Sixue Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5597692/publications.pdf

Version: 2024-02-01

28274 10,867 226 55 citations h-index papers

g-index 234 234 234 11968 docs citations times ranked citing authors all docs

45317

90

#	Article	IF	CITATIONS
1	Mitogen-Activated Protein Kinase 4-Regulated Metabolic Networks. International Journal of Molecular Sciences, 2022, 23, 880.	4.1	5
2	Roles of E3 Ubiquitin Ligases in Plant Responses to Abiotic Stresses. International Journal of Molecular Sciences, 2022, 23, 2308.	4.1	18
3	Suppressing the activation of protein kinase A as a DNA damage-independent mechanistic lead for dihydromethysticin prophylaxis of NNK-induced lung carcinogenesis. Carcinogenesis, 2022, 43, 659-670.	2.8	4
4	PRP4KA phosphorylates SERRATE for degradation via 20 <i>S</i> proteasome to fine-tune miRNA production in <i>Arabidopsis</i> Science Advances, 2022, 8, eabm8435.	10.3	16
5	Quantitative redox proteomics revealed molecular mechanisms of salt tolerance in the roots of sugar beet monomeric addition line M14., 2022, 63, 5.		8
6	Inhibitors of ERp44, PDIA1, and AGR2 induce disulfide-mediated oligomerization of Death Receptors 4 and 5 and cancer cell death. Cancer Letters, 2022, 534, 215604.	7.2	4
7	Genome-wide identification of <i>CBF</i> genes and their responses to cold acclimation in <i>Taraxacum kok-saghyz</i> . PeerJ, 2022, 10, e13429.	2.0	8
8	Structural characterization and analysis of different epimers of neutral glycosphingolipid LcGg4 by ion mobility spectrometry-mass spectrometry. Analyst, The, 2022, 147, 3101-3108.	3.5	3
9	Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology. International Journal of Molecular Sciences, 2022, 23, 6985.	4.1	21
10	Overexpression of McHB7 Transcription Factor from Mesembryanthemum crystallinum Improves Plant Salt Tolerance. International Journal of Molecular Sciences, 2022, 23, 7879.	4.1	5
11	Advances and perspectives in the metabolomics of stomatal movement and the disease triangle. Plant Science, 2021, 302, 110697.	3.6	7
12	Comparative proteomics of Mesembryanthemum crystallinum guard cells and mesophyll cells in transition from C3 to CAM. Journal of Proteomics, 2021, 231, 104019.	2.4	10
13	Combined ultraviolet and darkness regulation of medicinal metabolites in Mahonia bealei revealed by proteomics and metabolomics. Journal of Proteomics, 2021, 233, 104081.	2.4	17
14	Protein complex formation in methionine chain-elongation and leucine biosynthesis. Scientific Reports, 2021, 11, 3524.	3.3	0
15	Investigating an increase in Florida manatee mortalities using a proteomic approach. Scientific Reports, 2021, 11, 4282.	3.3	6
16	Selection and Validation of Reference Genes for RT-qPCR Analysis in Spinacia oleracea under Abiotic Stress. BioMed Research International, 2021, 2021, 1-12.	1.9	6
17	Identification of physiological and morphological traits governing high water use efficiency in alfalfa. Journal of Agronomy and Crop Science, 2021, 207, 644-653.	3.5	4
18	Functional Characterization of a Sugar Beet BvbHLH93 Transcription Factor in Salt Stress Tolerance. International Journal of Molecular Sciences, 2021, 22, 3669.	4.1	27

#	Article	IF	CITATIONS
19	Three-in-One Simultaneous Extraction of Proteins, Metabolites and Lipids for Multi-Omics. Frontiers in Genetics, 2021, 12, 635971.	2.3	22
20	Guard cell redox proteomics reveals a role of lipid transfer protein in plant defense. Journal of Proteomics, 2021, 242, 104247.	2.4	10
21	Proteomics of Homeobox7 Enhanced Salt Tolerance in Mesembryanthemum crystallinum. International Journal of Molecular Sciences, 2021, 22, 6390.	4.1	12
22	<i>Carbon Starved Anther</i> modulates sugar and ABA metabolism to protect rice seed germination and seedling fitness. Plant Physiology, 2021, 187, 2405-2418.	4.8	11
23	Integrative omic analysis reveals the improvement of alkaloid accumulation by ultraviolet-B radiation and its upstream regulation in Catharanthus roseus. Industrial Crops and Products, 2021, 166, 113448.	5.2	17
24	The Arabidopsis MIK2 receptor elicits immunity by sensing a conserved signature from phytocytokines and microbes. Nature Communications, 2021, 12, 5494.	12.8	54
25	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	6.0	31
26	Untargeted Metabolomics of Arabidopsis Stomatal Immunity. Methods in Molecular Biology, 2021, 2200, 413-424.	0.9	5
27	Multi-Omics Revealed Molecular Mechanisms Underlying Guard Cell Systemic Acquired Resistance. International Journal of Molecular Sciences, 2021, 22, 191.	4.1	15
28	Cys-SH based quantitative redox proteomics of salt induced response in sugar beet monosomic addition line M14., 2021, 62, 16.		5
29	Integrative Proteomic and Phosphoproteomic Analyses of Pattern- and Effector-Triggered Immunity in Tomato. Frontiers in Plant Science, 2021, 12, 768693.	3 . 6	11
30	Identification of DIR1-Dependant Cellular Responses in Guard Cell Systemic Acquired Resistance. Frontiers in Molecular Biosciences, 2021, 8, 746523.	3.5	0
31	Plant Proteomic Research 4.0: Frontiers in Stress Resilience. International Journal of Molecular Sciences, 2021, 22, 13362.	4.1	0
32	Seaweed natural products modify the host inflammatory response via Nrf2 signaling and alter colon microbiota composition and gene expression. Free Radical Biology and Medicine, 2020, 146, 306-323.	2.9	13
33	Metabolomics of redâ€lightâ€induced stomatal opening in <i>Arabidopsis thaliana</i> : Coupling with abscisic acid and jasmonic acid metabolism. Plant Journal, 2020, 101, 1331-1348.	5.7	25
34	Proteomics data of SNF1-related protein kinase 2.4 interacting proteins revealed by immunoprecipitation-mass spectrometry. Data in Brief, 2020, 32, 106326.	1.0	1
35	Proteomics and phosphoproteomics revealed molecular networks of stomatal immune responses. Planta, 2020, 252, 66.	3.2	17
36	Na2CO3-responsive Photosynthetic and ROS Scavenging Mechanisms in Chloroplasts of Alkaligrass Revealed by Phosphoproteomics. Genomics, Proteomics and Bioinformatics, 2020, 18, 271-288.	6.9	10

#	Article	IF	CITATIONS
37	Glucosinolate Biosynthesis and the Glucosinolate–Myrosinase System in Plant Defense. Agronomy, 2020, 10, 1786.	3.0	56
38	Identification of proteins associated with two diverse Caulobacter phicbkvirus particles. Archives of Virology, 2020, 165, 1995-2002.	2.1	0
39	Jasmonate induced alternative splicing responses in <i>Arabidopsis</i> . Plant Direct, 2020, 4, e00245.	1.9	11
40	Secretome Analysis of Inductive Signals for BM-MSC Transdifferentiation into Salivary Gland Progenitors. International Journal of Molecular Sciences, 2020, 21, 9055.	4.1	7
41	Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C3 to CAM transition. Plant Molecular Biology, 2020, 103, 653-667.	3.9	14
42	Physiological Changes in Mesembryanthemum crystallinum During the C3 to CAM Transition Induced by Salt Stress. Frontiers in Plant Science, 2020, 11, 283.	3.6	26
43	S-Nitroso-Proteome Revealed in Stomatal Guard Cell Response to Flg22. International Journal of Molecular Sciences, 2020, 21, 1688.	4.1	28
44	Hydrotropism in the primary roots of maize. New Phytologist, 2020, 226, 1796-1808.	7.3	11
45	Bisphenol A and bisphenol S disruptions of the mouse placenta and potential effects on the placenta–brain axis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4642-4652.	7.1	92
46	Plant Chloroplast Stress Response: Insights from Thiol Redox Proteomics. Antioxidants and Redox Signaling, 2020, 33, 35-57.	5.4	29
47	Targeted Metabolomics of Plant Hormones and Redox Metabolites in Stomatal Immunity. Methods in Molecular Biology, 2020, 2085, 79-92.	0.9	19
48	Proteomic characterization of MPK4 signaling network and putative substrates. Plant Molecular Biology, 2019, 101, 325-339.	3.9	10
49	The Receptor Kinases BAK1/SERK4 Regulate Ca2+ Channel-Mediated Cellular Homeostasis for Cell Death Containment. Current Biology, 2019, 29, 3778-3790.e8.	3.9	86
50	Advances in Understanding the Physiological and Molecular Responses of Sugar Beet to Salt Stress. Frontiers in Plant Science, 2019, 10, 1431.	3.6	59
51	UBASH3A Regulates the Synthesis and Dynamics of TCR–CD3 Complexes. Journal of Immunology, 2019, 203, 2827-2836.	0.8	32
52	Negative Regulation of Age-Related Developmental Leaf Senescence by the IAOx Pathway, PEN1, and PEN3. Frontiers in Plant Science, 2019, 10, 1202.	3.6	7
53	Carbohydrate, glutathione, and polyamine metabolism are central to Aspergillus flavus oxidative stress responses over time. BMC Microbiology, 2019, 19, 209.	3.3	18
54	Cardiac MLC2 kinase is localized to the Z-disc and interacts with \hat{l}_{\pm} -actinin2. Scientific Reports, 2019, 9, 12580.	3.3	7

#	Article	IF	CITATIONS
55	Metabolite signatures of grasspea suspension-cultured cells illustrate the complexity of dehydration response. Planta, 2019, 250, 857-871.	3.2	7
56	Chemodiversity of the Glucosinolate-Myrosinase System at the Single Cell Type Resolution. Frontiers in Plant Science, 2019, 10, 618.	3.6	56
57	Overexpression of a S-Adenosylmethionine Decarboxylase from Sugar Beet M14 Increased Araidopsis Salt Tolerance. International Journal of Molecular Sciences, 2019, 20, 1990.	4.1	36
58	Directions for research and training in plant omics: Big Questions and Big Data. Plant Direct, 2019, 3, e00133.	1.9	47
59	Plant immune responses - from guard cells and local responses to systemic defense against bacterial pathogens. Plant Signaling and Behavior, 2019, 14, e1588667.	2.4	24
60	Arabidopsis bioinformatics resources: The current state, challenges, and priorities for the future. Plant Direct, 2019, 3, e00109.	1.9	14
61	Physiological and comparative proteomic analyses of saline-alkali NaHCO3-responses in leaves of halophyte Puccinellia tenuiflora. Plant and Soil, 2019, 437, 137-158.	3.7	41
62	Comparative proteomics and metabolomics of JAZ7-mediated drought tolerance in Arabidopsis. Journal of Proteomics, 2019, 196, 81-91.	2.4	49
63	The C-terminal WD40 repeats on the TOPLESS co-repressor function as a protein–protein interaction surface. Plant Molecular Biology, 2019, 100, 47-58.	3.9	22
64	NaCl-responsive ROS scavenging and energy supply in alkaligrass callus revealed from proteomic analysis. BMC Genomics, 2019, 20, 990.	2.8	19
65	The guard cell ionome: Understanding the role of ions in guard cell functions. Progress in Biophysics and Molecular Biology, 2019, 146, 50-62.	2.9	18
66	MPK4 Phosphorylation Dynamics and Interacting Proteins in Plant Immunity. Journal of Proteome Research, 2019, 18, 826-840.	3.7	35
67	Deciphering droughtâ€induced metabolic responses and regulation in developing maize kernels. Plant Biotechnology Journal, 2018, 16, 1616-1628.	8.3	70
68	Characterization of thiolâ€based redox modifications of Brassica napus SNF 1â€related protein kinase 2.6â€2C. FEBS Open Bio, 2018, 8, 628-645.	2.3	12
69	Regulation of <i>Arabidopsis</i> brassinosteroid receptor BRI1 endocytosis and degradation by plant U-box PUB12/PUB13-mediated ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E1906-E1915.	7.1	134
70	A Phosphorylation Switch on Lon Protease Regulates Bacterial Type III Secretion System in Host. MBio, 2018, 9, .	4.1	37
71	Effects of overexpression of jasmonic acid biosynthesis genes on nicotine accumulation in tobacco. Plant Direct, 2018, 2, e00036.	1.9	11
72	Quantitative proteomics reveals a role of JAZ7 in plant defense response to Pseudomonas syringae DC3000. Journal of Proteomics, 2018, 175, 114-126.	2.4	13

#	Article	IF	Citations
73	An <i>Erwinia amylovora yjeK</i> mutant exhibits reduced virulence, increased chemical sensitivity and numerous environmentally dependent proteomic alterations. Molecular Plant Pathology, 2018, 19, 1667-1678.	4.2	14
74	Proteome analysis of Aspergillus flavus isolate-specific responses to oxidative stress in relationship to aflatoxin production capability. Scientific Reports, 2018, 8, 3430.	3.3	45
75	A Robust Methodology for Assessing Differential Homeolog Contributions to the Transcriptomes of Allopolyploids. Genetics, 2018, 210, 883-894.	2.9	21
76	Proteomics dataset containing proteins that obscure identification of TOPLESS interactors in Arabidopsis. Data in Brief, 2018, 20, 909-916.	1.0	0
77	New functions of an old kinase MPK4 in guard cells. Plant Signaling and Behavior, 2018, 13, e1477908.	2.4	4
78	Metabolomics of Early Stage Plant Cell–Microbe Interaction Using Stable Isotope Labeling. Frontiers in Plant Science, 2018, 9, 760.	3.6	58
79	Proteomics and Phosphoproteomics of Heat Stress-Responsive Mechanisms in Spinach. Frontiers in Plant Science, 2018, 9, 800.	3.6	79
80	Stomata Tape-Peel: An Improved Method for Guard Cell Sample Preparation. Journal of Visualized Experiments, $2018, , .$	0.3	15
81	Proteomic discovery of H2O2 response in roots and functional characterization of PutGLP gene from alkaligrass. Planta, 2018, 248, 1079-1099.	3.2	18
82	Multiplex quantitative SILAC for analysis of archaeal proteomes: a case study of oxidative stress responses. Environmental Microbiology, 2018, 20, 385-401.	3.8	21
83	Identification of MAPK Substrates Using Quantitative Phosphoproteomics. Methods in Molecular Biology, 2017, 1578, 133-142.	0.9	18
84	Redox regulation of a guard cell SNF1-related protein kinase in <i>Brassica napus</i> , an oilseed crop. Biochemical Journal, 2017, 474, 2585-2599.	3.7	21
85	Bicarbonate Induced Redox Proteome Changes in Arabidopsis Suspension Cells. Frontiers in Plant Science, 2017, 8, 58.	3.6	36
86	Membrane Proteomics of Arabidopsis Glucosinolate Mutants cyp79B2/B3 and myb28/29. Frontiers in Plant Science, 2017, 8, 534.	3.6	5
87	Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics. Frontiers in Plant Science, 2017, 8, 810.	3.6	41
88	Overexpression of S-Adenosyl-l-Methionine Synthetase 2 from Sugar Beet M14 Increased Arabidopsis Tolerance to Salt and Oxidative Stress. International Journal of Molecular Sciences, 2017, 18, 847.	4.1	65
89	Hydrogen Peroxide Response in Leaves of Poplar (Populus simonii × Populus nigra) Revealed from Physiological and Proteomic Analyses. International Journal of Molecular Sciences, 2017, 18, 2085.	4.1	20
90	Salinity Response in Chloroplasts: Insights from Gene Characterization. International Journal of Molecular Sciences, 2017, 18, 1011.	4.1	94

#	Article	IF	CITATIONS
91	Metabolomics and Proteomics of Brassica napus Guard Cells in Response to Low CO2. Frontiers in Molecular Biosciences, 2017, 4, 51.	3.5	28
92	Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta "Gold Standard― Leaves. International Journal of Molecular Sciences, 2016, 17, 346.	4.1	9
93	Protein Phosphorylation and Redox Modification in Stomatal Guard Cells. Frontiers in Physiology, 2016, 7, 26.	2.8	37
94	Editorial: Plant Single Cell Type Systems Biology. Frontiers in Plant Science, 2016, 7, 35.	3.6	7
95	Comparative Proteomic Analysis of Soybean Leaves and Roots by iTRAQ Provides Insights into Response Mechanisms to Short-Term Salt Stress. Frontiers in Plant Science, 2016, 7, 573.	3.6	89
96	Proteome targets of ubiquitinâ€like samp1ylation are associated with sulfur metabolism and oxidative stress in <i>Haloferax volcanii</i> i>. Proteomics, 2016, 16, 1100-1110.	2.2	16
97	Nitrogen starvationâ€induced accumulation of triacylglycerol in the green algae: evidence for a role for <scp>ROC</scp> 40, a transcription factor involved in circadian rhythm. Plant Journal, 2016, 85, 743-757.	5.7	49
98	CUB domain-containing protein 1 and the epidermal growth factor receptor cooperate to induce cell detachment. Breast Cancer Research, 2016, 18, 80.	5.0	25
99	Ubiquitin-Like Proteasome System Represents a Eukaryotic-Like Pathway for Targeted Proteolysis in Archaea. MBio, $2016, 7, .$	4.1	28
100	Chilling-responsive mechanisms in halophyte Puccinellia tenuiflora seedlings revealed from proteomics analysis. Journal of Proteomics, 2016, 143, 365-381.	2.4	28
101	Quantitative proteomics and phosphoproteomics of sugar beet monosomic addition line M14 in response to salt stress. Journal of Proteomics, 2016, 143, 286-297.	2.4	37
102	Jasmonateâ€mediated stomatal closure under elevated <scp>CO</scp> ₂ revealed by timeâ€resolved metabolomics. Plant Journal, 2016, 88, 947-962.	5.7	87
103	Plant Response to Bacterial Pathogens: A Proteomics View. , 2016, , 203-225.		2
104	Metabolomic Responses of Arabidopsis Suspension Cells to Bicarbonate under Light and Dark Conditions. Scientific Reports, 2016, 6, 35778.	3.3	12
105	Critical Role of COI1-Dependent Jasmonate Pathway in AAL toxin induced PCD in Tomato Revealed by Comparative Proteomics. Scientific Reports, 2016, 6, 28451.	3.3	14
106	Na2CO3-responsive mechanisms in halophyte Puccinellia tenuiflora roots revealed by physiological and proteomic analyses. Scientific Reports, 2016, 6, 32717.	3.3	63
107	Regulation of BZR1 in fruit ripening revealed by iTRAQ proteomics analysis. Scientific Reports, 2016, 6, 33635.	3.3	26
108	PARylation of the forkheadâ€associated domain protein DAWDLE regulates plant immunity. EMBO Reports, 2016, 17, 1799-1813.	4.5	42

#	Article	IF	CITATIONS
109	Quantitative proteomics reveals an important role of GsCBRLK in salt stress response of soybean. Plant and Soil, 2016, 402, 159-178.	3.7	12
110	Protein–protein interactions in plant mitogen-activated protein kinase cascades. Journal of Experimental Botany, 2016, 67, 607-618.	4.8	35
111	Differential metabolomic responses of PAMP-triggered immunity and effector-triggered immunity in Arabidopsis suspension cells. Metabolomics, 2016, 12, 1.	3.0	23
112	Polyploidy and the proteome. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 896-907.	2.3	39
113	Genome-wide identification and homeolog-specific expression analysis of the SnRK2 genes in Brassica napus guard cells. Plant Molecular Biology, 2016, 91, 211-227.	3.9	20
114	New nodes and edges in the glucosinolate molecular network revealed by proteomics and metabolomics of Arabidopsis myb28/29 and cyp79B2/B3 glucosinolate mutants. Journal of Proteomics, 2016, 138, 1-19.	2.4	45
115	Identification of thioredoxin targets in guard cell enriched epidermal peels using cysTMT proteomics. Journal of Proteomics, 2016, 133, 48-53.	2.4	37
116	Preparation of Epidermal Peels and Guard Cell Protoplasts for Cellular, Electrophysiological, and -Omics Assays of Guard Cell Function. Methods in Molecular Biology, 2016, 1363, 89-121.	0.9	30
117	Proteomic Insight into the Response of Arabidopsis Chloroplasts to Darkness. PLoS ONE, 2016, 11, e0154235.	2.5	20
118	Redox proteomics of tomato in response to Pseudomonas syringae infection. Horticulture Research, 2015, 2, 15043.	6.3	30
119	Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate. PLoS ONE, 2015, 10, e0144206.	2.5	38
120	Phosphoproteomics technologies and applications in plant biology research. Frontiers in Plant Science, 2015, 6, 430.	3.6	32
121	Cytological and proteomic analyses of horsetail (Equisetum arvense L.) spore germination. Frontiers in Plant Science, 2015, 6, 441.	3.6	11
122	cysTMTRAQâ€"An Integrative Method for Unbiased Thiol-based Redox Proteomics. Molecular and Cellular Proteomics, 2015, 14, 237-242.	3.8	52
123	Gene-Expression Novelty in Allopolyploid Cotton: A Proteomic Perspective. Genetics, 2015, 200, 91-104.	2.9	37
124	Advances in understanding CO2 responsive plant metabolomes in the era of climate change. Metabolomics, 2015, 11, 1478-1491.	3.0	33
125	Dihydroxyacid dehydratase is important for gametophyte development and disruption causes increased susceptibility to salinity stress in Arabidopsis. Journal of Experimental Botany, 2015, 66, 879-888.	4.8	21
126	Distinct patterns of the histone marks associated with recruitment of the methionine chain-elongation pathway from leucine biosynthesis. Journal of Experimental Botany, 2015, 66, 805-812.	4.8	11

#	Article	IF	Citations
127	Fern spore germination in response to environmental factors. Frontiers in Biology, 2015, 10, 358-376.	0.7	27
128	Cytological and Proteomic Analyses of Osmunda cinnamomea Germinating Spores Reveal Characteristics of Fern Spore Germination and Rhizoid Tip Growth*. Molecular and Cellular Proteomics, 2015, 14, 2510-2534.	3.8	51
129	Comparative Proteomic Analysis of <i>Brassica napus</i> in Response to Drought Stress. Journal of Proteome Research, 2015, 14, 3068-3081.	3.7	90
130	Adaptive Engineering of Phytochelatin-based Heavy Metal Tolerance. Journal of Biological Chemistry, 2015, 290, 17321-17330.	3.4	26
131	Phosphorylation of Trihelix Transcriptional Repressor ASR3 by MAP KINASE4 Negatively Regulates Arabidopsis Immunity. Plant Cell, 2015, 27, 839-856.	6.6	109
132	Gold Nanoparticle-Enabled Blood Test for Early Stage Cancer Detection and Risk Assessment. ACS Applied Materials & Detection and Risk Assessment & Detection & Detect	8.0	125
133	The guard cell metabolome: functions in stomatal movement and global food security. Frontiers in Plant Science, 2015, 6, 334.	3.6	71
134	Salt stress response of membrane proteome of sugar beet monosomic addition line M14. Journal of Proteomics, 2015, 127, 18-33.	2.4	25
135	Oxidation and phosphorylation of MAP kinase 4 cause protein aggregation. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 156-165.	2.3	23
136	Recent advances and challenges in plant phosphoproteomics. Proteomics, 2015, 15, 1127-1141.	2.2	112
137	HIV-Enhancing Factors Are Secreted by Reproductive Epithelia upon Inoculation with Bacterial Vaginosis-Associated Bacteria. Protein and Peptide Letters, 2015, 22, 672-680.	0.9	5
138	Proteomic Analysis of Arabidopsis Leaves Subjected to Mechanical Wounding. Current Proteomics, 2015, 12, 124-136.	0.3	1
139	Identification of Regulatory Factors for Mesenchymal Stem Cell-Derived Salivary Epithelial Cells in a Co-Culture System. PLoS ONE, 2014, 9, e112158.	2.5	18
140	Tyrosine phosphorylation of protein kinase complex BAK1/BIK1 mediates <i>Arabidopsis</i> innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3632-3637.	7.1	151
141	Protein Profiles Reveal Diverse Responsive Signaling Pathways in Kernels of Two Maize Inbred Lines with Contrasting Drought Sensitivity. International Journal of Molecular Sciences, 2014, 15, 18892-18918.	4.1	31
142	A comparative glycoproteome study of developing endosperm in the hexose-deficient miniature1 (mn1) seed mutant and its wild type Mn1 in maize. Frontiers in Plant Science, 2014, 5, 63.	3.6	31
143	Thiolâ€based redox proteins in abscisic acid and methyl jasmonate signaling in <i><scp>B</scp>rassica napus</i> /i> guard cells. Plant Journal, 2014, 78, 491-515.	5.7	58
144	Modulation of RNA Polymerase II Phosphorylation Downstream of Pathogen Perception Orchestrates Plant Immunity. Cell Host and Microbe, 2014, 16, 748-758.	11.0	70

#	Article	IF	Citations
145	Molecular Reprogramming of <i>Arabidopsis</i> in Response to Perturbation of Jasmonate Signaling. Journal of Proteome Research, 2014, 13, 5751-5766.	3.7	29
146	Ectopic expression of a <scp><i>BZR1â€1D</i></scp> transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnology Journal, 2014, 12, 105-115.	8.3	135
147	Protein phosphorylation in stomatal movement. Plant Signaling and Behavior, 2014, 9, e972845.	2.4	65
148	Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum) Tj ETQq0 C	0 ggBT /O	verlock 10 Tf
149	Abscisic Acid–Responsive Guard Cell Metabolomes of <i>Arabidopsis</i> Wild-Type and <i>gpa1</i> G-Protein Mutants Â. Plant Cell, 2014, 25, 4789-4811.	6.6	79
150	Plant single-cell and single-cell-type metabolomics. Trends in Plant Science, 2014, 19, 637-646.	8.8	110
151	Understanding Information Processes at the Proteomics Level. , 2014, , 57-72.		2
152	Proteomics-based investigation of salt-responsive mechanisms in plant roots. Journal of Proteomics, 2013, 82, 230-253.	2.4	150
153	Sugar beet M14 glyoxalase I gene can enhance plant tolerance to abiotic stresses. Journal of Plant Research, 2013, 126, 415-425.	2.4	56
154	Proteomic insights into seed germination in response to environmental factors. Proteomics, 2013, 13, 1850-1870.	2.2	63
155	Proteomic Analysis of Salt Tolerance in Sugar Beet Monosomic Addition Line M14. Journal of Proteome Research, 2013, 12, 4931-4950.	3.7	46
156	Quantitative proteomics of tomato defense against <i>Pseudomonas syringae</i> i>infection. Proteomics, 2013, 13, 1934-1946.	2.2	40
157	Proteomic profiling of developing cotton fibers from wild and domesticated <i><scp>G</scp>ossypium barbadense</i> <new 200,="" 2013,="" 570-582.<="" phytologist,="" td=""><td>7.3</td><td>72</td></new>	7.3	72
158	Proteomic comparison of basal endosperm in maize miniature1 mutant and its wild-type Mn1. Frontiers in Plant Science, 2013, 4, 211.	3.6	16
159	Bifurcation of Arabidopsis NLR Immune Signaling via Ca2+-Dependent Protein Kinases. PLoS Pathogens, 2013, 9, e1003127.	4.7	257
160	C4 photosynthetic machinery: insights from maize chloroplast proteomics. Frontiers in Plant Science, 2013, 4, 85.	3.6	18
161	Comparative Proteomic Analysis of Puccinellia tenuiflora Leaves under Na2CO3 Stress. International Journal of Molecular Sciences, 2013, 14, 1740-1762.	4.1	53
162	INPPO Actions and Recognition as a Driving Force for Progress in Plant Proteomics: Change of Guard, INPPO Update, and Upcoming Activities. Proteomics, 2013, 13, 3093-3100.	2.2	0

#	Article	IF	CITATIONS
163	Integrated Proteomics and Metabolomics of Arabidopsis Acclimation to Gene-Dosage Dependent Perturbation of Isopropylmalate Dehydrogenases. PLoS ONE, 2013, 8, e57118.	2.5	24
164	Proteomic profiling of developing cotton fibers from wild and domesticated Gossypium barbadense. , 2013, 200, 570.		1
165	Proteomics in the Classroom: An Investigative Study of Proteins in Microorganisms. American Biology Teacher, 2012, 74, 237-243.	0.2	2
166	Proteomics and Metabolomics of Arabidopsis Responses to Perturbation of Glucosinolate Biosynthesis. Molecular Plant, 2012, 5, 1138-1150.	8.3	47
167	The β-Subunit of the SnRK1 Complex Is Phosphorylated by the Plant Cell Death Suppressor Adi3 Â. Plant Physiology, 2012, 159, 1277-1290.	4.8	35
168	Profiling Thiol Redox Proteome Using Isotope Tagging Mass Spectrometry. Journal of Visualized Experiments, 2012, , .	0.3	19
169	Comparative proteomics of the recently and recurrently formed natural allopolyploid <i>Tragopogon mirus</i> (Asteraceae) and its parents. New Phytologist, 2012, 196, 292-305.	7.3	79
170	Single-cell-type Proteomics: Toward a Holistic Understanding of Plant Function. Molecular and Cellular Proteomics, 2012, 11, 1622-1630.	3.8	44
171	Methyl Jasmonate Responsive Proteins in <i>Brassica napus</i> Guard Cells Revealed by iTRAQ-Based Quantitative Proteomics. Journal of Proteome Research, 2012, 11, 3728-3742.	3.7	43
172	Cloning of a cystatin gene from sugar beet M14 that can enhance plant salt tolerance. Plant Science, 2012, 191-192, 93-99.	3.6	33
173	Salt stress induced proteome and transcriptome changes in sugar beet monosomic addition line M14. Journal of Plant Physiology, 2012, 169, 839-850.	3.5	101
174	Mechanisms of Plant Salt Response: Insights from Proteomics. Journal of Proteome Research, 2012, 11, 49-67.	3.7	340
175	Treatment with the Proteasome Inhibitor MG132 during the End of Oocyte Maturation Improves Oocyte Competence for Development after Fertilization in Cattle. PLoS ONE, 2012, 7, e48613.	2.5	27
176	Archaeal <scp>JAB</scp> 1/ <scp>MPN</scp> / <scp>MOV</scp> 34 metalloenzyme (<scp>HvJAMM</scp> 1) cleaves ubiquitinâ€like small archaeal modifier proteins (<scp>SAMP</scp> s) from proteinâ€conjugates. Molecular Microbiology, 2012, 86, 971-987.	2.5	39
177	Boosting the Globalization of Plant Proteomics through INPPO: Current Developments and Future Prospects. Proteomics, 2012, 12, 359-368.	2.2	10
178	Effect of salt treatment on the glucosinolate-myrosinase system in Thellungiella salsuginea. Plant and Soil, 2012, 355, 363-374.	3.7	30
179	The stomata frontline of plant interaction with the environment-perspectives from hormone regulation. Frontiers in Biology, 2012, 7, 96-112.	0.7	22
180	Exoproteome of <i>Staphylococcus aureus </i> Reveals Putative Determinants of Nasal Carriage. Journal of Proteome Research, 2011, 10, 2064-2078.	3.7	59

#	Article	IF	CITATIONS
181	Proteomic identification of differentially expressed proteins in Arabidopsis in response to methyl jasmonate. Journal of Plant Physiology, 2011, 168, 995-1008.	3.5	78
182	Identification of a sugar beet BvM14-MADS box gene through differential gene expression analysis of monosomic addition line M14. Journal of Plant Physiology, 2011, 168, 1980-1986.	3.5	7
183	Functional characterization of <i>Arabidopsis thaliana</i> isopropylmalate dehydrogenases reveals their important roles in gametophyte development. New Phytologist, 2011, 189, 160-175.	7.3	39
184	Physiological and Proteomic Analysis of Salinity Tolerance in <i>Puccinellia tenuiflora</i> Journal of Proteome Research, 2011, 10, 3852-3870.	3.7	187
185	TILLING for allergen reduction and improvement of quality traits in peanut (Arachis hypogaea L.). BMC Plant Biology, 2011, 11, 81.	3.6	80
186	Bioinformatic analysis of molecular network of glucosinolate biosynthesis. Computational Biology and Chemistry, 2011, 35, 10-18.	2.3	25
187	Structural and Functional Evolution of Isopropylmalate Dehydrogenases in the Leucine and Glucosinolate Pathways of Arabidopsis thaliana. Journal of Biological Chemistry, 2011, 286, 28794-28801.	3.4	39
188	Proteomics characteristics of rice leaves in response to environmental factors. Frontiers in Biology, 2010, 5, 246-254.	0.7	24
189	Advances in quantitative proteomics. Frontiers in Biology, 2010, 5, 195-203.	0.7	7
190	Analysis of abscisic acid responsive proteins in Brassica napus guard cells by multiplexed isobaric tagging. Journal of Proteomics, 2010, 73, 790-805.	2.4	60
191	Isobaric Tags for Relative and Absolute Quantificationâ€-based Comparative Proteomics Reveals the Features of Plasma Membraneâ€Associated Proteomes of Pollen Grains and Pollen Tubes from ⟨i⟩Lilium davidii⟨ i⟩. Journal of Integrative Plant Biology, 2010, 52, 1043-1058.	8.5	37
192	Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature, 2010, 463, 54-60.	27.8	170
193	Functional specification of Arabidopsis isopropylmalate isomerases in glucosinolate and leucine biosynthesis. Plant and Cell Physiology, 2010, 51, 1480-1487.	3.1	44
194	Nuclear localization of NPR1 is required for regulation of salicylate tolerance, isochorismate synthase 1 expression and salicylate accumulation in Arabidopsis. Journal of Plant Physiology, 2010, 167, 144-148.	3.5	66
195	Comparative Proteomics of Salt Tolerance in <i>Arabidopsis thaliana</i> and <i>Thellungiella halophila</i> . Journal of Proteome Research, 2010, 9, 2584-2599.	3.7	266
196	Desiccation Tolerance Mechanism in Resurrection Fern-Ally <i>Selaginella tamariscina </i> Revealed by Physiological and Proteomic Analysis. Journal of Proteome Research, 2010, 9, 6561-6577.	3.7	116
197	Plant Vacuolar ATP-binding Cassette Transporters That Translocate Folates and Antifolates in Vitro and Contribute to Antifolate Tolerance in Vivo. Journal of Biological Chemistry, 2009, 284, 8449-8460.	3.4	52
198	Determination of in vivo disulfide-bonded proteins in Arabidopsis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 101-104.	2.3	17

#	Article	IF	CITATIONS
199	A redoxâ€active isopropylmalate dehydrogenase functions in the biosynthesis of glucosinolates and leucine in Arabidopsis. Plant Journal, 2009, 60, 679-690.	5.7	102
200	Characterization of glucosinolateâ€"myrosinase system in developing salt cress <i>Thellungiella halophila</i> . Physiologia Plantarum, 2009, 136, 1-9.	5.2	38
201	Proteomics of Arabidopsis redox proteins in response to methyl jasmonate. Journal of Proteomics, 2009, 73, 30-40.	2.4	57
202	Proteomic analysis of sugar beet apomictic monosomic addition line M14. Journal of Proteomics, 2009, 73, 297-308.	2.4	19
203	Comparative Interactomics: Analysis of <i>Arabidopsis</i> 14-3-3 Complexes Reveals Highly Conserved 14-3-3 Interactions between Humans and Plants. Journal of Proteome Research, 2009, 8, 1913-1924.	3.7	38
204	Functional Differentiation of Brassica napus Guard Cells and Mesophyll Cells Revealed by Comparative Proteomics. Molecular and Cellular Proteomics, 2009, 8, 752-766.	3.8	106
205	Comparative Investigations of the Glucosinolate–Myrosinase System in Arabidopsis Suspension Cells and Hypocotyls. Plant and Cell Physiology, 2008, 49, 324-333.	3.1	28
206	Functional Characterization of AtATM1, AtATM2, and AtATM3, a Subfamily of Arabidopsis Half-molecule ATP-binding Cassette Transporters Implicated in Iron Homeostasis. Journal of Biological Chemistry, 2007, 282, 21561-21571.	3.4	76
207	Cell Wall Proteome in the Maize Primary Root Elongation Zone. II. Region-Specific Changes in Water Soluble and Lightly Ionically Bound Proteins under Water Deficit. Plant Physiology, 2007, 145, 1533-1548.	4.8	196
208	Proteomics of Pollen Development and Germination. Journal of Proteome Research, 2007, 6, 4556-4563.	3.7	36
209	Developing a new interdisciplinary lab course for undergraduate and graduate students: Plant cells and proteins. Biochemistry and Molecular Biology Education, 2007, 35, 410-415.	1.2	4
210	Analysis of the vacuolar luminal proteome of <i>Saccharomyces cerevisiae</i> . FEBS Journal, 2007, 274, 4287-4305.	4.7	33
211	Regulation of plant glucosinolate metabolism. Planta, 2007, 226, 1343-1352.	3.2	223
212	Additional freeze hardiness in wheat acquired by exposure to \hat{a} \hat{A} \hat{C} is associated with extensive physiological, morphological, and molecular changes. Journal of Experimental Botany, 2006, 57, 3601-3618.	4.8	115
213	Characterization of the Maize Xylem Sap Proteome. Journal of Proteome Research, 2006, 5, 963-972.	3.7	100
214	Rapid protein identification using direct infusion nanoelectrospray ionization mass spectrometry. Proteomics, 2006, 6, 16-25.	2.2	155
215	The cassava (Manihot esculenta Crantz) root proteome: Protein identification and differential expression. Proteomics, 2006, 6, 1588-1598.	2.2	91
216	Advances in plant proteomics. Proteomics, 2006, 6, 5504-5516.	2.2	229

#	Article	IF	CITATION
217	Cell Wall Proteome in the Maize Primary Root Elongation Zone. I. Extraction and Identification of Water-Soluble and Lightly Ionically Bound Proteins. Plant Physiology, 2006, 140, 311-325.	4.8	140
218	Arabidopsis thaliana Glutamate-Cysteine Ligase. Journal of Biological Chemistry, 2004, 279, 33463-33470.	3.4	126
219	CYP79F1 and CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant Journal, 2003, 33, 923-937.	5.7	238
220	Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant Journal, 2003, 35, 675-692.	5.7	286
221	Composition and content of glucosinolates in developing Arabidopsis thaliana. Planta, 2002, 214, 562-571.	3.2	219
222	Update on glucosinolate metabolism and transport. Plant Physiology and Biochemistry, 2001, 39, 743-758.	5.8	155
223	Long-Distance Phloem Transport of Glucosinolates in Arabidopsis. Plant Physiology, 2001, 127, 194-201.	4.8	153
224	In vivo synthesis and purification of radioactivep-hydroxybenzylglucosinolate inSinapis alba L, 2000, 11, 174-178.		13
225	Characterization of Glucosinolate Uptake by Leaf Protoplasts of Brassica napus. Journal of Biological Chemistry, 2000, 275, 22955-22960.	3.4	42
226	Functional Expression and Characterization of the Myrosinase MYR1 from Brassica napus in	1.3	47