in Human Breast and Ovarian Tumor Cells. Molecular Pharmaceutics, 2011, 8, 185-203.	4.6	132
53	Mucoadhesive nanomedicines: characterization and modulation of mucoadhesion at the nanoscale. Expert Opinion on Drug Delivery, 2011, 8, 1085-1104.	5.0	131
54	Poly(ethylene glycol)–modified thiolated gelatin nanoparticles for glutathione-responsive intracellular DNA delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2007, 3, 32-42.	3.3	130

#	Article	IF	CITATIONS
55	Stomach-specific anti-H. pylori therapy. I: preparation and characterization of tetracyline-loaded chitosan microspheres. International Journal of Pharmaceutics, 2002, 235, 87-94.	5.2	128
56	In vivo biodistribution of siRNA and cisplatin administered using CD44-targeted hyaluronic acid nanoparticles. Journal of Controlled Release, 2013, 172, 699-706.	9.9	128
57	Inhibition of ABCB1 (MDR1) Expression by an siRNA Nanoparticulate Delivery System to Overcome Drug Resistance in Osteosarcoma. PLoS ONE, 2010, 5, e10764.	2.5	128
58	Biodistribution and Pharmacokinetic Analysis of Paclitaxel and Ceramide Administered in Multifunctional Polymer-Blend Nanoparticles in Drug Resistant Breast Cancer Model. Molecular Pharmaceutics, 2008, 5, 516-526.	4.6	127
59	Mitochondrial biology, targets, and drug delivery. Journal of Controlled Release, 2015, 207, 40-58.	9.9	125
60	Formulation optimization for the nanoparticles-in-microsphere hybrid oral delivery system using factorial design. Journal of Controlled Release, 2006, 110, 422-430.	9.9	121
61	Biodistribution and Pharmacokinetic Analysis of Long-Circulating Thiolated Gelatin Nanoparticles Following Systemic Administration in Breast Cancer-Bearing Mice. Journal of Pharmaceutical Sciences, 2007, 96, 397-407.	3.3	121
62	Label-Free Raman Spectral Imaging of Intracellular Delivery and Degradation of Polymeric Nanoparticle Systems. ACS Nano, 2009, 3, 3552-3559.	14.6	119
63	Long-Circulating Polymeric Nanovectors for Tumor-Selective Gene Delivery. Technology in Cancer Research and Treatment, 2005, 4, 615-625.	1.9	116
64	Improved Oral Delivery of Paclitaxel Following Administration in Nanoemulsion Formulations. Journal of Nanoscience and Nanotechnology, 2006, 6, 3215-3221.	0.9	115
65	Modulation of Drug Resistance in Ovarian Adenocarcinoma by Enhancing Intracellular Ceramide Using Tamoxifen-Loaded Biodegradable Polymeric Nanoparticles. Clinical Cancer Research, 2008, 14, 3193-3203.	7.0	113
66	Combination of siRNA-directed Gene Silencing With Cisplatin Reverses Drug Resistance in Human Non-small Cell Lung Cancer. Molecular Therapy - Nucleic Acids, 2013, 2, e110.	5.1	113
67	Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opinion on Drug Delivery, 2009, 6, 211-225.	5.0	112
68	Multi-modal strategies for overcoming tumor drug resistance: Hypoxia, the Warburg effect, stem cells, and multifunctional nanotechnology. Journal of Controlled Release, 2011, 155, 237-247.	9.9	112
69	Combinatorial-Designed Multifunctional Polymeric Nanosystems for Tumor-Targeted Therapeutic Delivery. Accounts of Chemical Research, 2011, 44, 1009-1017.	15.6	110
70	MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer. Scientific Reports, 2015, 5, 8509.	3.3	109
71	Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. Oncotarget, 2015, 6, 9313-9326.	1.8	107
72	Curcumin Enhances Oral Bioavailability and Anti-Tumor Therapeutic Efficacy of Paclitaxel upon Administration in Nanoemulsion Formulation. Journal of Pharmaceutical Sciences, 2010, 99, 4630-4641.	3.3	106

#	Article	IF	CITATIONS
73	Pharmacokinetics and biodistribution of lonidamine/paclitaxel loaded, EGFR-targeted nanoparticles in an orthotopic animal model of multi-drug resistant breast cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 435-444.	3.3	106
74	Cytotoxicity and Apoptosis Enhancement in Brain Tumor Cells Upon Coadministration of Paclitaxel and Ceramide in Nanoemulsion Formulations. Journal of Pharmaceutical Sciences, 2008, 97, 2745-2756.	3.3	105
75	Paclitaxel and ceramide co-administration in biodegradable polymeric nanoparticulate delivery system to overcome drug resistance in ovarian cancer. International Journal of Cancer, 2007, 121, 1830-1838.	5.1	103
76	Role of hypoxia and glycolysis in the development of multi-drug resistance in human tumor cells and the establishment of an orthotopic multi-drug resistant tumor model in nude mice using hypoxic pre-conditioning. Cancer Cell International, 2011, 11, 3.	4.1	103
77	Brain delivery of proteins by the intranasal route of administration: A comparison of cationic liposomes versus aqueous solution formulations. Journal of Pharmaceutical Sciences, 2010, 99, 1745-1761.	3.3	100
78	Modulation of Macrophage Functional Polarity towards Anti-Inflammatory Phenotype with Plasmid DNA Delivery in CD44 Targeting Hyaluronic Acid Nanoparticles. Scientific Reports, 2015, 5, 16632.	3.3	96
79	Polymeric nano- and microparticle technologies for oral gene delivery. Expert Opinion on Drug Delivery, 2007, 4, 197-213.	5.0	94
80	The impact of size on particulate vaccine adjuvants. Nanomedicine, 2014, 9, 2671-2681.	3.3	94
81	Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles. Acta Biomaterialia, 2017, 47, 71-80.	8.3	94
82	Synthesis of anionic poly(ethylene glycol) derivative for chitosan surface modification in blood-contacting applications. Carbohydrate Polymers, 1997, 32, 193-199.	10.2	93
83	Localized delivery of paclitaxel in solid tumors from biodegradable chitin microparticle formulations. Biomaterials, 2002, 23, 2723-2731.	11.4	93
84	Development of Novel Biodegradable Polymeric Nanoparticles-in-Microsphere Formulation for Local Plasmid DNA Delivery in the Gastrointestinal Tract. AAPS PharmSciTech, 2008, 9, 288-294.	3.3	92
85	Photodynamic effects of methylene blue-loaded polymeric nanoparticles on dental plaque bacteria. Lasers in Surgery and Medicine, 2011, 43, 600-606.	2.1	92
86	Nanoparticulate drug carriers for delivery of HIV/AIDS therapy to viral reservoir sites. Expert Opinion on Drug Delivery, 2006, 3, 613-628.	5.0	88
87	The role of surface chemistry in serum protein corona-mediated cellular delivery and gene silencing with lipid nanoparticles. Nanoscale, 2019, 11, 8760-8775.	5.6	84
88	Intranasal brain delivery of cationic nanoemulsion-encapsulated TNFα siRNA in prevention of experimental neuroinflammation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 987-1002.	3.3	83
89	Evaluation of the Factors Influencing Stomach-specific Delivery of Antibacterial Agents for Helicobacter pylori Infection. Journal of Pharmacy and Pharmacology, 2010, 51, 667-672.	2.4	82
90	Therapeutic Efficacy and Safety of Paclitaxel/Lonidamine Loaded EGFR-Targeted Nanoparticles for the Treatment of Multi-Drug Resistant Cancer. PLoS ONE, 2011, 6, e24075.	2.5	82

#	Article	IF	CITATIONS
91	Providing Oligonucleotides with Steric Selectivity by Brush-Polymer-Assisted Compaction. Journal of the American Chemical Society, 2015, 137, 12466-12469.	13.7	81
92	The role of apolipoprotein- and vitronectin-enriched protein corona on lipid nanoparticles for <i>in vivo</i> targeted delivery and transfection of oligonucleotides in murine tumor models. Nanoscale, 2019, 11, 18806-18824.	5.6	80
93	Hydrogel delivery systems for vaginal and oral applications. Advanced Drug Delivery Reviews, 1993, 11, 137-167.	13.7	79
94	Mucoadhesive nanosystems for vaginal microbicide development: friend or foe?. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 389-399.	6.1	77
95	Multi-compartmental oral delivery systems for nucleic acid therapy in the gastrointestinal tract. Advanced Drug Delivery Reviews, 2013, 65, 891-901.	13.7	77
96	Polymeric Nanoparticle-Based Photodynamic Therapy for Chronic Periodontitis in Vivo. International Journal of Molecular Sciences, 2016, 17, 769.	4.1	76
97	Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine, 2017, 12, 2113-2135.	3.3	76
98	Cluster of Differentiation 44 Targeted Hyaluronic Acid Based Nanoparticles for MDR1 siRNA Delivery to Overcome Drug Resistance in Ovarian Cancer. Pharmaceutical Research, 2015, 32, 2097-2109.	3.5	75
99	Clinical approval of nanotechnology-based SARS-CoV-2 mRNA vaccines: impact on translational nanomedicine. Drug Delivery and Translational Research, 2021, 11, 1309-1315.	5.8	75
100	A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Molecular Membrane Biology, 2010, 27, 260-273.	2.0	74
101	Polymeric Nanoparticles Affect the Intracellular Delivery, Antiretroviral Activity and Cytotoxicity of the Microbicide Drug Candidate Dapivirine. Pharmaceutical Research, 2012, 29, 1468-1484.	3.5	74
102	<i>In Vitro</i> and <i>Ex Vivo</i> Evaluation of Polymeric Nanoparticles for Vaginal and Rectal Delivery of the Anti-HIV Drug Dapivirine. Molecular Pharmaceutics, 2013, 10, 2793-2807.	4.6	74
103	Enhanced anti-angiogenic effects of bevacizumab in glioblastoma treatment upon intranasal administration in polymeric nanoparticles. Journal of Controlled Release, 2019, 309, 37-47.	9.9	74
104	Surface modification of chitosan membranes by complexation-interpenetration of anionic polysaccharides for improved blood compatibility in hemodialysis. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 281-298.	3.5	73
105	Cellular uptake and concentrations of tamoxifen upon administration in poly(ε-caprolactone) nanoparticles. AAPS PharmSci, 2003, 5, 28-34.	1.3	73
106	Platelet adhesion and activation on an amphoteric chitosan derivative bearing sulfonate groups. Colloids and Surfaces B: Biointerfaces, 1998, 10, 263-271.	5.0	70
107	Cellular Interactions and In Vitro DNA Transfection Studies with Poly(ethylene glycol)â€Modified Gelatin Nanoparticles. Journal of Pharmaceutical Sciences, 2005, 94, 184-198.	3.3	70
108	Biodistribution and Pharmacokinetics of EGFR-Targeted Thiolated Gelatin Nanoparticles Following Systemic Administration in Pancreatic Tumor-Bearing Mice. Molecular Pharmaceutics, 2013, 10, 2031-2044.	4.6	70

Mansoor M Amiji

#	Article	IF	CITATIONS
109	Intranasal Delivery and Transfection of mRNA Therapeutics in the Brain Using Cationic Liposomes. Molecular Pharmaceutics, 2020, 17, 1996-2005.	4.6	70
110	Epidermal Growth Factor Receptor-Targeted Gelatin-Based Engineered Nanocarriers for DNA Delivery and Transfection in Human Pancreatic Cancer Cells. AAPS Journal, 2008, 10, 565-76.	4.4	69
111	Study on the prevention of surface-induced platelet activation by albumin coating. Journal of Biomaterials Science, Polymer Edition, 1992, 3, 375-388.	3.5	68
112	Tuftsin-Modified Alginate Nanoparticles as a Noncondensing Macrophage-Targeted DNA Delivery System. Biomacromolecules, 2012, 13, 1074-1085.	5.4	67
113	Interactions of Microbicide Nanoparticles with a Simulated Vaginal Fluid. Molecular Pharmaceutics, 2012, 9, 3347-3356.	4.6	65
114	Fluorescence-guided optical coherence tomography imaging for colon cancer screening: a preliminary mouse study. Biomedical Optics Express, 2012, 3, 178.	2.9	64
115	Biodistribution and Pharmacokinetics of Dapivirine-Loaded Nanoparticles after Vaginal Delivery in Mice. Pharmaceutical Research, 2014, 31, 1834-1845.	3.5	64
116	Facial Layer-by-Layer Engineering of Upconversion Nanoparticles for Gene Delivery: Near-Infrared-Initiated Fluorescence Resonance Energy Transfer Tracking and Overcoming Drug Resistance in Ovarian Cancer. ACS Applied Materials & Interfaces, 2017, 9, 7941-7949.	8.0	64
117	Intratumoral Administration of Paclitaxel in an In Situ Gelling Poloxamer 407 Formulation. Pharmaceutical Development and Technology, 2002, 7, 195-202.	2.4	62
118	Comparative Biodistribution and Pharmacokinetic Analysis of Cyclosporine-A in the Brain upon Intranasal or Intravenous Administration in an Oil-in-Water Nanoemulsion Formulation. Molecular Pharmaceutics, 2015, 12, 1523-1533.	4.6	62
119	Dual TNF-α/Cyclin D1 Gene Silencing With an Oral Polymeric Microparticle System as a Novel Strategy for the Treatment of Inflammatory Bowel Disease. Clinical and Translational Gastroenterology, 2011, 2, e2.	2.5	61
120	Anti-Angiogenic Effects of Betulinic Acid Administered in Nanoemulsion Formulation Using Chorioallantoic Membrane Assay. Journal of Biomedical Nanotechnology, 2011, 7, 317-324.	1.1	60
121	Anti-Angiogenic and Anti-Cancer Evaluation of Betulin Nanoemulsion in Chicken Chorioallantoic Membrane and Skin Carcinoma in Balb/c Mice. Journal of Biomedical Nanotechnology, 2013, 9, 577-589.	1.1	59
122	Macrophage-targeted delivery systems for nucleic acid therapy of inflammatory diseases. Journal of Controlled Release, 2014, 190, 515-530.	9.9	59
123	Redox-responsive targeted gelatin nanoparticles for delivery of combination wt-p53 expressing plasmid DNA and gemcitabine in the treatment of pancreatic cancer. BMC Cancer, 2014, 14, 75.	2.6	56
124	<i>Mad2</i> Checkpoint Gene Silencing Using Epidermal Growth Factor Receptor-Targeted Chitosan Nanoparticles in Non-Small Cell Lung Cancer Model. Molecular Pharmaceutics, 2014, 11, 3515-3527.	4.6	55
125	Stomach-specific anti-H. pylori therapy. International Journal of Pharmaceutics, 2004, 272, 99-108.	5.2	54
126	Nanocarriers for Systemic and Mucosal Vaccine Delivery. Recent Patents on Drug Delivery and Formulation, 2007, 1, 1-9.	2.1	52

8

#	ARTICLE	IF	CITATIONS
127	Combinatorial approach in the design of multifunctional polymeric nano-delivery systems for cancer therapy. Journal of Materials Chemistry B, 2014, 2, 8069-8084.	5.8	52
128	Augmentation of Therapeutic Efficacy in Drug-Resistant Tumor Models Using Ceramide Coadministration in Temporal-Controlled Polymer-Blend Nanoparticle Delivery Systems. AAPS Journal, 2010, 12, 171-180.	4.4	51
129	EGFR-targeted gelatin nanoparticles for systemic administration of gemcitabine in an orthotopic pancreatic cancer model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 589-600.	3.3	51
130	Biodistribution and pharmacokinetics of <i>Mad2</i> siRNA-loaded EGFR-targeted chitosan nanoparticles in cisplatin sensitive and resistant lung cancer models. Nanomedicine, 2016, 11, 767-781.	3.3	51
131	Non-condensing polymeric nanoparticles for targeted gene and siRNA delivery. International Journal of Pharmaceutics, 2012, 427, 21-34.	5.2	49
132	Nanotechnology for CNS delivery of bio-therapeutic agents. Drug Delivery and Translational Research, 2013, 3, 336-351.	5.8	49
133	Formulation development of a novel targeted theranostic nanoemulsion of docetaxel to overcome multidrug resistance in ovarian cancer. Drug Delivery, 2016, 23, 958-970.	5.7	49
134	Preparation and In Vitro Characterization of Multifunctional Nanoemulsions for Simultaneous MR Imaging and Targeted Drug Delivery. Journal of Biomedical Nanotechnology, 2006, 2, 217-224.	1.1	49
135	Intracellular pH Financial support was provided by the NSF (Cooperative Agreement No. ECC9843342 to) Tj ETQ Army (Cooperative Agreement DAMD 17-99-2-9-001 to the Center for Innovative Minimally Invasive) Tj ETQq1 1		
136	Sustained Drug Release from Nonâ€eroding Nanoporous Templates. Small, 2010, 6, 213-216.	10.0	48
137	Combination wt-p53 and MicroRNA-125b Transfection in a Genetically Engineered Lung Cancer Model Using Dual CD44/EGFR-targeting Nanoparticles. Molecular Therapy, 2016, 24, 759-769.	8.2	48
138	Stomach-Specific Anti-H. pyloriTherapy. II. Gastric Residence Studies of Tetracycline-Loaded Chitosan Microspheres in Gerbils. Pharmaceutical Development and Technology, 2003, 8, 253-262.	2.4	46
139	Nanodelivery Systems for Nucleic Acid Therapeutics in Drug Resistant Tumors. Molecular Pharmaceutics, 2014, 11, 2511-2526.	4.6	44
140	Improved anti-tumor efficacy of paclitaxel in combination with MicroRNA-125b-based tumor-associated macrophage repolarization in epithelial ovarian cancer. Cancer Letters, 2019, 461, 1-9.	7.2	44
141	Enhanced mucosal and systemic immune response with squalane oil-containing multiple emulsions upon intranasal and oral administration in mice. Journal of Drug Targeting, 2008, 16, 302-310.	4.4	43
142	Tumor aerobic glycolysis: new insights into therapeutic strategies with targeted delivery. Expert Opinion on Biological Therapy, 2014, 14, 1145-1159.	3.1	43
143	Delivery of enteric neural progenitors with 5-HT4 agonist-loaded nanoparticles and thermosensitive hydrogel enhances cell proliferation and differentiation following transplantation inÂvivo. Biomaterials, 2016, 88, 1-11.	11.4	43
144	Recent preclinical and clinical advances in oligonucleotide conjugates. Expert Opinion on Drug Delivery, 2018, 15, 629-640.	5.0	43

#	Article	IF	CITATIONS
145	Protein Corona-Enabled Systemic Delivery and Targeting of Nanoparticles. AAPS Journal, 2020, 22, 83.	4.4	43
146	Assessing the physical–chemical properties and stability of dapivirine-loaded polymeric nanoparticles. International Journal of Pharmaceutics, 2013, 456, 307-314.	5.2	42
147	Near-infrared light activated delivery platform for cancer therapy. Advances in Colloid and Interface Science, 2015, 226, 123-137.	14.7	42
148	Exosome swarms eliminate airway pathogens and provide passive epithelial immunoprotection through nitric oxide. Journal of Allergy and Clinical Immunology, 2019, 143, 1525-1535.e1.	2.9	42
149	MicroRNA-223 Induced Repolarization of Peritoneal Macrophages Using CD44 Targeting Hyaluronic Acid Nanoparticles for Anti-Inflammatory Effects. PLoS ONE, 2016, 11, e0152024.	2.5	42
150	Nanoemulsion formulation of a novel taxoid DHA-SBT-1214 inhibits prostate cancer stem cell-induced tumor growth. Cancer Letters, 2017, 406, 71-80.	7.2	41
151	Delivery strategies to enhance mucosal vaccination. Expert Opinion on Biological Therapy, 2009, 9, 427-440.	3.1	40
152	Cosilencing of <i>PKM-2</i> and <i>MDR-1</i> Sensitizes Multidrug-Resistant Ovarian Cancer Cells to Paclitaxel in a Murine Model of Ovarian Cancer. Molecular Cancer Therapeutics, 2015, 14, 1521-1531.	4.1	39
153	The Development of Self-Emulsifying Oil-in-Water Emulsion Adjuvant and an Evaluation of the Impact of Droplet Size on Performance. Journal of Pharmaceutical Sciences, 2015, 104, 1352-1361.	3.3	39
154	Quality-by-Design Concepts to Improve Nanotechnology-Based Drug Development. Pharmaceutical Research, 2019, 36, 153.	3.5	39
155	Analysis on the surface adsorption of PEO/PPO/PEO triblock copolymers by radiolabelling and fluorescence techniques. Journal of Applied Polymer Science, 1994, 52, 539-544.	2.6	37
156	Synthesis and Evaluation of Tripodal Peptide Analogues for Cellular Delivery of Phosphopeptides. Journal of Medicinal Chemistry, 2007, 50, 3604-3617.	6.4	37
157	Nanotechnology solutions for infectious diseases in developing nations. Advanced Drug Delivery Reviews, 2010, 62, 375-377.	13.7	37
158	Non-viral eNOS gene delivery and transfection with stents for the treatment of restenosis. BioMedical Engineering OnLine, 2010, 9, 56.	2.7	37
159	Phosphatidylinositol 3-kinase Inhibitor (PIK75) Containing Surface Functionalized Nanoemulsion for Enhanced Drug Delivery, Cytotoxicity and Pro-apoptotic Activity in Ovarian Cancer Cells. Pharmaceutical Research, 2012, 29, 2874-2886.	3.5	37
160	Lipid-functionalized Dextran Nanosystems to Overcome Multidrug Resistance in Cancer: A Pilot Study. Clinical Orthopaedics and Related Research, 2013, 471, 915-925.	1.5	37
161	Translational Nano-Medicines: Targeted Therapeutic Delivery for Cancer and Inflammatory Diseases. AAPS Journal, 2015, 17, 813-827.	4.4	37
162	Development of EGFR-Targeted Nanoemulsion for Imaging and Novel Platinum Therapy of Ovarian Cancer. Pharmaceutical Research, 2014, 31, 2490-2502.	3.5	36

#	Article	IF	CITATIONS
163	â€~Click' synthesis of dextran macrostructures for combinatorial-designed self-assembled nanoparticles encapsulating diverse anticancer therapeutics. Bioorganic and Medicinal Chemistry, 2011, 19, 6167-6173.	3.0	35
164	Nano-Sized Calcium Phosphate Particles for Periodontal Gene Therapy. Journal of Periodontology, 2013, 84, 117-125.	3.4	35
165	BCMA peptide-engineered nanoparticles enhance induction and function of antigen-specific CD8+ cytotoxic T lymphocytes against multiple myeloma: clinical applications. Leukemia, 2020, 34, 210-223.	7.2	35
166	Surface Modification by Radiation-Induced Grafting of PEO/PPO/PEO Triblock Copolymers. Journal of Colloid and Interface Science, 1993, 155, 251-255.	9.4	34
167	Development and validation of a rapid reversed-phase HPLC method for the determination of the non-nucleoside reverse transcriptase inhibitor dapivirine from polymeric nanoparticles. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52, 167-172.	2.8	34
168	Minimally Invasive Nasal Depot (MIND) technique for direct BDNF AntagoNAT delivery to the brain. Journal of Controlled Release, 2021, 331, 176-186.	9.9	34
169	Role of nanotechnology in HIV/AIDS treatment: potential to overcome the viral reservoir challenge. Discovery Medicine, 2006, 6, 157-62.	0.5	34
170	Long-term drug delivery using implantable electrospun woven polymeric nanotextiles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 15, 274-284.	3.3	33
171	Application of nanotechnology in medical diagnosis and imaging. Current Opinion in Biotechnology, 2022, 74, 241-246.	6.6	33
172	Poly(β-amino ester) and Cationic Phospholipid-Based Lipopolyplexes for Gene Delivery and Transfection in Human Aortic Endothelial and Smooth Muscle Cells. Biomacromolecules, 2008, 9, 1179-1187.	5.4	32
173	Cancer stem cell-targeted therapeutics and delivery strategies. Expert Opinion on Drug Delivery, 2017, 14, 997-1008.	5.0	32
174	Therapeutic targeting strategies using endogenous cells and proteins. Journal of Controlled Release, 2017, 258, 81-94.	9.9	31
175	Cosilencing Intestinal Transglutaminase-2 and Interleukin-15 Using Gelatin-Based Nanoparticles in an <i>in Vitro</i> Model of Celiac Disease. Molecular Pharmaceutics, 2017, 14, 3036-3044.	4.6	31
176	Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery. Drug Discovery Today, 2018, 23, 519-533.	6.4	31
177	Poly-N-Acetyl Glucosamine–Mediated Red Blood Cell Interactions. Journal of Trauma, 2004, 57, S7-S12.	2.3	30
178	Optimization of the Conditions for Plasmid DNA Delivery and Transfection with Self-Assembled Hyaluronic Acid-Based Nanoparticles. Molecular Pharmaceutics, 2019, 16, 128-140.	4.6	30
179	Polymeric nanoparticle-based delivery of microRNA-199a-3p inhibits proliferation and growth of osteosarcoma cells. International Journal of Nanomedicine, 2015, 10, 2913.	6.7	29
180	Development of PIK-75 nanosuspension formulation with enhanced delivery efficiency and cytotoxicity for targeted anti-cancer therapy. International Journal of Pharmaceutics, 2013, 450, 278-289.	5.2	28

#	ARTICLE	IF	CITATIONS
181	Redox-sensitive nanoparticles from amphiphilic cholesterol-based block copolymers for enhanced tumor intracellular release of doxorubicin. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 2071-2082.	3.3	28
182	MicroRNA-34a Encapsulated in Hyaluronic Acid Nanoparticles Induces Epigenetic Changes with Altered Mitochondrial Bioenergetics and Apoptosis in Non-Small-Cell Lung Cancer Cells. Scientific Reports, 2017, 7, 3636.	3.3	28
183	Long-acting intraocular Delivery strategies for biological therapy of age-related macular degeneration. Journal of Controlled Release, 2019, 296, 140-149.	9.9	28
184	Gelatin-Poly(Ethylene Oxide) Semi-interpenetrating Polymer Network with pH-Sensitive Swelling and Enzyme-Degradable Properties for Oral Drug Delivery. Drug Development and Industrial Pharmacy, 1997, 23, 575-582.	2.0	27
185	Enhancement in Anti-proliferative Effects of Paclitaxel in Aortic Smooth Muscle Cells upon Co-administration with Ceramide using Biodegradable Polymeric Nanoparticles. Pharmaceutical Research, 2008, 25, 1936-1947.	3.5	27
186	Peritoneal Macrophage-Specific TNF-α Gene Silencing in LPS-Induced Acute Inflammation Model Using CD44 Targeting Hyaluronic Acid Nanoparticles. Molecular Pharmaceutics, 2016, 13, 3404-3416.	4.6	27
187	Formulation and Physiological Factors Influencing CNS Delivery upon Intranasal Administration. Critical Reviews in Therapeutic Drug Carrier Systems, 2006, 23, 319-347.	2.2	27
188	Targeted delivery systems for biological therapies of inflammatory diseases. Expert Opinion on Drug Delivery, 2015, 12, 393-414.	5.0	25
189	Enhanced Anti-Tumor Efficacy of Lipid-Modified Platinum Derivatives in Combination with Survivin Silencing siRNA in Resistant Non-Small Cell Lung Cancer. Pharmaceutical Research, 2016, 33, 2943-2953.	3.5	25
190	Systemic nano-delivery of low-dose STING agonist targeted to CD103+ dendritic cells for cancer immunotherapy. Journal of Controlled Release, 2022, 345, 721-733.	9.9	25
191	A model predicting delivery of saquinavir in nanoparticles to human monocyte/macrophage (Mo/Mac) cells. Biotechnology and Bioengineering, 2008, 101, 1072-1082.	3.3	24
192	Multifunctional nanoparticles for targeting cancer and inflammatory diseases. Journal of Drug Targeting, 2013, 21, 888-903.	4.4	24
193	Inhibition of hexokinase-2 with targeted liposomal 3-bromopyruvate in an ovarian tumor spheroid model of aerobic glycolysis. International Journal of Nanomedicine, 2015, 10, 4405.	6.7	24
194	EGFR Targeted Theranostic Nanoemulsion for Image-Guided Ovarian Cancer Therapy. Pharmaceutical Research, 2015, 32, 2753-63.	3.5	24
195	Intraperitoneal chemotherapy for ovarian cancer using sustained-release implantable devices. Expert Opinion on Drug Delivery, 2018, 15, 481-494.	5.0	24
196	Multi-Compartmental Nanoparticles-in-Emulsion Formulation for Macrophage-Specific Anti-Inflammatory Gene Delivery. Pharmaceutical Research, 2012, 29, 1637-1649.	3.5	23
197	The droplet size of emulsion adjuvants has significant impact on their potency, due to differences in immune cell-recruitment and -activation. Scientific Reports, 2019, 9, 11520.	3.3	23
198	Targeted Cancer Therapy; Nanotechnology Approaches for Overcoming Drug Resistance. Current Medicinal Chemistry, 2015, 22, 1335-1347.	2.4	23

#	Article	IF	CITATIONS
199	Nanoparticulate carriers for the treatment of coronary restenosis. International Journal of Nanomedicine, 2007, 2, 143-61.	6.7	23
200	The antimicrobial activity of the appetite peptide hormone ghrelin. Peptides, 2012, 36, 151-156.	2.4	22
201	Therapeutic Efficacy of an ω-3-Fatty Acid-Containing 17-β Estradiol Nano-Delivery System against Experimental Atherosclerosis. PLoS ONE, 2016, 11, e0147337.	2.5	22
202	Gene Delivery and Transfection in Human Pancreatic Cancer Cells using Epidermal Growth Factor Receptor-targeted Gelatin-Based Engineered Nanovectors. Journal of Visualized Experiments, 2012, , e3612.	0.3	21
203	Enhanced anti-tumor efficacy and safety with metronomic intraperitoneal chemotherapy for metastatic ovarian cancer using biodegradable nanotextile implants. Journal of Controlled Release, 2019, 305, 29-40.	9.9	21
204	Label-free Raman microspectral analysis for comparison of cellular uptake and distribution between nontargeted and EGFR-targeted biodegradable polymeric nanoparticles. Drug Delivery and Translational Research, 2013, 3, 575-586.	5.8	20
205	Nanopillared Chitosan/Gelatin Films: A Biomimetic Approach for Improved Osteogenesis. ACS Biomaterials Science and Engineering, 2019, 5, 4311-4322.	5.2	20
206	Critical quality attributes in the development of therapeutic nanomedicines toward clinical translation. Drug Delivery and Translational Research, 2020, 10, 766-790.	5.8	20
207	Nanotechnology-based delivery systems in HIV/AIDS therapy. Future HIV Therapy, 2007, 1, 49-59.	0.4	19
208	Cystatin SN is a potent upstream initiator of epithelial-derived type 2 inflammation in chronic rhinosinusitis. Journal of Allergy and Clinical Immunology, 2022, 150, 872-881.	2.9	19
209	Surface Modification of Polymeric Biomaterials with Poly(ethylene oxide). ACS Symposium Series, 1993, , 135-146.	0.5	18
210	Engineering of an ω-3 polyunsaturated fatty acid-containing nanoemulsion system for combination C6-ceramide and 17Î2-estradiol delivery and bioactivity in human vascular endothelial and smooth muscle cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 885-894.	3.3	18
211	Safety assessment of oral photodynamic therapy in rats. Lasers in Medical Science, 2013, 28, 479-486.	2.1	18
212	Combinatorial-Designed Epidermal Growth Factor Receptor-Targeted Chitosan Nanoparticles for Encapsulation and Delivery of Lipid-Modified Platinum Derivatives in Wild-Type and Resistant Non-Small-Cell Lung Cancer Cells. Molecular Pharmaceutics, 2015, 12, 4466-4477.	4.6	18
213	Role of MicroRNA in Inflammatory Bowel Disease: Clinical Evidence and the Development of Preclinical Animal Models. Cells, 2021, 10, 2204.	4.1	18
214	Preliminary evaluation of a nanotechnology-based approach for the more effective diagnosis of colon cancers. Nanomedicine, 2010, 5, 1467-1479.	3.3	17
215	Multi-Compartmental Vaccine Delivery System for Enhanced Immune Response to gp100 Peptide Antigen in Melanoma Immunotherapy. Pharmaceutical Research, 2012, 29, 3393-3403.	3.5	17
216	A Novel Use of Gentamicin in the ROS-Mediated Sensitization of NCI-H460 Lung Cancer Cells to Various Anticancer Agents. ACS Chemical Biology, 2013, 8, 2771-2777.	3.4	17

#	Article	IF	CITATIONS
217	Direct CNS delivery of proteins using thermosensitive liposome-in-gel carrier by heterotopic mucosal engrafting. PLoS ONE, 2018, 13, e0208122.	2.5	17
218	Extracellular vesicle-mediated nucleic acid transfer and reprogramming in the tumor microenvironment. Cancer Letters, 2020, 482, 33-43.	7.2	17
219	Evaluation of the permeability and blood-compatibility properties of membranes formed by physical interpenetration of chitosan with PEO/PPO/PEO triblock copolymers. Journal of Applied Polymer Science, 2001, 80, 1274-1284.	2.6	16
220	Discriminant analysis followed by unsupervised cluster analysis including exosomal cystatins predict presence of chronic rhinosinusitis, phenotype, and disease severity. International Forum of Allergy and Rhinology, 2019, 9, 1069-1076.	2.8	16
221	CNS Delivery and Anti-Inflammatory Effects of Intranasally Administered Cyclosporine-A in Cationic Nanoformulations. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 843-854.	2.5	16
222	Strategies for Targeting Cancer Immunotherapy Through Modulation of the Tumor Microenvironment. Regenerative Engineering and Translational Medicine, 2020, 6, 29-49.	2.9	16
223	Fluorescence Labeling of Circulating Tumor Cells with a Folate Receptor-Targeted Molecular Probe for Diffuse In Vivo Flow Cytometry. Molecular Imaging and Biology, 2020, 22, 1280-1289.	2.6	16
224	Tetracycline-containing Chitosan Microspheres for Local Treatment of Helicobacter pylori Infection. Cellulose, 2006, 14, 3-14.	4.9	15
225	Nanoparticles: A Promising Modality in the Treatment of Sarcomas. Pharmaceutical Research, 2011, 28, 260-272.	3.5	15
226	Oral nucleic acid therapy using multicompartmental delivery systems. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1478.	6.1	15
227	Osmotic core-shell polymeric implant for sustained BDNF AntagoNAT delivery in CNS using minimally invasive nasal depot (MIND) approach. Biomaterials, 2021, 276, 120989.	11.4	15
228	<i>In vitro</i> and <i>In vivo</i> studies of local arterial gene delivery and transfection using lipopolyplexesâ€embedded stents. Journal of Biomedical Materials Research - Part A, 2010, 93A, 325-336.	4.0	14
229	DHA-SBT-1214 Taxoid Nanoemulsion and Anti–PD-L1 Antibody Combination Therapy Enhances Antitumor Efficacy in a Syngeneic Pancreatic Adenocarcinoma Model. Molecular Cancer Therapeutics, 2019, 18, 1961-1972.	4.1	14
230	Delivery of neurotrophic factors in the treatment of age-related chronic neurodegenerative diseases. Expert Opinion on Drug Delivery, 2020, 17, 323-340.	5.0	14
231	Hyaluronic acid nanoparticle-encapsulated microRNA-125b repolarizes tumor-associated macrophages in pancreatic cancer. Nanomedicine, 2021, 16, 2291-2303.	3.3	14
232	An approach to heterobifunctional poly(ethyleneglycol) bioconjugates. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 5558-5561.	2.2	13
233	CNS Delivery and Pharmacokinetic Evaluations of DALDA Analgesic Peptide Analog Administered in Nano-Sized Oil-in-Water Emulsion Formulation. Pharmaceutical Research, 2014, 31, 1315-1324.	3.5	13
234	Comparative pharmacokinetics and tissue distribution analysis of systemically administered 17-β-estradiol and its metabolites in vivo delivered using a cationic nanoemulsion or a peptide-modified nanoemulsion system for targeting atherosclerosis. Journal of Controlled Release, 2014, 180, 117-124.	9.9	13

#	Article	IF	CITATIONS
235	Formulation Design, Optimization and In Vivo Evaluations of an α-Tocopherol-Containing Self-Emulsified Adjuvant System using Inactivated Influenza Vaccine. Journal of Controlled Release, 2019, 316, 12-21.	9.9	13
236	Role of vitronectin-rich protein corona on tumor-specific siRNA delivery and transfection with lipid nanoparticles. Nanomedicine, 2021, 16, 535-551.	3.3	13
237	Biomedical Applications of Gold Nanoparticles Functionalized Using Hetero-Bifunctional Poly(ethylene glycol) Spacer. Materials Research Society Symposia Proceedings, 2004, 845, 199.	0.1	12
238	Therapeutic strategies for endothelial dysfunction. Expert Opinion on Biological Therapy, 2011, 11, 1637-1654.	3.1	12
239	Synthesis and preliminary in vivo evaluations of polyurethane microstructures for transdermal drug delivery. Chemistry Central Journal, 2012, 6, 87.	2.6	12
240	Analgesic Efficacy and Safety of DALDA Peptide Analog Delivery to the Brain Using Oil-in-Water Nanoemulsion Formulation. Pharmaceutical Research, 2014, 31, 2724-2734.	3.5	12
241	Development and validation of a HPLC method for the assay of dapivirine in cell-based and tissue permeability experiments. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 911, 76-83.	2.3	11
242	Reversing epigenetic mechanisms of drug resistance in solid tumors using targeted microRNA delivery. Expert Opinion on Drug Delivery, 2016, 13, 987-998.	5.0	11
243	Biodistribution and Pharmacokinetic Evaluations of a Novel Taxoid DHA-SBT-1214 in an Oil-in-Water Nanoemulsion Formulation in NaÃīve and Tumor-Bearing Mice. Pharmaceutical Research, 2018, 35, 91.	3.5	11
244	Mitochondrial nanomedicine: Subcellular organelle-specific delivery of molecular medicines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 37, 102422.	3.3	11
245	Combination microRNA-based cellular reprogramming with paclitaxel enhances therapeutic efficacy in a relapsed and multidrug-resistant model of epithelial ovarian cancer. Molecular Therapy - Oncolytics, 2022, 25, 57-68.	4.4	11
246	Mathematical Modeling and Simulation to Investigate the CNS Transport Characteristics of Nanoemulsion-Based Drug Delivery Following Intranasal Administration. Pharmaceutical Research, 2019, 36, 75.	3.5	10
247	Mathematical Modeling and Experimental Validation of Nanoemulsion-Based Drug Transport across Cellular Barriers. Pharmaceutical Research, 2017, 34, 1416-1427.	3.5	9
248	Traumatic brain injury and the development of parkinsonism: Understanding pathophysiology, animal models, and therapeutic targets. Biomedicine and Pharmacotherapy, 2022, 149, 112812.	5.6	9
249	pH-Sensitive Swelling and Drug-Release Properties of Chitosan—Poly(ethylene oxide) Semi-interpenetrating Polymer Network. ACS Symposium Series, 1996, , 209-220.	0.5	8
250	Preparation and Loading of Gelatin Nanoparticles. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4885.	0.3	8
251	Multifunctional Magnetic Nanosystems for Tumor Imaging, Targeted Delivery, and Thermal Medicine. Fundamental Biomedical Technologies, 2008, , 381-408.	0.2	7
252	Systemically administered gp100 encoding DNA vaccine for melanoma using water-in-oil-in-water multiple emulsion delivery systems. International Journal of Pharmaceutics, 2013, 453, 400-407.	5.2	7

#	Article	IF	CITATIONS
253	Challenging the CNS Targeting Potential of Systemically Administered Nanoemulsion Delivery Systems: a Case Study with Rapamycin-Containing Fish Oil Nanoemulsions in Mice. Pharmaceutical Research, 2019, 36, 134.	3.5	7
254	Site-specific intestinal DMT1 silencing to mitigate iron absorption using pH-sensitive multi-compartmental nanoparticulate oral delivery system. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 22, 102091.	3.3	7
255	Co-Silencing of Tissue Transglutaminase-2 and Interleukin-15 Genes in a Celiac Disease Mimetic Mouse Model Using a Nanoparticle-in-Microsphere Oral System. Molecular Pharmaceutics, 2021, 18, 3099-3107.	4.6	7
256	Protein Nanospheres for Gene Delivery. Cold Spring Harbor Protocols, 2008, 2008, pdb.top30.	0.3	6
257	Macrophage-Targeted Nanoparticle Delivery Systems. Nanostructure Science and Technology, 2012, , 47-83.	0.1	6
258	Genetic and epigenetic strategies for advancing ovarian cancer immunotherapy. Expert Opinion on Biological Therapy, 2019, 19, 547-560.	3.1	6
259	Endonasal CNS Delivery System for Blood-Brain Barrier Impermeant Therapeutic Oligonucleotides Using Heterotopic Mucosal Engrafting. Frontiers in Pharmacology, 2021, 12, 660841.	3.5	6
260	Polymeric Nanoparticles for Delivery in the Gastro-Intestinal Tract. , 2006, , 609-648.		6
261	Nucleic Acid Delivery for Endothelial Dysfunction in Cardiovascular Diseases. Methodist DeBakey Cardiovascular Journal, 2021, 12, 134.	1.0	5
262	Pharmacokinetics and Biodistribution Analysis of Small Interference RNA for Silencing Tissue Transglutaminase-2 in Celiac Disease After Oral Administration in Mice Using Gelatin-Based Multicompartmental Delivery Systems. Bioelectricity, 2020, 2, 167-174.	1.1	5
263	Systemic biodistribution and hepatocyte-specific gene editing with CRISPR/Cas9 using hyaluronic acid-based nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 40, 102488.	3.3	5
264	Nasal delivery of nanotherapeutics for CNS diseases: challenges and opportunities. Nanomedicine, 2021, 16, 2651-2655.	3.3	5
265	Raman microscopic imaging of cells and applications monitoring the uptake of drug delivery systems. Proceedings of SPIE, 2008, , .	0.8	4
266	Multifunctional Stimuli–Responsive Nanoparticles for Targeted Delivery of Small and Macromolecular Therapeutics. , 2010, , 555-585.		4
267	Novel RNA interference-based therapies for sepsis. Expert Opinion on Biological Therapy, 2014, 14, 419-435.	3.1	4
268	Raman Micro-spectral Imaging of Cells and Intracellular Drug Delivery Using Nanocarrier Systems. Springer Series in Surface Sciences, 2018, , 273-305.	0.3	4
269	Improved mouse models and advanced genetic and genomic technologies for the study of neutrophils. Drug Discovery Today, 2020, 25, 1013-1025.	6.4	4
270	Preparation of Hyaluronic Acid-Based Nanoparticles for Macrophage-Targeted MicroRNA Delivery and Transfection. Methods in Molecular Biology, 2020, 2118, 99-110.	0.9	4

#	Article	IF	CITATIONS
271	Targeted Drug Delivery to Tumor Cells Using Colloidal Carriers. , 2004, , 181-215.		4
272	Multifunctional Polymeric Nanosystems for Tumor-Targeted Delivery. Fundamental Biomedical Technologies, 2008, , 33-66.	0.2	3
273	Cell Transfection and Analysis Using DNA-Loaded Gelatin Nanoparticles. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4887-pdb.prot4887.	0.3	3
274	Nanomedicine for Cancer Therapy. Pharmaceutical Research, 2011, 28, 181-186.	3.5	3
275	Exosome-Mediated Communication in the Tumor Microenvironment. , 2018, , 187-218.		3
276	Long-Circulating Polymeric Nanoparticles for Drug and Gene Delivery to Tumors. , 2006, , 231-242.		2
277	Intracellular Trafficking Studies Using Gold-Encapsulated Gelatin Nanoparticles. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4886-pdb.prot4886.	0.3	2
278	NON-CONDENSING POLYMERIC GENE DELIVERY SYSTEMS: PRINCIPLES AND APPLICATIONS. Nano LIFE, 2010, 01, 219-237.	0.9	2
279	Theranostic Applications of Plasmonic Nanosystems. ACS Symposium Series, 2012, , 383-413.	0.5	2
280	Photophysical Characterization of Insulin Denaturation and Aggregation at Hydrophobic Interfaces. Drug Development and Industrial Pharmacy, 1995, 21, 1661-1669.	2.0	1
281	Chitosan—Pluronic Physical Interpenetrating Network: Membrane Fabrication and Protein Permeability Studies. ACS Symposium Series, 1999, , 178-186.	0.5	1
282	Biodegradable Polymeric Nanoparticles for Tumor-Selective Tamoxifen Delivery: <i>In Vitro and in Vivo</i> Studies. Materials Research Society Symposia Proceedings, 2004, 845, 228.	0.1	1
283	Biodistribution and Tumor-Targeting Potential of Poly(Ethylene Glycol)-Modified Gelatin Nanoparticles. Materials Research Society Symposia Proceedings, 2004, 845, 233.	0.1	1
284	Role of Eco-Friendly Strategies in the Development of Biomedical Nanotechnology. International Journal of Green Nanotechnology Biomedicine, 2009, 1, 9-23.	0.4	1
285	Polymeric Nanosystems for Integrated Image-Guided Cancer Therapy. Frontiers in Nanobiomedical Research, 2014, , 199-233.	0.1	1
286	Image-Guided Delivery of Therapeutics to the Brain. Advances in Delivery Science and Technology, 2015, , 151-177.	0.4	1
287	Combinatorial Approach in Rationale Design of Polymeric Nanomedicines for Cancer. , 2018, , 371-398.		1

#	Article	IF	CITATIONS
289	Overview of vaccine adjuvants. , 2022, , 9-25.		1
290	An Overview of Condensing and Noncondensing Polymeric Systems for Gene Delivery. Cold Spring Harbor Protocols, 2007, 2007, pdb.top9-pdb.top9.	0.3	1
291	Abstract 352: Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. , 2015, , .		1
292	Bcma Heteroclitic Peptide Encapsulated Nanoparticle Enhances Antigen Stimulatory Capacity and Tumor-Specific CD8+ cytotoxic T Lymphocytes Against Multiple Myeloma. Blood, 2018, 132, 3195-3195.	1.4	1
293	Polymeric Gene Delivery Systems. , 2003, , .		1
294	Nanoparticles-in-Microsphere Oral Delivery Systems (NiMOS) for Nucleic Acid Therapy in the Gastrointestinal Tract. , 2014, , 283-312.		1
295	Abstract LB-13: Hyaluronic acid-based CD44 targeted nanoparticle delivery of combination MDR1 siRNA/paclitaxel to overcome drug resistance in ovarian cancer. Cancer Research, 2014, 74, LB-13-LB-13.	0.9	1
296	Abstract LB-102: Layer-by-layer engineering of upconversion nanoparticle based siRNA and miRNA delivery system for cancer therapy. , 2015, , .		1
297	Molecular Imaging of Subclinical Diabetic Retinopathy. Journal of Ophthalmic and Vision Research, 2017, 12, 129-131.	1.0	1
298	Therapeutic nanomedicine: Polymeric nanosystems for drug and gene delivery. European Journal of Nanomedicine, 2008, 1, .	0.6	0
299	Raman Micro-spectral Imaging of Cells and Intracellular Drug Delivery Using Nanocarrier Systems. Springer Series in Optical Sciences, 2010, , 137-163.	0.7	Ο
300	Multimodal Nano-Systems for Cancer Diagnosis, Imaging, and Therapy. Advances in Delivery Science and Technology, 2014, , 351-388.	0.4	0
301	Biodegradable Polyester-Based Multi-Compartmental Delivery Systems for Oral Nucleic Acid Therapy. , 2016, , 417-443.		Ο
302	Multifunctional combinatorial-designed nanoparticles for nucleic acid therapy. Proceedings of SPIE, 2016, , .	0.8	0
303	Electrically Charged Biomaterials for Drug Delivery and Tissue Repair. Bioelectricity, 2020, 2, 67-67.	1.1	Ο
304	Polymeric Nanoparticles as Target-Specific Delivery Systems. , 2011, , 81-130.		0
305	Nanotechnology Applications in Local Arterial Drug Delivery. Advances in Delivery Science and Technology, 2014, , 359-385.	0.4	0
306	Nano-Platforms for Tumor-Targeted Delivery of Nucleic Acid Therapies. Advances in Delivery Science and Technology, 2014, , 269-291.	0.4	0

#	Article	IF	CITATIONS
307	Abstract 202: Four dimensional quantitative label-free holographic imaging of the cell cycle in tumor cell lines. , 2015, , .		0
308	Abstract 2341: Characterization of macrophage behavior by 4-dimensional label free, quantitative holographic imaging. , 2015, , .		0
309	Redox-Responsive Nano-Delivery Systems for Cancer Therapy. Fundamental Biomedical Technologies, 2016, , 255-269.	0.2	0
310	In Vivo Labeling and Enumeration of Circulating Tumor Cells with a Folate-Receptor Targeted Molecular Probe. , 2021, , .		0