Michelangelo Ceci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5597689/publications.pdf

Version: 2024-02-01

138 papers 1,999 citations

28 h-index 39 g-index

146 all docs

146
docs citations

146 times ranked 1559 citing authors

#	Article	IF	Citations
1	PRILJ: an efficient two-step method based on embedding and clustering for the identification of regularities in legal case judgments. Artificial Intelligence and Law, 2022, 30, 359-390.	4.0	10
2	Integrating genome-scale metabolic modelling and transfer learning for human gene regulatory network reconstruction. Bioinformatics, 2022, 38, 487-493.	4.1	26
3	LP-ROBIN: Link prediction in dynamic networks exploiting incremental node embedding. Information Sciences, 2022, 606, 702-721.	6.9	10
4	Relational tree ensembles and feature rankings. Knowledge-Based Systems, 2022, 251, 109254.	7.1	2
5	Closed sequential pattern mining for sitemap generation. World Wide Web, 2021, 24, 175-203.	4.0	7
6	Multi-aspect renewable energy forecasting. Information Sciences, 2021, 546, 701-722.	6.9	49
7	Mining emotion-aware sequential rules at user-level from micro-blogs. Journal of Intelligent Information Systems, 2021, 57, 369.	3.9	1
8	Big Data analytics for knowledge transfer among organisms while reconstructing Gene Regulatory Networks. EMBnet Journal, 2021, 26, e956.	0.6	0
9	LP-HCLUS: a novel tool for the prediction of relationships between ncRNAs and human diseases. EMBnet Journal, 2021, 26, e955.	0.6	O
10	BROCCOLI: overlapping and outlier-robust biclustering through proximal stochastic gradient descent. Data Mining and Knowledge Discovery, 2021, 35, 2542-2576.	3.7	10
11	Spatially-Aware Autoencoders for Detecting Contextual Anomalies in Geo-Distributed Data. Lecture Notes in Computer Science, 2021, , 461-471.	1.3	9
12	Exploiting transfer learning for the reconstruction of the human gene regulatory network. Bioinformatics, 2020, 36, 1553-1561.	4.1	44
13	jKarma: A highly-modular framework for pattern-based change detection on evolving data. Knowledge-Based Systems, 2020, 192, 105303.	7.1	1
14	Exploiting causality in gene network reconstruction based on graph embedding. Machine Learning, 2020, 109, 1231-1279.	5.4	25
15	Condensed representations of changes in dynamic graphs through emerging subgraph mining. Engineering Applications of Artificial Intelligence, 2020, 94, 103830.	8.1	7
16	ECHAD: Embedding-Based Change Detection From Multivariate Time Series in Smart Grids. IEEE Access, 2020, 8, 156053-156066.	4.2	36
17	Ensembles of extremely randomized predictive clustering trees for predicting structured outputs. Machine Learning, 2020, 109, 2213-2241.	5.4	12
18	Multi-task learning for the simultaneous reconstruction of the human and mouse gene regulatory networks. Scientific Reports, 2020, 10, 22295.	3.3	22

#	Article	IF	CITATIONS
19	Prediction of new associations between ncRNAs and diseases exploiting multi-type hierarchical clustering. BMC Bioinformatics, 2020, 21, 70.	2.6	25
20	Scalable auto-encoders for gravitational waves detection from time series data. Expert Systems With Applications, 2020, 151, 113378.	7.6	37
21	Semi-supervised regression trees with application to QSAR modelling. Expert Systems With Applications, 2020, 158, 113569.	7.6	13
22	Simultaneous Process Drift Detection and Characterization with Pattern-Based Change Detectors. Lecture Notes in Computer Science, 2020, , 451-467.	1.3	5
23	Exploiting Pattern Set Dissimilarity for Detecting Changes in Communication Networks. Studies in Computational Intelligence, 2020, , 137-152.	0.9	0
24	Leveraging Multi-target Regression for Predicting the Next Parallel Activities in Event Logs. Communications in Computer and Information Science, 2020, , 237-248.	0.5	0
25	Estimating the Importance of Relational Features by Using Gradient Boosting. Lecture Notes in Computer Science, 2020, , 362-371.	1.3	2
26	Big Data Analytics and Predictive Modeling Approaches for the Energy Sector. , 2019, , .		3
27	Spatial autocorrelation and entropy for renewable energy forecasting. Data Mining and Knowledge Discovery, 2019, 33, 698-729.	3.7	41
28	DENCAST: distributed density-based clustering for multi-target regression. Journal of Big Data, 2019, 6,	11.0	40
29	Anomaly Detection and Repair for Accurate Predictions in Geo-distributed Big Data. Big Data Research, 2019, 16, 18-35.	4.2	44
30	Spark-GHSOM: Growing Hierarchical Self-Organizing Map for large scale mixed attribute datasets. Information Sciences, 2019, 496, 572-591.	6.9	29
31	Efficient and Accurate Non-exhaustive Pattern-Based Change Detection in Dynamic Networks. Lecture Notes in Computer Science, 2019, , 396-411.	1.3	5
32	An Empirical Evaluation of Sequential Pattern Mining Algorithms. Lecture Notes on Data Engineering and Communications Technologies, 2018, , 615-626.	0.7	0
33	Ensemble Learning for Multi-Type Classification in Heterogeneous Networks. IEEE Transactions on Knowledge and Data Engineering, 2018, 30, 2326-2339.	5.7	26
34	Semi-supervised trees for multi-target regression. Information Sciences, 2018, 450, 109-127.	6.9	31
35	Relational Data Mining in the Era of Big Data. Studies in Big Data, 2018, , 323-339.	1.1	2
36	Multi-type clustering and classification from heterogeneous networks. Information Sciences, 2018, 425, 107-126.	6.9	37

3

#	Article	IF	Citations
37	Distributed Learning of Process Models for Next Activity Prediction. , 2018, , .		7
38	Introduction to the special issue on discovery science. Machine Learning, 2018, 107, 1647-1649.	5.4	0
39	Identifying IncRNA-Disease Relationships via Heterogeneous Clustering. Lecture Notes in Computer Science, 2018, , 35-48.	1.3	9
40	Toward IoT-Friendly Learning Models. , 2018, , .		4
41	Mining microscopic and macroscopic changes in network data streams. Knowledge-Based Systems, 2018, 161, 294-312.	7.1	9
42	User-Emotion Detection Through Sentence-Based Classification Using Deep Learning: A Case-Study with Microblogs in Albanian. Lecture Notes in Computer Science, 2018, , 258-267.	1.3	3
43	Self-training for multi-target regression with tree ensembles. Knowledge-Based Systems, 2017, 123, 41-60.	7.1	41
44	Semi-supervised classification trees. Journal of Intelligent Information Systems, 2017, 49, 461-486.	3.9	36
45	Mining Spatio-Temporal Patterns of Periodic Changes in Climate Data. Lecture Notes in Computer Science, 2017, , 198-212.	1.3	1
46	LOCANDA: Exploiting Causality in the Reconstruction of Gene Regulatory Networks. Lecture Notes in Computer Science, 2017, , 283-297.	1.3	1
47	Predictive Modeling of PV Energy Production: How to Set Up the Learning Task for a Better Prediction?. IEEE Transactions on Industrial Informatics, 2017, 13, 956-966.	11.3	66
48	Exploiting Web Sites Structural and Content Features for Web Pages Clustering. Lecture Notes in Computer Science, 2017, , 446-456.	1.3	0
49	Automatic Generation of Sitemaps Based on Navigation Systems. Lecture Notes in Computer Science, 2016, , 216-223.	1.3	1
50	Big Data Research in Italy: A Perspective. Engineering, 2016, 2, 163-170.	6.7	18
51	Recent advances in mining patterns from complex data. Journal of Intelligent Information Systems, 2016, 47, 1-3.	3.9	1
52	CloFAST: closed sequential pattern mining using sparse and vertical id-lists. Knowledge and Information Systems, 2016, 48, 429-463.	3.2	66
53	ComiRNet: a web-based system for the analysis of miRNA-gene regulatory networks. BMC Bioinformatics, 2015, 16, S7.	2.6	43
54	Semi-Supervised Multi-View Learning for Gene Network Reconstruction. PLoS ONE, 2015, 10, e0144031.	2.5	32

#	Article	IF	CITATIONS
55	Discovering Novelty Patterns from the Ancient Christian Inscriptions of Rome. Journal on Computing and Cultural Heritage, 2015, 7, 1-21.	2.1	1
56	Semi-supervised Learning for Multi-target Regression. Lecture Notes in Computer Science, 2015, , 3-18.	1.3	8
57	Ensembles of Extremely Randomized Trees for Multi-target Regression. Lecture Notes in Computer Science, 2015, , 86-100.	1.3	10
58	Relational mining for discovering changes in evolving networks. Neurocomputing, 2015, 150, 265-288.	5.9	16
59	Effectively and efficiently supporting roll-up and drill-down OLAP operations over continuous dimensions via hierarchical clustering. Journal of Intelligent Information Systems, 2015, 44, 309-333.	3.9	37
60	Hierarchical Multidimensional Classification of Web Documents with MultiWebClass. Lecture Notes in Computer Science, 2015, , 236-250.	1.3	5
61	Multi-Relational Model Tree Induction Tightly-Coupled with a Relational Database. Fundamenta Informaticae, 2014, 129, 193-224.	0.4	1
62	Big Data Techniques For Supporting Accurate Predictions of Energy Production From Renewable Sources., 2014,,.		11
63	Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach. BMC Bioinformatics, 2014, 15, S4.	2.6	45
64	Mining complex patterns. Journal of Intelligent Information Systems, 2014, 42, 179-180.	3.9	0
65	Ranking Sentences for Keyphrase Extraction: A Relational Data Mining Approach. Procedia Computer Science, 2014, 38, 52-59.	2.0	8
66	Innovative power operating center management exploiting big data techniques. , 2014, , .		6
67	Automatic Extraction of Logical Web Lists. Lecture Notes in Computer Science, 2014, , 365-374.	1.3	5
68	Completion Time and Next Activity Prediction of Processes Using Sequential Pattern Mining. Lecture Notes in Computer Science, 2014, , 49-61.	1.3	51
69	Network Reconstruction for the Identification of miRNA:mRNA Interaction Networks. Lecture Notes in Computer Science, 2014, , 508-511.	1.3	1
70	A Novel Biclustering Algorithm for the Discovery of Meaningful Biological Correlations between microRNAs and their Target Genes. BMC Bioinformatics, 2013, 14, S8.	2.6	38
71	Using PPI network autocorrelation in hierarchical multi-label classification trees for gene function prediction. BMC Bioinformatics, 2013, 14, 285.	2.6	41
72	Dealing with spatial autocorrelation when learning predictive clustering trees. Ecological Informatics, 2013, 13, 22-39.	5 . 2	34

#	Article	IF	CITATIONS
73	Discovering Evolution Chains in Dynamic Networks. Lecture Notes in Computer Science, 2013, , 185-199.	1.3	10
74	Learning Hierarchical Multi-label Classification Trees from Network Data. Lecture Notes in Computer Science, 2013, , 233-248.	1.3	2
75	Document Image Understanding through Iterative Transductive Learning. Communications in Computer and Information Science, 2013, , 117-128.	0.5	0
76	Toward a Semantic Framework for the Querying, Mining and Visualization of Cancer Microenvironment Data. Lecture Notes in Computer Science, 2012, , 109-123.	1.3	0
77	Network regression with predictive clustering trees. Data Mining and Knowledge Discovery, 2012, 25, 378-413.	3.7	43
78	Transductive Relational Classification in the Co-training Paradigm. Lecture Notes in Computer Science, 2012, , 11-25.	1.3	5
79	Learning and Transferring Geographically Weighted Regression Trees across Time. Lecture Notes in Computer Science, 2012, , 97-117.	1.3	4
80	Learning to Rank from Concept-Drifting Network Data Streams. Lecture Notes in Computer Science, 2012, , 384-396.	1.3	0
81	Mining Ranking Models from Dynamic Network Data. Lecture Notes in Computer Science, 2012, , 566-577.	1.3	1
82	Dealing with Spatial Autocorrelation in Gene Flow Modeling. Developments in Environmental Modelling, 2012, , 35-49.	0.3	0
83	The integration of microRNA target data by biclustering techniques opens new roads for signaling networks analysis. EMBnet Journal, 2012, 18, 142.	0.6	1
84	Discovering process models through relational disjunctive patterns mining. , 2011, , .		0
85	Preface to the Workshop on Domain Driven Data Mining. , 2011, , .		0
86	A parallel, distributed algorithm for relational frequent pattern discovery from very large data sets. Intelligent Data Analysis, 2011, 15, 69-88.	0.9	29
87	A Temporal Data Mining Framework for Analyzing Longitudinal Data. Lecture Notes in Computer Science, 2011, , 97-106.	1.3	3
88	Discovering Temporal Bisociations for Linking Concepts over Time. Lecture Notes in Computer Science, 2011, , 358-373.	1.3	5
89	Network Regression with Predictive Clustering Trees. Lecture Notes in Computer Science, 2011, , 333-348.	1.3	9
90	Global and Local Spatial Autocorrelation in Predictive Clustering Trees. Lecture Notes in Computer Science, 2011, , 307-322.	1.3	13

#	Article	IF	CITATIONS
91	Project D.A.M.A.: Document Acquisition, Management and Archiving. Communications in Computer and Information Science, 2011, , 115-118.	0.5	1
92	Relational Mining in Spatial Domains: Accomplishments and Challenges. Lecture Notes in Computer Science, 2011, , 16-24.	1.3	0
93	Transductive Learning of Logical Structures from Document Images. Studies in Computational Intelligence, 2011, , 121-142.	0.9	1
94	MBlab: Molecular Biodiversity Laboratory. Communications in Computer and Information Science, 2011, , 132-135.	0.5	0
95	Transductive learning for spatial regression with co-training. , 2010, , .		3
96	Complex objects ranking. , 2010, , .		2
97	Discovering Informative Syntactic Relationships between Named Entities in Biomedical Literature. , 2010, , .		2
98	Transductive Learning for Spatial Data Classification. Studies in Computational Intelligence, 2010, , 189-207.	0.9	4
99	A Relational Approach for Discovering Frequent Patterns with Disjunctions. Lecture Notes in Computer Science, 2010, , 263-274.	1.3	0
100	A relational approach to probabilistic classification in a transductive setting. Engineering Applications of Artificial Intelligence, 2009, 22, 109-116.	8.1	19
101	Novelty Detection from Evolving Complex Data Streams with Time Windows. Lecture Notes in Computer Science, 2009, , 563-572.	1.3	9
102	An Iterative Learning Algorithm for Within-Network Regression in the Transductive Setting. Lecture Notes in Computer Science, 2009, , 36-50.	1.3	5
103	A Knowledge-Based Framework for Information Extraction from Clinical Practice Guidelines. Lecture Notes in Computer Science, 2009, , 119-128.	1.3	0
104	Relational Frequent Patterns Mining for Novelty Detection from Data Streams. Lecture Notes in Computer Science, 2009, , 427-439.	1.3	1
105	Hierarchical Text Categorization in a Transductive Setting. , 2008, , .		7
106	Discovering Emerging Patterns for Anomaly Detection in Network Connection Data., 2008, , 179-188.		6
107	Stepwise Induction of Logistic Model Trees. , 2008, , 68-77.		1
108	Machine Learning for Reading Order Detection in Document Image Understanding. Studies in Computational Intelligence, 2008, , 45-69.	0.9	15

#	Article	IF	CITATIONS
109	Emerging Pattern Based Classification in Relational Data Mining. Lecture Notes in Computer Science, 2008, , 283-296.	1.3	9
110	Discovering Spatio-Textual Association Rules in Document Images. , 2008, , 176-197.		0
111	A Grid-Based Multi-relational Approach to Process Mining. Lecture Notes in Computer Science, 2008, , 701-709.	1.3	2
112	Top-Down Induction of Relational Model Trees in Multi-instance Learning. Lecture Notes in Computer Science, 2008, , 24-41.	1.3	0
113	A Data Mining Approach to Reading Order Detection. Proc Int Conf Doc Anal Recognit, 2007, , .	0.0	8
114	RELATIONAL DATA MINING AND ILP FOR DOCUMENT IMAGE UNDERSTANDING. Applied Artificial Intelligence, 2007, 21, 317-342.	3.2	19
115	Classifying web documents in a hierarchy of categories: a comprehensive study. Journal of Intelligent Information Systems, 2007, 28, 37-78.	3.9	86
116	Using colour information to understand censorship cards of film archives. International Journal on Document Analysis and Recognition, 2007, 9, 281-297.	3.4	2
117	Discovering Relational Emerging Patterns. Lecture Notes in Computer Science, 2007, , 206-217.	1.3	13
118	Discovering Emerging Patterns in Spatial Databases: A Multi-relational Approach. Lecture Notes in Computer Science, 2007, , 390-397.	1.3	17
119	Mining geospatial data in a transductive setting. WIT Transactions on Information and Communication Technologies, 2007, , .	0.0	0
120	Spatial associative classification: propositional vs structural approach. Journal of Intelligent Information Systems, 2006, 27, 191-213.	3.9	37
121	Mining Tolerance Regions with Model Trees. Lecture Notes in Computer Science, 2006, , 560-569.	1.3	1
122	Mining and Filtering Multi-level Spatial Association Rules with ARES. Lecture Notes in Computer Science, 2005, , 342-353.	1.3	13
123	A color-based layout analysis to process censorship cards of film archives. , 2005, , .		1
124	Mining Relational Association Rules for Propositional Classification. Lecture Notes in Computer Science, 2005, , 522-534.	1.3	0
125	Relational learning techniques for document image understanding: comparing statistical and logical approaches. , 2005, , .		2
126	Mining Model Trees from Spatial Data. Lecture Notes in Computer Science, 2005, , 169-180.	1.3	14

#	Article	IF	CITATION
127	Relational Learning: Statistical Approach Versus Logical Approach in Document Image Understanding. Lecture Notes in Computer Science, 2005, , 418-429.	1.3	1
128	A Data Mining Query Language for Knowledge Discovery in a Geographical Information System. Lecture Notes in Computer Science, 2004, , 95-116.	1.3	7
129	Redundant feature elimination for multi-class problems. , 2004, , .		28
130	Top-down induction of model trees with regression and splitting nodes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26, 612-625.	13.9	86
131	Spatial Associative Classification at Different Levels of Granularity: A Probabilistic Approach. Lecture Notes in Computer Science, 2004, , 99-111.	1.3	8
132	Mining Model Trees: A Multi-relational Approach. Lecture Notes in Computer Science, 2003, , 4-21.	1.3	11
133	XML and Knowledge Technologies for Semantic-Based Indexing of Paper Documents. Lecture Notes in Computer Science, 2003, , 256-265.	1.3	2
134	Discovery of spatial association rules in geo-referenced census data: A relational mining approach. Intelligent Data Analysis, 2003, 7, 541-566.	0.9	66
135	Hierarchical Classification of HTML Documents with WebClassII. Lecture Notes in Computer Science, 2003, , 57-72.	1.3	22
136	Comparing Simplification Methods for Model Trees with Regression and Splitting Nodes. Lecture Notes in Computer Science, 2003, , 49-56.	1.3	5
137	Mr-SBC: A Multi-relational NaÃ-ve Bayes Classifier. Lecture Notes in Computer Science, 2003, , 95-106.	1.3	29
138	Document-Centered Collaboration for Scholars in the Humanities – The COLLATE System. Lecture Notes in Computer Science, 2003, , 434-445.	1.3	23