Edward B Leof

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5596858/publications.pdf

Version: 2024-02-01

47 papers

3,700 citations

147801 31 h-index 223800 46 g-index

48 all docs

48 docs citations

48 times ranked

4272 citing authors

#	Article	IF	Citations
1	Imatinib mesylate inhibits the profibrogenic activity of TGF- $\hat{1}^2$ and prevents bleomycin-mediated lung fibrosis. Journal of Clinical Investigation, 2004, 114, 1308-1316.	8.2	485
2	Imatinib mesylate blocks a nonâ€Smad TGFâ€Î² pathway and reduces renal fibrogenesis in vivo. FASEB Journal, 2005, 19, 1-11.	0.5	339
3	TGFâ€Î² signaling: A tale of two responses. Journal of Cellular Biochemistry, 2007, 102, 593-608.	2.6	337
4	Imatinib mesylate inhibits the profibrogenic activity of TGF- \hat{l}^2 and prevents bleomycin-mediated lung fibrosis. Journal of Clinical Investigation, 2004, 114, 1308-1316.	8.2	297
5	Ligand-dependent and -independent Transforming Growth Factor- \hat{l}^2 Receptor Recycling Regulated by Clathrin-mediated Endocytosis and Rab11. Molecular Biology of the Cell, 2004, 15, 4166-4178.	2.1	193
6	Transforming Growth Factor- \hat{l}^2 Activation of Phosphatidylinositol 3-Kinase Is Independent of Smad2 and Smad3 and Regulates Fibroblast Responses via p21-Activated Kinase-2. Cancer Research, 2005, 65, 10431-10440.	0.9	183
7	Internalization-Dependent and -Independent Requirements for Transforming Growth Factor \hat{I}^2 Receptor Signaling via the Smad Pathway. Molecular and Cellular Biology, 2002, 22, 4750-4759.	2.3	177
8	Cell-Type-Specific Activation of PAK2 by Transforming Growth Factor \hat{I}^2 Independent of Smad2 and Smad3. Molecular and Cellular Biology, 2003, 23, 8878-8889.	2.3	132
9	Transforming Growth Factor-β Receptors Interact with AP2 by Direct Binding to β2 Subunit. Molecular Biology of the Cell, 2002, 13, 4001-4012.	2.1	115
10	Distinct Roles for Mammalian Target of Rapamycin Complexes in the Fibroblast Response to Transforming Growth Factor- \hat{l}^2 . Cancer Research, 2009, 69, 84-93.	0.9	82
11	IQGAP1 suppresses $\hat{\Pi^2}$ RII-mediated myofibroblastic activation and metastatic growth in liver. Journal of Clinical Investigation, 2013, 123, 1138-1156.	8.2	78
12	Transforming Growth Factor \hat{l}^2 Activation of c-Abl Is Independent of Receptor Internalization and Regulated by Phosphatidylinositol 3-Kinase and PAK2 in Mesenchymal Cultures. Journal of Biological Chemistry, 2006, 281, 27846-27854.	3.4	72
13	Hexokinase 2 couples glycolysis with the profibrotic actions of TGF- \hat{I}^2 . Science Signaling, 2019, 12, .	3.6	71
14	Growth factor receptor signalling: location, location, location. Trends in Cell Biology, 2000, 10, 343-348.	7.9	66
15	Adventitial transduction of lentivirus-shRNA-VEGF-A in arteriovenous fistula reduces venous stenosis formation. Kidney International, 2014, 85, 289-306.	5.2	65
16	Distinct Endocytic Responses of Heteromeric and Homomeric Transforming Growth Factor \hat{l}^2 Receptors. Molecular Biology of the Cell, 1997, 8, 2133-2143.	2.1	60
17	Cell Density Sensing Alters TGF- \hat{l}^2 Signaling in a Cell-Type-Specific Manner, Independent from Hippo Pathway Activation. Developmental Cell, 2015, 32, 640-651.	7.0	59
18	Type II Transforming Growth Factor- \hat{l}^2 Receptor Recycling Is Dependent upon the Clathrin Adaptor Protein Dab2. Molecular Biology of the Cell, 2010, 21, 4009-4019.	2.1	56

#	Article	IF	Citations
19	Transforming growth factor beta induces fibroblasts to express and release the immunomodulatory protein PD‣1 into extracellular vesicles. FASEB Journal, 2020, 34, 2213-2226.	0.5	55
20	Profibrotic upâ€regulation of glucose transporter 1 by TGFâ€Î² involves activation of MEK and mammalian target of rapamycin complex 2 pathways. FASEB Journal, 2016, 30, 3733-3744.	0.5	52
21	Fatty acid synthase is required for profibrotic TGFâ€Î² signaling. FASEB Journal, 2018, 32, 3803-3815.	0.5	52
22	Differential Requirement for Type I and Type II Transforming Growth Factor \hat{I}^2 Receptor Kinase Activity in Ligand-mediated Receptor Endocytosis. Journal of Biological Chemistry, 1998, 273, 23118-23125.	3.4	51
23	Profibrotic $TGF\hat{l}^2$ responses require the cooperative action of PDGF and ErbB receptor tyrosine kinases. FASEB Journal, 2013, 27, 4444-4454.	0.5	47
24	Heteromeric and Homomeric Transforming Growth Factor-Î ² Receptors Show Distinct Signaling and Endocytic Responses in Epithelial Cells. Journal of Biological Chemistry, 1998, 273, 31770-31777.	3.4	44
25	Transforming Growth Factor \hat{I}^2 Receptor Signaling and Endocytosis Are Linked through a COOH Terminal Activation Motif in the Type I Receptor. Molecular Biology of the Cell, 2001, 12, 2881-2893.	2.1	44
26	Non-Smad Transforming Growth Factor- \hat{l}^2 Signaling Regulated by Focal Adhesion Kinase Binding the p85 Subunit of Phosphatidylinositol 3-Kinase. Journal of Biological Chemistry, 2011, 286, 17841-17850.	3.4	44
27	Transforming Growth Factor \hat{l}^2 Signaling via Ras in Mesenchymal Cells Requires p21-Activated Kinase 2 for Extracellular Signal-Regulated Kinase-Dependent Transcriptional Responses. Cancer Research, 2007, 67, 3673-3682.	0.9	43
28	Chimeric Granulocyte/Macrophage Colony-stimulating Factor/Transforming Growth Factor- \hat{l}^2 (TGF- \hat{l}^2) Receptors Define a Model System for Investigating the Role of Homomeric and Heteromeric Receptors in TGF- \hat{l}^2 Signaling. Journal of Biological Chemistry, 1996, 271, 21758-21766.	3.4	42
29	Erbin and the NF2 Tumor Suppressor Merlin Cooperatively Regulate Cell-Type-Specific Activation of PAK2 by TGF-Î ² . Developmental Cell, 2009, 16, 433-444.	7.0	39
30	IPF pathogenesis is dependent upon TGFβ induction of IGFâ€1. FASEB Journal, 2020, 34, 5363-5388.	0.5	36
31	Retromer maintains basolateral distribution of the type II TGF-Î ² receptor via the recycling endosome. Molecular Biology of the Cell, 2013, 24, 2285-2298.	2.1	34
32	Cell-penetrating peptides selectively targeting SMAD3 inhibit profibrotic TGF- \hat{l}^2 signaling. Journal of Clinical Investigation, 2017, 127, 2541-2554.	8.2	34
33	Pneumocystis cariniiUses a Functional Cdc13 B-Type Cyclin Complex during Its Life Cycle. American Journal of Respiratory Cell and Molecular Biology, 2000, 22, 722-731.	2.9	32
34	Tracking and Therapeutic Value of Human Adipose Tissue–derived Mesenchymal Stem Cell Transplantation in Reducing Venous Neointimal Hyperplasia Associated with Arteriovenous Fistula. Radiology, 2016, 279, 513-522.	7.3	32
35	A Unique Element in the Cytoplasmic Tail of the Type II Transforming Growth Factor- \hat{l}^2 Receptor Controls Basolateral Delivery. Molecular Biology of the Cell, 2007, 18, 3788-3799.	2.1	25
36	SIRT7â€mediated modulation of glutaminase 1 regulates TGFâ€Î²â€induced pulmonary fibrosis. FASEB Journal, 2020, 34, 8920-8940.	0.5	25

#	Article	IF	CITATIONS
37	ERBB Receptor Activation Is Required for Profibrotic Responses to Transforming Growth Factor \hat{l}^2 . Cancer Research, 2010, 70, 7421-7430.	0.9	20
38	The Role of Repeat Administration of Adventitial Delivery of Lentivirus-shRNA-Vegf-A in Arteriovenous Fistula to Prevent Venous Stenosis Formation. Journal of Vascular and Interventional Radiology, 2016, 27, 576-583.	0.5	15
39	Basolateral delivery of the type I transforming growth factor beta receptor is mediated by a dominant-acting cytoplasmic motif. Molecular Biology of the Cell, 2017, 28, 2701-2711.	2.1	14
40	Differential regulation of p34cdc2 and p33cdk2 by transforming growth factor- \hat{l}^21 in murine mammary epithelial cells. Journal of Cellular Biochemistry, 1995, 58, 517-526.	2.6	13
41	Sorting nexin 9 differentiates ligand-activated Smad3 from Smad2 for nuclear import and transforming growth factor \hat{l}^2 signaling. Molecular Biology of the Cell, 2015, 26, 3879-3891.	2.1	11
42	CorMatrix Wrapped Around the Adventitia of the Arteriovenous Fistula Outflow Vein Attenuates Venous Neointimal Hyperplasia. Scientific Reports, 2017, 7, 14298.	3.3	9
43	B7-1 drives TGF- \hat{l}^2 stimulated pancreatic carcinoma cell migration and expression of EMT target genes. PLoS ONE, 2019, 14, e0222083.	2.5	8
44	Characterization of a mitogen-activated protein kinase from <i>Pneumocystis carinii </i> Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L193-L199.	2.9	6
45	TGFÎ' versatility: PI3K as a critical mediator of distinct cell type and context specific responses. Cell Cycle, 2009, 8, 1813-1815.	2.6	4
46	A juxtamembrane basolateral targeting motif regulates signaling through a TGF- \hat{l}^2 pathway receptor in Drosophila. PLoS Biology, 2022, 20, e3001660.	5.6	2
47	Ligandâ€Mediated Mitochondrial Translocation of the Transforming Growth Factorâ€Î² Type I Receptor and Hexokinase 2. FASEB Journal, 2018, 32, 533.3.	0.5	O