
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5599531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An NR2F1-specific agonist suppresses metastasis by inducing cancer cell dormancy. Journal of Experimental Medicine, 2022, 219, .	8.5	42
2	Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nature Communications, 2022, 13, 626.	12.8	58
3	A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. Nature Cancer, 2022, 3, 90-107.	13.2	110
4	Altered BAF occupancy and transcription factor dynamics in PBAF-deficient melanoma. Cell Reports, 2022, 39, 110637.	6.4	12
5	Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature, 2022, 606, 396-405.	27.8	67
6	The State of Melanoma: Emergent Challenges and Opportunities. Clinical Cancer Research, 2021, 27, 2678-2697.	7.0	53
7	Bone marrow NG2+/Nestin+ mesenchymal stem cells drive DTC dormancy via TGF-β2. Nature Cancer, 2021, 2, 327-339.	13.2	68
8	Tissue-resident macrophages provide a pro-tumorigenic niche to early NSCLC cells. Nature, 2021, 595, 578-584.	27.8	284
9	Prostate Cancer Dormancy and Reactivation in Bone Marrow. Journal of Clinical Medicine, 2021, 10, 2648.	2.4	11
10	Translating the Science of Cancer Dormancy to the Clinic. Cancer Research, 2021, 81, 4673-4675.	0.9	26
11	Metabolic Adaptations to MEK and CDK4/6 Cotargeting in Uveal Melanoma. Molecular Cancer Therapeutics, 2020, 19, 1719-1726.	4.1	22
12	Immunology of COVID-19: Current State of the Science. Immunity, 2020, 52, 910-941.	14.3	1,387
13	The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nature Cancer, 2020, 1, 672-680.	13.2	132
14	Immobilization rapidly selects for chemoresistant ovarian cancer cells with enhanced ability to enter dormancy. Biotechnology and Bioengineering, 2020, 117, 3066-3080.	3.3	5
15	An IRAK1–PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy. Nature Cell Biology, 2019, 21, 203-213.	10.3	38
16	The importance of developing therapies targeting the biological spectrum of metastatic disease. Clinical and Experimental Metastasis, 2019, 36, 305-309.	3.3	9
17	Effects of Oncogenic Gαq and Gα11 Inhibition by FR900359 in Uveal Melanoma. Molecular Cancer Research, 2019, 17, 963-973.	3.4	68
18	Effects of Oncogenic Cα q and Cα 11 Inhibition by FR900359 in Uveal Melanoma. FASEB Journal, 2019, 33, 815 9	0.5	0

#	Article	IF	CITATIONS
19	Emerging Topics on Disseminated Cancer Cell Dormancy and the Paradigm of Metastasis. Annual Review of Cancer Biology, 2018, 2, 377-393.	4.5	72
20	Macrophages orchestrate breast cancer early dissemination and metastasis. Nature Communications, 2018, 9, 21.	12.8	331
21	How dormant cancer persists and reawakens. Science, 2018, 361, 1314-1315.	12.6	55
22	NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients. Breast Cancer Research, 2018, 20, 120.	5.0	85
23	The Different Routes to Metastasis via Hypoxia-Regulated Programs. Trends in Cell Biology, 2018, 28, 941-956.	7.9	83
24	Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nature Cell Biology, 2017, 19, 120-132.	10.3	258
25	Time-lapsed, large-volume, high-resolution intravital imaging for tissue-wide analysis of single cell dynamics. Methods, 2017, 128, 65-77.	3.8	39
26	Epigenetic Regulation of Cancer Dormancy as a Plasticity Mechanism for Metastasis Initiation. Cancer Drug Discovery and Development, 2017, , 1-16.	0.4	6
27	Mer Tyrosine Kinase Regulates Disseminated Prostate Cancer Cellular Dormancy. Journal of Cellular Biochemistry, 2017, 118, 891-902.	2.6	63
28	Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature, 2016, 540, 588-592.	27.8	424
29	Early dissemination seeds metastasis in breast cancer. Nature, 2016, 540, 552-558.	27.8	550
30	Cbx8 Acts Non-canonically with Wdr5 to Promote Mammary Tumorigenesis. Cell Reports, 2016, 16, 472-486.	6.4	95
31	Collagen Matrix Density Drives the Metabolic Shift in Breast Cancer Cells. EBioMedicine, 2016, 13, 146-156.	6.1	90
32	Axl is required for TGF-β2-induced dormancy of prostate cancer cells in the bone marrow. Scientific Reports, 2016, 6, 36520.	3.3	127
33	Validation of a device for the active manipulation of the tumor microenvironment during intravital imaging. Intravital, 2016, 5, e1182271.	2.0	16
34	Origin and interpretation of cancer transcriptome profiling: the essential role of the stroma in determining prognosis and drug resistance. EMBO Molecular Medicine, 2015, 7, 1385-1387.	6.9	6
35	The In Ovo Chick Chorioallantoic Membrane (CAM) Assay as an Efficient Xenograft Model of Hepatocellular Carcinoma. Journal of Visualized Experiments, 2015, , .	0.3	43
36	Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment. BMC Cancer, 2015, 15, 444.	2.6	26

#	Article	IF	CITATIONS
37	NR2F1 controls tumour cell dormancy via SOX9- and RARÎ ² -driven quiescence programmes. Nature Communications, 2015, 6, 6170.	12.8	246
38	Epithelial Xbp1 Is Required for Cellular Proliferation and Differentiation during Mammary Gland Development. Molecular and Cellular Biology, 2015, 35, 1543-1556.	2.3	40
39	Integration of microenvironmental and stress signaling antagonizes colorectal cancer progression. EMBO Journal, 2014, 33, 1737-1739.	7.8	1
40	Mechanisms of disseminated cancer cell dormancy: an awakening field. Nature Reviews Cancer, 2014, 14, 611-622.	28.4	902
41	Inducible Nitric Oxide Synthase Drives mTOR Pathway Activation and Proliferation of Human Melanoma by Reversible Nitrosylation of TSC2. Cancer Research, 2014, 74, 1067-1078.	0.9	86
42	Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget, 2014, 5, 9939-9951.	1.8	92
43	TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nature Cell Biology, 2013, 15, 1351-1361.	10.3	394
44	Regulation of Tumor Cell Dormancy by Tissue Microenvironments and Autophagy. Advances in Experimental Medicine and Biology, 2013, 734, 73-89.	1.6	86
45	Metastasis Awakening: Targeting dormant cancer. Nature Medicine, 2013, 19, 276-277.	30.7	107
46	A human tRNA methyltransferase 9â€like protein prevents tumour growth by regulating LIN9 and HIF1â€l±. EMBO Molecular Medicine, 2013, 5, 366-383.	6.9	98
47	Oropharyngeal Cancer Biology and Treatment: Insights From Messenger RNA Sequence Analysis and Transoral Robotic Surgery. Mayo Clinic Proceedings, 2012, 87, 211-212.	3.0	1
48	p38α Mediates Cell Survival in Response to Oxidative Stress via Induction of Antioxidant Genes. Journal of Biological Chemistry, 2012, 287, 2632-2642.	3.4	115
49	A Local View of Cancer. Developmental Cell, 2012, 22, 472-474.	7.0	3
50	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
51	Dormancy Signatures and Metastasis in Estrogen Receptor Positive and Negative Breast Cancer. PLoS ONE, 2012, 7, e35569.	2.5	168
52	Microenvironments Dictating Tumor Cell Dormancy. Recent Results in Cancer Research, 2012, 195, 25-39.	1.8	94
53	Analysis of Marker-Defined HNSCC Subpopulations Reveals a Dynamic Regulation of Tumor Initiating Properties. PLoS ONE, 2012, 7, e29974.	2.5	26
54	Autophagy and Tumor Cell Dormancy in Head and Neck Cancer. Laryngoscope, 2011, 121, S125-S125.	2.0	1

#	Article	IF	CITATIONS
55	ERK1/2 and p38α/β Signaling in Tumor Cell Quiescence: Opportunities to Control Dormant Residual Disease. Clinical Cancer Research, 2011, 17, 5850-5857.	7.0	189
56	p38α Signaling Induces Anoikis and Lumen Formation During Mammary Morphogenesis. Science Signaling, 2011, 4, ra34.	3.6	43
57	PERK Integrates Autophagy and Oxidative Stress Responses To Promote Survival during Extracellular Matrix Detachment. Molecular and Cellular Biology, 2011, 31, 3616-3629.	2.3	243
58	Bortezomib Enhances the Efficacy of Fulvestrant by Amplifying the Aggregation of the Estrogen Receptor, Which Leads to a Proapoptotic Unfolded Protein Response. Clinical Cancer Research, 2011, 17, 2292-2300.	7.0	31
59	Combined Inhibition of Epidermal Growth Factor Receptor and Cyclooxygenase-2 as a Novel Approach to Enhance Radiotherapy. Journal of Cell Science & Therapy, 2011, 2, .	0.3	12
60	Dormancy of metastatic melanoma. Pigment Cell and Melanoma Research, 2010, 23, 41-56.	3.3	109
61	On the theory of tumor self-seeding: implications for metastasis progression in humans. Breast Cancer Research, 2010, 12, 304.	5.0	32
62	Dormancy of Disseminated Tumor Cells: Reciprocal Crosstalk with the Microenvironment. , 2010, , 229-254.		0
63	Inhibition of eIF2α Dephosphorylation Maximizes Bortezomib Efficiency and Eliminates Quiescent Multiple Myeloma Cells Surviving Proteasome Inhibitor Therapy. Cancer Research, 2009, 69, 1545-1552.	0.9	140
64	Inhibition of eIF2α dephosphorylation inhibits ErbB2-induced deregulation of mammary acinar morphogenesis. BMC Cell Biology, 2009, 10, 64.	3.0	12
65	Computational Identification of a p38SAPK-Regulated Transcription Factor Network Required for Tumor Cell Quiescence. Cancer Research, 2009, 69, 5664-5672.	0.9	152
66	The urokinase receptor (uâ€PAR)—a link between tumor cell dormancy and minimal residual disease in bone marrow?. Apmis, 2008, 116, 602-614.	2.0	46
67	ATF6α-Rheb-mTOR signaling promotes survival of dormant tumor cells <i>in vivo</i> . Proceedings of the United States of America, 2008, 105, 10519-10524.	7.1	296
68	Dual Function of Pancreatic Endoplasmic Reticulum Kinase in Tumor Cell Growth Arrest and Survival. Cancer Research, 2008, 68, 3260-3268.	0.9	97
69	Inhibition of eIF2α Dephosphorylation Maximizes Bortezomib Efficiency and Eliminates Quiescent Multiple Myeloma Cells Surviving Therapy. Blood, 2008, 112, 2762-2762.	1.4	0
70	Models, mechanisms and clinical evidence for cancer dormancy. Nature Reviews Cancer, 2007, 7, 834-846.	28.4	1,413
71	Inhibition of Proliferation by PERK Regulates Mammary Acinar Morphogenesis and Tumor Formation. PLoS ONE, 2007, 2, e615.	2.5	70
72	Ribonomic and Short Hairpin RNA Gene Silencing Methods to Explore Functional Gene Programs		4

Associated With Tumor Growth Arrest. , 2007, 383, 227-244. ٩

#	Article	lF	CITATIONS
73	Tumor cell dormancy induced by p38SAPK and ER-stress signaling: An adaptive advantage for metastatic cells?. Cancer Biology and Therapy, 2006, 5, 729-735.	3.4	93
74	Opposing Roles of Mitogenic and Stress Signaling Pathways in the Induction of Cancer Dormancy. Cell Cycle, 2006, 5, 1799-1807.	2.6	87
75	The Problem of Cancer Dormancy: Understanding the Basic Mechanisms and Identifying Therapeutic Opportunities. Cell Cycle, 2006, 5, 1740-1743.	2.6	56
76	A Region in Urokinase Plasminogen Receptor Domain III Controlling a Functional Association with α5β1 Integrin and Tumor Growth. Journal of Biological Chemistry, 2006, 281, 14852-14863.	3.4	110
77	Functional Coupling of p38-Induced Up-regulation of BiP and Activation of RNA-Dependent Protein Kinase–Like Endoplasmic Reticulum Kinase to Drug Resistance of Dormant Carcinoma Cells. Cancer Research, 2006, 66, 1702-1711.	0.9	291
78	Mitochondrial H2O2 Regulates the Angiogenic Phenotype via PTEN Oxidation. Journal of Biological Chemistry, 2005, 280, 16916-16924.	3.4	217
79	Dephosphorylation Shows SR Proteins the Way Out. Molecular Cell, 2005, 20, 499-501.	9.7	13
80	Green Fluorescent Protein Tagging of Extracellular Signal-Regulated Kinase and p38 Pathways Reveals Novel Dynamics of Pathway Activation during Primary and Metastatic Growth. Cancer Research, 2004, 64, 7336-7345.	0.9	160
81	ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Research, 2003, 63, 1684-95.	0.9	377
82	Immortalized mammary epithelial cells overexpressing protein kinase C gamma acquire a malignant phenotype and become tumorigenic in vivo. Molecular Cancer Research, 2003, 1, 776-87.	3.4	33
83	RalA Mediates v-Src, v-Ras, and v-Raf Regulation of CD44 and Fibronectin Expression in NIH3T3 Fibroblasts. Biochemical and Biophysical Research Communications, 2001, 283, 854-861.	2.1	12
84	Urokinase Receptor and Fibronectin Regulate the ERK ^{MAPK} to p38 ^{MAPK} Activity Ratios That Determine Carcinoma Cell Proliferation or Dormancy In Vivo. Molecular Biology of the Cell, 2001, 12, 863-879.	2.1	440
85	Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Current Opinion in Cell Biology, 2000, 12, 613-620.	5.4	364
86	RalA requirement for v-Src- and v-Ras-induced tumorigenicity and overproduction of urokinase-type plasminogen activator: involvement of metalloproteases. Oncogene, 1999, 18, 4718-4725.	5.9	76
87	Function and Expression of the uPA/uPAR System in Cancer Metastasis. , 0, , 223-236.		1