Sachin Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5602916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 2014, 36, 91-106.	16.4	700
2	Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Frontiers in Energy Research, 2018, 6, .	2.3	622
3	Scope of Algae as Third Generation Biofuels. Frontiers in Bioengineering and Biotechnology, 2014, 2, 90.	4.1	227
4	Recent trends in biochar production methods and its application as a soil health conditioner: a review. SN Applied Sciences, 2020, 2, 1.	2.9	112
5	Algal growth in photosynthetic algal microbial fuel cell and its subsequent utilization for biofuels. Renewable and Sustainable Energy Reviews, 2018, 82, 402-414.	16.4	107
6	Design, development and technological advancement in the biomass cookstoves: A review. Renewable and Sustainable Energy Reviews, 2013, 26, 265-285.	16.4	104
7	The role of renewable chemicals and biofuels in building a bioeconomy. Biofuels, Bioproducts and Biorefining, 2020, 14, 830-844.	3.7	96
8	Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective. Renewable and Sustainable Energy Reviews, 2015, 51, 699-717.	16.4	92
9	Biohythane production in two-stage anaerobic digestion system. International Journal of Hydrogen Energy, 2019, 44, 17363-17380.	7.1	85
10	Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 1483-1489.	3.0	64
11	Characterization of hyperthermostable α-amylase from Geobacillus sp. IIPTN. Applied Microbiology and Biotechnology, 2010, 86, 1857-1866.	3.6	62
12	Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse. Renewable Energy, 2015, 83, 850-858.	8.9	62
13	A novel thermostable xylanase of <i>Paenibacillus macerans</i> IIPSP3 isolated from the termite gut. Journal of Industrial Microbiology and Biotechnology, 2012, 39, 851-860.	3.0	56
14	A review on bioprocessing of paddy straw to ethanol using simultaneous saccharification and fermentation. Process Biochemistry, 2019, 85, 125-134.	3.7	53
15	Recent advances in bioethanol production from lignocelluloses: a comprehensive review with a focus on enzyme engineering and designer biocatalysts. Biofuel Research Journal, 2020, 7, 1267-1295.	13.3	53
16	A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production. Frontiers in Microbiology, 2015, 6, 889.	3.5	50
17	Effect of glycerol thermal and hydrothermal pretreatments on lignin degradation and enzymatic hydrolysis in paddy straw. Renewable Energy, 2020, 154, 1304-1313.	8.9	49
18	Enhancement in xylose utilization using Kluyveromyces marxianus NIRE-K1 through evolutionary adaptation approach. Bioprocess and Biosystems Engineering, 2016, 39, 835-843.	3.4	35

SACHIN KUMAR

#	Article	IF	CITATIONS
19	A review on biomethane potential of paddy straw and diverse prospects to enhance its biodigestibility. Journal of Cleaner Production, 2019, 217, 295-307.	9.3	34
20	Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Bioprocess and Biosystems Engineering, 2015, 38, 39-47.	3.4	32
21	Biological Pretreatment of Lignocellulosic Biomass for Enzymatic Saccharification. Green Energy and Technology, 2013, , 3-34.	0.6	29
22	Bioprospecting thermostable cellulosomes for efficient biofuel production from lignocellulosic biomass. Bioresources and Bioprocessing, 2015, 2, .	4.2	28
23	Xylose transport in yeast for lignocellulosic ethanol production: Current status. Journal of Bioscience and Bioengineering, 2018, 125, 259-267.	2.2	27
24	Continuous ethanol production from sugarcane bagasse hydrolysate at high temperature with cell recycle and in-situ recovery of ethanol. Chemical Engineering Science, 2015, 138, 524-530.	3.8	23
25	Augmentation of ethanol production through statistically designed growth and fermentation medium using novel thermotolerant yeast isolates. Renewable Energy, 2017, 109, 406-421.	8.9	22
26	Liquid ammonia pretreatment optimization for improved release of fermentable sugars from sugarcane bagasse. Journal of Cleaner Production, 2021, 281, 123922.	9.3	20
27	Evolutionary Adaptation of Kluyveromyces marxianus NIRE-K3 for Enhanced Xylose Utilization. Frontiers in Energy Research, 2017, 5, .	2.3	19
28	Feasibility of ethanol production with enhanced sugar concentration in bagasse hydrolysate at high temperature usingKluyveromycessp. IIPE453. Biofuels, 2010, 1, 697-704.	2.4	18
29	Cooling System Economy in Ethanol Production Using Thermotolerant Yeast Kluyveromyces Sp. IIPE453. American Journal of Microbiological Research, 2013, 1, 39-44.	0.4	16
30	Production of first- and second-generation ethanol for use in alcohol-based hand sanitizers and disinfectants in India. Biomass Conversion and Biorefinery, 2023, 13, 7423-7440.	4.6	15
31	Kinetic studies of ethanol fermentation using <i>Kluyveromyces</i> sp. <scp>IIPE453</scp> . Journal of Chemical Technology and Biotechnology, 2013, 88, 1874-1884.	3.2	13
32	Effect of Evolutionary Adaption on Xylosidase Activity in Thermotolerant Yeast Isolates Kluyveromyces marxianus NIRE-K1 and NIRE-K3. Applied Biochemistry and Biotechnology, 2016, 179, 1143-1154.	2.9	13
33	Evaluating the Pathway for Co-fermentation of Glucose and Xylose for Enhanced Bioethanol Production Using Flux Balance Analysis. Biotechnology and Bioprocess Engineering, 2019, 24, 924-933.	2.6	10
34	Lignocellulosic Ethanol: Feedstocks and Bioprocessing. , 2019, , 165-185.		10
35	Valorization of By-Products Following the Biorefinery Concept. , 2018, , 163-178.		8
36	Prospects of Solvent Tolerance in Butanol Fermenting Bacteria. Biofuel and Biorefinery Technologies, 2018, , 249-264.	0.3	6

SACHIN KUMAR

#	Article	IF	CITATIONS
37	Biochemical Strategies for Enhanced Biofuel Production. Biofuel and Biorefinery Technologies, 2019, , 51-87.	0.3	5
38	A Review on Opportunities and Limitations of Membrane Bioreactor Configuration in Biofuel Production. Applied Biochemistry and Biotechnology, 2023, 195, 5497-5540.	2.9	5
39	Biohydrogen Production from Lignocellulosic Feedstocks Using Extremophiles. , 2018, , 79-96.		4
40	Bioprospecting Saccharification of Alkali Pretreated Paddy Straw Through Statistically Designed Parameters for Biofuel Production. Industrial Biotechnology, 2020, 16, 375-385.	0.8	4
41	Optimization of Dilute Acid Pretreatment for Enhanced Release of Fermentable Sugars from Sugarcane Bagasse and Validation by Biophysical Characterization. Bioenergy Research, 2023, 16, 416-434.	3.9	3
42	Potential Role of Xylose Transporters in Industrial Yeast for Bioethanol Production: A Perspective Review. Springer Proceedings in Energy, 2016, , 81-93.	0.3	0
43	Potential Feedstock for Sustainable Biogas Production and its Supply Chain Management. , 2020, , 147-165.		0
44	Bioprospecting of Microorganisms for Biofuel Production. Biofuel and Biorefinery Technologies, 2020, , 19-33.	0.3	0
45	Augmentation of Bio-butanol Production Through Isolation, Screening and Optimization of Growth and Fermentation Parameters Using Response Surface Methodology. Sugar Tech, 0, , .	1.8	0