Yiping Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/55991/publications.pdf

Version: 2024-02-01

139	4,447	126907	133252
papers	citations	h-index	g-index
1.40	1.40	1.40	5175
140 all docs	140 docs citations	140 times ranked	5175 citing authors
3.22 3000	3333 5764670780		www.oro

#	Article	IF	CITATIONS
1	Crosslinking biopolymers for biomedical applications. Trends in Biotechnology, 2015, 33, 362-369.	9.3	469
2	Vanillin-Based Epoxy Vitrimer with High Performance and Closed-Loop Recyclability. Macromolecules, 2020, 53, 621-630.	4.8	220
3	Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Composites Part B: Engineering, 2014, 56, 408-412.	12.0	200
4	An imine-containing epoxy vitrimer with versatile recyclability and its application in fully recyclable carbon fiber reinforced composites. Composites Science and Technology, 2020, 199, 108314.	7.8	125
5	Producing superior composites by winding carbon nanotubes onto a mandrel under a poly(vinyl) Tj ETQq1 1 0.784	1314 rgBT 10.3	/Overlock 1/ 114
6	Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics. Journal of Materials Chemistry A, 2020, 8, 2984-2994.	10.3	107
7	Synthesis and filtration properties of polyimide nanofiber membrane/carbon woven fabric sandwiched hot gas filters for removal of PM 2.5 particles. Powder Technology, 2016, 292, 54-63.	4.2	99
8	Influence of graphene oxide with different oxidation levels on the properties of epoxy composites. Composites Science and Technology, 2018, 161, 74-84.	7.8	91
9	Extraction and characterisation of natural cellulose fibers from Kigelia africana. Carbohydrate Polymers, 2020, 236, 115996.	10.2	87
10	Influence of aramid fiber moisture regain during atmospheric plasma treatment on aging of treatment effects on surface wettability and bonding strength to epoxy. Applied Surface Science, 2007, 253, 9283-9289.	6.1	83
11	Design and fabrication of microstrip antennas integrated in three dimensional orthogonal woven composites. Composites Science and Technology, 2009, 69, 1004-1008.	7.8	79
12	Hierarchically porous sheath–core graphene-based fiber-shaped supercapacitors with high energy density. Journal of Materials Chemistry A, 2018, 6, 896-907.	10.3	77
13	Flexible ultra-thin Fe3O4/MnO2 core-shell decorated CNT composite with enhanced electromagnetic wave absorption performance. Composites Part B: Engineering, 2018, 144, 111-117.	12.0	75
14	Core–Sheath Porous Polyaniline Nanorods/Graphene Fiber-Shaped Supercapacitors with High Specific Capacitance and Rate Capability. ACS Applied Energy Materials, 2019, 2, 4335-4344.	5.1	72
15	Stepâ€byâ€Step Strategy for Constructing Multilayer Structured Coatings toward Highâ€Efficiency Electromagnetic Interference Shielding. Advanced Materials Interfaces, 2016, 3, 1500476.	3.7	70
16	Hydrophobic surface modification of ramie fibers with ethanol pretreatment and atmospheric pressure plasma treatment. Surface and Coatings Technology, 2011, 205, 4205-4210.	4.8	60
17	Axial Alignment of Carbon Nanotubes on Fibers To Enable Highly Conductive Fabrics for Electromagnetic Interference Shielding. ACS Applied Materials & Samp; Interfaces, 2020, 12, 7477-7485.	8.0	60
18	A novel flexible humidity switch material based on multi-walled carbon nanotube/polyvinyl alcohol composite yarn. Sensors and Actuators B: Chemical, 2016, 230, 528-535.	7.8	58

#	Article	IF	CITATIONS
19	Enhanced electrochemical properties of hierarchically sheath-core aligned carbon nanofibers coated carbon fiber yarn electrode-based supercapacitor via polyaniline nanowire array modification. Journal of Power Sources, 2018, 399, 406-413.	7.8	58
20	Characterization of enhanced interfacial bonding between epoxy and plasma functionalized carbon nanotube films. Composites Science and Technology, 2017, 145, 114-121.	7.8	56
21	Flexible strain sensor based on aerogel-spun carbon nanotube yarn with a core-sheath structure. Composites Part A: Applied Science and Manufacturing, 2018, 108, 107-113.	7.6	55
22	Influence of cryogenic treatment on mechanical and interfacial properties of carbon nanotube fiber/bisphenol-F epoxy composite. Composites Part B: Engineering, 2017, 125, 195-202.	12.0	52
23	Fabrication of core-shell structured poly(3,4-ethylenedioxythiophene)/carbon nanotube hybridsÂwithÂenhanced thermoelectric power factors. Carbon, 2019, 148, 290-296.	10.3	52
24	The mechanism of air/oxygen/helium atmospheric plasma action on PVA. Journal of Applied Polymer Science, 2006, 99, 2233-2237.	2.6	50
25	Superhydrophobization of cotton fabric with multiwalled carbon nanotubes for durable electromagnetic interference shielding. Fibers and Polymers, 2015, 16, 2158-2164.	2.1	48
26	Thermoelectric Properties of Conducting Polymer Nanowire–Tellurium Nanowire Composites. ACS Applied Energy Materials, 2018, 1, 4883-4890.	5.1	48
27	Interfacial characteristics of a carbon nanotube-polyimide nanocomposite by molecular dynamics simulation. Nanotechnology Reviews, 2020, 9, 136-145.	5.8	43
28	Thermoelectric transport in ultrathin poly(3,4-ethylenedioxythiophene) nanowire assembly. Composites Part B: Engineering, 2018, 136, 234-240.	12.0	40
29	Influence of processing parameters on atmospheric pressure plasma etching of polyamide 6 films. Applied Surface Science, 2009, 255, 7683-7688.	6.1	39
30	Highâ€Loading Carbon Nanotube/Polymer Nanocomposite Fabric Coatings Obtained by Capillarityâ€Assisted "Excess Assembly―for Electromagnetic Interference Shielding. Advanced Materials Interfaces, 2018, 5, 1800116.	3.7	39
31	A novel liquid imidazole-copper (II) complex as a thermal latent curing agent for epoxy resins. Polymer, 2019, 178, 121586.	3.8	39
32	Synergistic effect of CNT films impregnated with CNT modified epoxy solution towards boosted interfacial bonding and functional properties of the composites. Composites Part A: Applied Science and Manufacturing, 2018, 110, 1-10.	7.6	37
33	Multi-reflection-enhanced electromagnetic interference shielding performance of conductive nanocomposite coatings on fabrics. Journal of Colloid and Interface Science, 2021, 590, 467-475.	9.4	36
34	Dyeing properties of wool fabrics treated with atmospheric pressure plasmas. Journal of Applied Polymer Science, 2008, 109, 1257-1261.	2.6	34
35	Influence of absorbed moisture on antifelting property of wool treated with atmospheric pressure plasma. Journal of Applied Polymer Science, 2009, 113, 3687-3692.	2.6	33
36	Helium plasma treatment of ethanol-pretreated ramie fabrics for improving the mechanical properties of ramie/polypropylene composites. Industrial Crops and Products, 2013, 51, 299-305.	5.2	33

#	Article	IF	Citations
37	Impressive epoxy toughening by a structure-engineered core/shell polymer nanoparticle. Composites Science and Technology, 2020, 199, 108364.	7.8	32
38	X-ray 3D microscopy analysis of fracture mechanisms for 3D orthogonal woven E-glass/epoxy composites with drilled and moulded-in holes. Composites Part B: Engineering, 2018, 133, 193-202.	12.0	31
39	Fabrication and characterization of three-dimensional cellular-matrix composites reinforced with woven carbon fabric. Composites Science and Technology, 2001, 61, 2425-2435.	7.8	30
40	Influence of moisture on wettability and sizing properties of raw cotton yarns treated with He/O2 atmospheric pressure plasma jet. Surface and Coatings Technology, 2012, 206, 2281-2286.	4.8	30
41	Highly tough and strain sensitive plasma functionalized carbon nanotube/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2019, 121, 123-129.	7.6	30
42	Tensile, impact and dielectric properties of three dimensional orthogonal aramid/glass fiber hybrid composites. Journal of Materials Science, 2007, 42, 6494-6500.	3.7	29
43	Cylindrical conformal single-patch microstrip antennas based on three dimensional woven glass fiber/epoxy resin composites. Composites Part B: Engineering, 2015, 78, 331-337.	12.0	29
44	Fabrication and characterization of microstrip array antennas integrated in the three dimensional orthogonal woven composite. Composites Part B: Engineering, 2011, 42, 885-890.	12.0	28
45	Antimicrobial three dimensional woven filters containing silver nanoparticle doped nanofibers in a membrane bioreactor for wastewater treatment. Separation and Purification Technology, 2017, 175, 130-139.	7.9	28
46	Modified shear lag model for fibers and fillers with irregular cross-sectional shapes. Journal of Adhesion Science and Technology, 2003, 17, 397-408.	2.6	27
47	Performance and impact damage of a three dimensionally integrated microstrip feeding antenna structure. Composite Structures, 2010, 93, 193-197.	5.8	26
48	Interlaminar Fracture Toughness of Carbon-Fiber-Reinforced Epoxy Composites Toughened by Poly(phenylene oxide) Particles. ACS Applied Polymer Materials, 2020, 2, 3114-3121.	4.4	26
49	In-plane mechanical properties of carbon nanotube films fabricated by floating catalyst chemical vapor decomposition. Journal of Materials Science, 2015, 50, 8166-8174.	3.7	25
50	Interfacial strength and debonding mechanism between aerogel-spun carbon nanotube yarn and polyphenylene sulfide. Composites Part A: Applied Science and Manufacturing, 2016, 88, 98-105.	7.6	25
51	Effects of Styrene-Acrylic Sizing on the Mechanical Properties of Carbon Fiber Thermoplastic Towpregs and Their Composites. Molecules, 2018, 23, 547.	3.8	25
52	Modeling and experimental verification of dielectric constants for three-dimensional woven composites. Composites Science and Technology, 2008, 68, 1794-1799.	7.8	24
53	Improvement of mechanical properties of ramie/poly (lactic acid) (PLA) laminated composites using a cyclic load pre-treatment method. Industrial Crops and Products, 2013, 45, 94-99.	5. 2	24
54	Fabrication and characterization of three-dimensional PMR polyimide composites reinforced with woven basalt fabric. Composites Part B: Engineering, 2014, 66, 268-275.	12.0	23

#	Article	IF	CITATIONS
55	Filtration properties of carbon woven fabric filters supplied with high voltage for removal of PM 1.0 particles. Separation and Purification Technology, 2017, 177, 40-48.	7.9	23
56	Revealing Electricalâ€Polingâ€Induced Polarization Potential in Hybrid Perovskite Photodetectors. Advanced Materials, 2020, 32, e2005481.	21.0	23
57	Effect on the antiâ€felt properties of atmospheric pressure plasma treated wool. Journal of Applied Polymer Science, 2008, 107, 1142-1146.	2.6	22
58	Effect of Atmospheric Plasma Treatment on Carbon Fiber/Epoxy Interfacial Adhesion. Journal of Adhesion Science and Technology, 2011, 25, 2897-2908.	2.6	22
59	Mechanical and sound adsorption properties of cellular poly (lactic acid) matrix composites reinforced with 3D ramie fabrics woven with co-wrapped yarns. Industrial Crops and Products, 2014, 56, 1-8.	5.2	22
60	Fluorescence-enhanced bio-detection platforms obtained through controlled "step-by-step― clustering of silver nanoparticles. Nanoscale, 2018, 10, 848-855.	5.6	22
61	A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts. Materials, 2018, 11, 685.	2.9	22
62	Quasi-static and dynamic interfacial evaluations of plasma functionalized carbon nanotube fiber. Applied Surface Science, 2019, 465, 795-801.	6.1	22
63	A Comprehensive Study on the Mechanical Properties of Different 3D Woven Carbon Fiber-Epoxy Composites. Materials, 2020, 13, 2765.	2.9	22
64	Effect of thermal treatments on structures and mechanical properties of aerogel-spun carbon nanotube fibers. Materials Letters, 2016, 183, 117-121.	2.6	21
65	Electromagnetic performance of a three-dimensional woven fabric antenna conformal with cylindrical surfaces. Textile Reseach Journal, 2017, 87, 147-154.	2.2	21
66	A Comparative Study on Interlaminar Properties of L-shaped Two-Dimensional (2D) and Three-Dimensional (3D) Woven Composites. Applied Composite Materials, 2019, 26, 723-744.	2.5	21
67	Surface modification of nylon 6 films treated with an He/O ₂ atmospheric pressure plasma jet. Journal of Applied Polymer Science, 2011, 120, 2201-2206.	2.6	19
68	Eco-friendly sizing technology of cotton yarns with He/O ₂ atmospheric pressure plasma treatment and green sizing recipes. Textile Reseach Journal, 2013, 83, 2177-2190.	2.2	19
69	Helium plasma treatment voltage effect on adhesion of ramie fibers to polybutylene succinate. Industrial Crops and Products, 2014, 61, 16-22.	5.2	19
70	Smart composites of piezoelectric particles and shape memory polymers for actuation and nanopositioning. Composites Science and Technology, 2018, 163, 123-132.	7.8	19
71	A Quercetin-Derived Polybasic Acid Hardener for Reprocessable and Degradable Epoxy Resins Based on Transesterification. ACS Applied Polymer Materials, 2022, 4, 5708-5716.	4.4	19
72	Comparing effects of thermal annealing and chemical reduction treatments on properties of wet-spun graphene fibers. Journal of Materials Science, 2016, 51, 9889-9901.	3.7	18

#	Article	lF	CITATIONS
73	Simulation and electromagnetic performance of cylindrical two-element microstrip antenna array integrated in 3D woven glass fiber/epoxy composites. Materials and Design, 2016, 89, 1048-1056.	7.0	18
74	Microbuckling-Enhanced Electromagnetic-Wave-Absorbing Capability of a Stretchable Fe ₃ O ₄ /Carbon Nanotube/Poly(dimethylsiloxane) Composite Film. ACS Applied Nano Materials, 2018, 1, 2227-2236.	5.0	18
75	Analyzing effects of interfaces on recovery rates of shape memory composites from the perspective of molecular motions. Composites Science and Technology, 2018, 163, 105-115.	7.8	18
76	Two-way reversible shape memory polymer: Synthesis and characterization of benzoyl peroxide-crosslinked poly(ethylene-co-vinyl acetate). Materials Letters, 2020, 258, 126762.	2.6	17
77	Effect of conductive yarn crimp in radiation patch on electromagnetic performance of 3D integrated microstrip antenna. Composites Part B: Engineering, 2012, 43, 465-470.	12.0	16
78	Plasma functionalization of bucky paper and its composite with phenylethynyl-terminated polyimide. Composites Part B: Engineering, 2013, 45, 1275-1281.	12.0	16
79	Static and bending fatigue properties of ultra-thick 3D orthogonal woven composites. Journal of Composite Materials, 2013, 47, 569-577.	2.4	16
80	Preparation, structure, and properties of melt spun cellulose acetate butyrate fibers. Textile Reseach Journal, 2018, 88, 1491-1504.	2.2	16
81	The Failure Mechanism of Composite Stiffener Components Reinforced with 3D Woven Fabrics. Materials, 2019, 12, 2221.	2.9	16
82	Fabrication of gradient vapor grown carbon fiber based polyurethane foam for shape memory driven microwave shielding. RSC Advances, 2019, 9, 9401-9409.	3.6	16
83	Densely packed, highly strain sensitive carbon nanotube composites with sufficient polymer penetration. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105728.	7.6	16
84	Tuning solid–air interface of porous graphene paper for enhanced electromagnetic interference shielding. Journal of Materials Science, 2020, 55, 6598-6609.	3.7	16
85	Comparison of polyelectrolyte and sodium dodecyl benzene sulfonate as dispersants for multiwalled carbon nanotubes on cotton fabrics for electromagnetic interference shielding. Journal of Applied Polymer Science, 2014, 131, .	2.6	15
86	Multi-layer graphene oxide coated shape memory polyurethane for adjustable smart switches. Composites Science and Technology, 2019, 172, 108-116.	7.8	15
87	High temperature carbon nanotube – Nanofiber hybrid filters. Separation and Purification Technology, 2020, 236, 116255.	7.9	15
88	Litter to Leaf: The Unexplored Potential of Silk Byproducts. Trends in Biotechnology, 2021, 39, 706-718.	9.3	15
89	Chemical modification of Bombyx mori silk with epoxide EPSIB. Journal of Applied Polymer Science, 2004, 91, 3579-3586.	2.6	14
90	Synthesis and characterization of LiFePO4-carbon nanofiber with Ti4+ substitution by electrospinning and thermal treatment. Solid State Ionics, 2014, 267, 74-79.	2.7	14

#	Article	IF	CITATIONS
91	Fabrication and property of discarded denim fabric/polypropylene composites. Journal of Industrial Textiles, 2015, 44, 798-812.	2.4	14
92	Review on intrinsically recyclable flame retardant thermosets enabled through covalent bonds. Journal of Applied Polymer Science, 2022, 139, .	2.6	14
93	Influence of treatment duration on hydrophobic recovery of plasmaâ€treated ultrahigh modulus polyethylene fiber surfaces. Journal of Applied Polymer Science, 2008, 110, 995-1001.	2.6	13
94	Effect of atmospheric pressure plasma treatment condition on adhesion of ramie fibers to polypropylene for composite. Applied Surface Science, 2016, 364, 294-301.	6.1	13
95	Multifunctional composite nanofibers with shape memory and piezoelectric properties for energy harvesting. Journal of Intelligent Material Systems and Structures, 2020, 31, 956-966.	2.5	13
96	Low-velocity drop weight impact behavior of Twaron \hat{A}^{\otimes} fabric investigated using experimental and numerical simulations. International Journal of Impact Engineering, 2021, 149, 103796.	5.0	13
97	Effect of Glycerol Coating on the Atmospheric Pressure Plasma Treatment of UHMWPE Fibers. Journal of Adhesion Science and Technology, 2012, 26, 289-301.	2.6	12
98	Reprocessable, Reworkable, and Mechanochromic Polyhexahydrotriazine Thermoset with Multiple Stimulus Responsiveness. Polymers, 2020, 12, 2375.	4.5	12
99	Three-dimensional woven structural glass fiber/polytetrafluoroethylene (PTFE) composite antenna with superb integrity and electromagnetic performance. Composite Structures, 2022, 281, 115096.	5.8	12
100	Laser scanning confocal microscope characterization of dye diffusion in nylon 6 fibers treated with atmospheric pressure plasmas. Journal of Applied Polymer Science, 2008, 107, 1471-1478.	2.6	11
101	Filtration performance of three dimensional fabric filter in a membrane bioreactor for wastewater treatment. Separation and Purification Technology, 2016, 157, 17-26.	7.9	11
102	Dye aggregation in layer-by-layer dyeing of cotton fabrics. RSC Advances, 2016, 6, 20286-20293.	3.6	11
103	Study on the surface modification of PBO fiber under dielectric barrier discharge treatment. Fibers and Polymers, 2010, 11, 372-377.	2.1	10
104	Electromagnetic performance and impact damage of the microstrip antennas integrated in cylindrical three dimensional woven composite structures. Polymer Composites, 2018, 39, 3259-3267.	4.6	10
105	Shape memory driving thickness-adjustable G@SMPU sponge with ultrahigh carbon loading ratio for excellent microwave shielding performance. Materials Letters, 2019, 236, 116-119.	2.6	10
106	Benzoyl peroxide thermo-crosslinked poly(ethylene-co-vinyl acetate) foam with two-way shape memory effect. Materials Letters, 2020, 264, 127343.	2.6	10
107	The effect of the geometric structure of the modified slot die on the air field distribution in the meltblowing process. Textile Reseach Journal, 2022, 92, 423-433.	2.2	10

Influence of Chemical Treatments on the Interfacial Properties of Ramie Fiber Reinforced Poly(lactic) Tj ETQq0 0 0 rg $_{10}^{\rm BT}$ /Overlock 10 Tf $_{10}^{\rm ET}$

7

108

#	Article	IF	CITATIONS
109	Hydrophobic surface modification of ramie fibers by plasma-induced addition polymerization of propylene. Journal of Adhesion Science and Technology, 2015, 29, 691-704.	2.6	9
110	Improving mechanical properties of ramie/poly (lactic acid) composites by synergistic effect of fabric cyclic loading and alkali treatment. Journal of Industrial Textiles, 2017, 47, 390-407.	2.4	9
111	Aging of hydrophobized surfaces of ramie fibers induced by atmospheric pressure plasma treatment with ethanol pretreatment. Journal of Adhesion Science and Technology, 2013, 27, 2387-2397.	2.6	8
112	Micromechanical modeling of water-induced interfacial failure of ramie fiber reinforced thermoplastic composites. Composite Structures, 2018, 203, 259-266.	5.8	8
113	Bending properties and failure mechanisms of three-dimensional hybrid woven spacer composites with glass and carbon fibers. Textile Reseach Journal, 2019, 89, 4502-4511.	2.2	8
114	Effects of Kevlar volume fraction and fabric structures on the mechanical properties of 3D orthogonal woven ramie/Kevlar reinforced poly (lactic acid) composites. Journal of Industrial Textiles, 2018, 47, 2074-2091.	2.4	7
115	Fast-curing halogen-free flame-retardant epoxy resins and their application in glass fiber-reinforced composites. Textile Reseach Journal, 2019, 89, 3700-3707.	2.2	7
116	Evaluating the interfacial properties of wrinkled graphene fiber through single-fiber fragmentation tests. Journal of Materials Science, 2020, 55, 1023-1034.	3.7	7
117	Three-dimensional rope-like and cloud-like nanofibrous scaffolds facilitating in-depth cell infiltration developed using a highly conductive electrospinning system. Nanoscale, 2020, 12, 16690-16696.	5.6	7
118	Influence of He/O ₂ atmospheric pressure plasma pretreatment on sizing adhesion strength and breaking elongation of sized cotton rovings. Textile Reseach Journal, 2017, 87, 682-693.	2.2	6
119	Effects of Graphene-Oxide-Modified Coating on the Properties of Carbon-Fiber-Reinforced Polypropylene Composites. Coatings, 2018, 8, 149.	2.6	6
120	Highly aligned nonwoven vapor grown carbon fibre based polyurethane fibrous membrane for direction-dependent microwave shielding. Materials Letters, 2019, 245, 98-102.	2.6	6
121	Building effective core/shell polymer nanoparticles for epoxy composite toughening based on Hansen solubility parameters. Nanotechnology Reviews, 2021, 10, 1183-1196.	5.8	6
122	Influence of Moisture on Effectiveness of Plasma Treatments of Polymer Surfaces. Journal of Adhesion Science and Technology, 2012, 26, 1123-1139.	2.6	5
123	Hierarchical assembly of silver and gold nanoparticles in two-dimension: Toward fluorescence enhanced detection platforms. Applied Surface Science, 2019, 476, 1072-1078.	6.1	5
124	Flexible nanopositioning actuators based on functional nanocomposites. Composites Science and Technology, 2020, 186, 107937.	7.8	5
125	Three dimensional woven fabrics as filter media in membrane bioreactor for wastewater treatment. Journal of Materials Science, 2013, 48, 7869-7874.	3.7	4
126	Sustained Local Delivery of Diclofenac from Three-Dimensional Ultrafine Fibrous Protein Scaffolds with Ultrahigh Drug Loading Capacity. Nanomaterials, 2019, 9, 918.	4.1	4

#	Article	IF	CITATIONS
127	Twoâ€Way Reversible Shape Memory Properties of Benzoyl Peroxide Crosslinked Poly(ethyleneâ€∢i>co∢/i>â€vinyl acetate) under Different Stress Conditions. Macromolecular Materials and Engineering, 2020, 305, 1900825.	3.6	4
128	A numerical study on the low-velocity impact behavior of the Twaron (sup) \hat{A}^{\otimes} (sup) fabric subjected to oblique impact. Reviews on Advanced Materials Science, 2021, 60, 980-994.	3.3	4
129	Simulation and experimental study of double-element antennas based on a three-dimensional woven structure with various curvature radii. Textile Reseach Journal, 2017, 87, 216-223.	2.2	3
130	Image-based Bilateral Beard Method for measuring weight-based short fiber contents in raw cotton and semi-finished slivers. Textile Reseach Journal, 2021, 91, 2184-2193.	2.2	3
131	Structural modification of carbon nanotube film toward multifunctional composites via a wet-compression method. Applied Nanoscience (Switzerland), 2021, 11, 1817-1826.	3.1	3
132	Effect of silane treatment on tensile strength, moisture absorption and thermal property of unidirectional woven mat enset fibers reinforced polypropylene composite. Composite Interfaces, 2022, 29, 795-815.	2.3	3
133	Synthesis and characterization of LiFePO ₄ â€"carbon nanofiberâ€"carbon nanotube composites prepared by electrospinning and thermal treatment as a cathode material for lithiumâ€ion batteries. Journal of Applied Polymer Science, 2016, 133, .	2.6	2
134	A numerical study on the influence of hole defects on impact behavior of Twaron $\sin \hat{A} \ll \sin \hat{A} \le 100$ subjected to low-velocity impacts. Journal of Engineered Fibers and Fabrics, 2021, 16, 155892502110184.	1.0	2
135	A thermal latent imidazole complex containing copper (II) as the curing agent for an epoxy-based glass fiber composite. Textile Reseach Journal, 2022, 92, 1867-1875.	2.2	2
136	Phase Separated Fibrous Structures: Mechanism Study and Applications. ACS Symposium Series, 2014, , 127-141.	0.5	1
137	Epoxide Cross-Linked and Lysine-Blocked Zein Ultrafine Fibrous Scaffolds with Prominent Wet Stability and Cytocompatibility. ACS Applied Polymer Materials, 2021, 3, 3855-3866.	4.4	1
138	Issues of a Laser Beam: Depolarization, Beam Quality Degradation and It's Transmission System., 2010,,.		0
139	Modelling and Prediction of Stress Relaxation for Thermal Bonded Nonwoven Geotextiles. Fibers and Polymers, 2020, 21, 1611-1617.	2.1	O