
Gregor Fuhrmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5596607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhancing the Stabilization Potential of Lyophilization for Extracellular Vesicles. Advanced Healthcare Materials, 2022, 11, e2100538.	7.6	42
2	An Outer Membrane Vesicleâ€Based Permeation Assay (OMPA) for Assessing Bacterial Bioavailability. Advanced Healthcare Materials, 2022, 11, e2101180.	7.6	3
3	Yields and Immunomodulatory Effects of Pneumococcal Membrane Vesicles Differ with the Bacterial Growth Phase. Advanced Healthcare Materials, 2022, 11, e2101151.	7.6	12
4	An ossifying landscape: materials and growth factor strategies for osteogenic signalling and bone regeneration. Current Opinion in Biotechnology, 2022, 73, 355-363.	6.6	6
5	Materials-driven fibronectin assembly on nanoscale topography enhances mesenchymal stem cell adhesion, protecting cells from bacterial virulence factors and preventing biofilm formation. Biomaterials, 2022, 280, 121263.	11.4	21
6	Tunable Microgelâ€Templated Porogel (MTP) Bioink for 3D Bioprinting Applications. Advanced Healthcare Materials, 2022, 11, e2200027.	7.6	19
7	Experimental and Data Analysis Workflow for Soft Matter Nanoindentation. Journal of Visualized Experiments, 2022, , .	0.3	3
8	Extracellular Vesicles — A Versatile Biomaterial. Advanced Healthcare Materials, 2022, 11, e2200192.	7.6	6
9	Bacteriomimetic Liposomes Improve Antibiotic Activity of a Novel Energy-Coupling Factor Transporter Inhibitor. Pharmaceutics, 2022, 14, 4.	4.5	9
10	Current insights into the bone marrow niche: From biology in vivo to bioengineering ex vivo. Biomaterials, 2022, 286, 121568.	11.4	16
11	Spray-dried pneumococcal membrane vesicles are promising candidates for pulmonary immunization. International Journal of Pharmaceutics, 2022, 621, 121794.	5.2	6
12	Identification of storage conditions stabilizing extracellular vesicles preparations. Journal of Extracellular Vesicles, 2022, 11, .	12.2	91
13	Polysaccharideâ€Polyplex Nanofilm Coatings Enhance Nanoneedleâ€Based Gene Delivery and Transfection Efficiency. Small, 2022, 18, .	10.0	6
14	Tissue Engineering Cartilage with Deep Zone Cytoarchitecture by Highâ€Resolution Acoustic Cell Patterning. Advanced Healthcare Materials, 2022, 11, .	7.6	17
15	Advancing Cell-Instructive Biomaterials Through Increased Understanding of Cell Receptor Spacing and Material Surface Functionalization. Regenerative Engineering and Translational Medicine, 2021, 7, 533-547.	2.9	6
16	Advances in the Fabrication of Biomaterials for Gradient Tissue Engineering. Trends in Biotechnology, 2021, 39, 150-164.	9.3	98
17	Liver-derived extracellular vesicles: A cell by cell overview to isolation and characterization practices. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129559.	2.4	8
18	Biobarriers 2018. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 52.	4.3	0

#	Article	IF	CITATIONS
19	Assessing the impact of silicon nanowires on bacterial transformation and viability of <i>Escherichia coli</i> . Journal of Materials Chemistry B, 2021, 9, 4906-4914.	5.8	6
20	Nanoneedle-Based Materials for Intracellular Studies. Advances in Experimental Medicine and Biology, 2021, 1295, 191-219.	1.6	5
21	The use of nanovibration to discover specific and potent bioactive metabolites that stimulate osteogenic differentiation in mesenchymal stem cells. Science Advances, 2021, 7, .	10.3	22
22	Biogenic and biomimetic nanocarrier-based interventions: focus on intracellular infections. Nanomedicine, 2021, 16, 685-688.	3.3	2
23	Extracellular vesicles as antigen carriers for novel vaccination avenues. Advanced Drug Delivery Reviews, 2021, 173, 164-180.	13.7	49
24	Bacterial extracellular vesicles: Understanding biology promotes applications as nanopharmaceuticals. Advanced Drug Delivery Reviews, 2021, 173, 125-140.	13.7	47
25	Approaches to surface engineering of extracellular vesicles. Advanced Drug Delivery Reviews, 2021, 173, 416-426.	13.7	87
26	Extracellular vesicles as a next-generation drug delivery platform. Nature Nanotechnology, 2021, 16, 748-759.	31.5	761
27	Extracellular vesicles for tissue repair and regeneration: Evidence, challenges and opportunities. Advanced Drug Delivery Reviews, 2021, 175, 113775.	13.7	86
28	Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. ACS Nano, 2021, 15, 13993-14021.	14.6	74
29	Interaction of myxobacteria-derived outer membrane vesicles with biofilms: antiadhesive and antibacterial effects. Nanoscale, 2021, 13, 14287-14296.	5.6	8
30	Biophysical phenotyping of mesenchymal stem cells along the osteogenic differentiation pathway. Cell Biology and Toxicology, 2021, 37, 915-933.	5.3	8
31	Stimulation of Probiotic Bacteria Induces Release of Membrane Vesicles with Augmented Anti-inflammatory Activity. ACS Applied Bio Materials, 2021, 4, 3739-3748.	4.6	15
32	Extracellular vesicles in drug delivery and bioengineering. Advanced Drug Delivery Reviews, 2021, 181, 114073.	13.7	2
33	3D-printed high-resolution microchannels for contrast enhanced ultrasound research. , 2021, , .		0
34	Nanoneedles and Nanostructured Surfaces for Studying Cell Interfacing. IFMBE Proceedings, 2020, , 209-212.	0.3	2
35	Using Remote Fields for Complex Tissue Engineering. Trends in Biotechnology, 2020, 38, 254-263.	9.3	60
36	Advances in high-resolution microscopy for the study of intracellular interactions with biomaterials. Biomaterials, 2020, 226, 119406.	11.4	30

#	Article	IF	CITATIONS
37	Voidâ€Free 3D Bioprinting for In Situ Endothelialization and Microfluidic Perfusion. Advanced Functional Materials, 2020, 30, 1908349.	14.9	96
38	Ultrasoundâ€Triggered Enzymatic Gelation. Advanced Materials, 2020, 32, e1905914.	21.0	38
39	Hot EVs – How temperature affects extracellular vesicles. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 146, 55-63.	4.3	38
40	Organic Bioelectronics: Using Highly Conjugated Polymers to Interface with Biomolecules, Cells, and Tissues in the Human Body. Advanced Materials Technologies, 2020, 5, 2000384.	5.8	38
41	Coupling quaternary ammonium surfactants to the surface of liposomes improves both antibacterial efficacy and host cell biocompatibility. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 149, 12-20.	4.3	19
42	Nanovibrational Stimulation of Mesenchymal Stem Cells Induces Therapeutic Reactive Oxygen Species and Inflammation for Three-Dimensional Bone Tissue Engineering. ACS Nano, 2020, 14, 10027-10044.	14.6	33
43	A blueprint for translational regenerative medicine. Science Translational Medicine, 2020, 12, .	12.4	24
44	What Caging Force Cells Feel in 3D Hydrogels: A Rheological Perspective. Advanced Healthcare Materials, 2020, 9, e2000517.	7.6	23
45	Editorial: Mechanisms of Prokaryotic Predation. Frontiers in Microbiology, 2020, 11, 2071.	3.5	6
46	Probiomimetics—Novel <i>Lactobacillus</i> â€Mimicking Microparticles Show Antiâ€Inflammatory and Barrierâ€Protecting Effects in Gastrointestinal Models. Small, 2020, 16, e2003158.	10.0	31
47	Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Science Advances, 2020, 6, .	10.3	156
48	Tailoring Gelation Mechanisms for Advanced Hydrogel Applications. Advanced Functional Materials, 2020, 30, 2002759.	14.9	148
49	Coarse-Grained Simulations Suggest the Epsin N-Terminal Homology Domain Can Sense Membrane Curvature without Its Terminal Amphipathic Helix. ACS Nano, 2020, 14, 16919-16928.	14.6	9
50	Molecular imaging of extracellular vesicles <i>in vitro via</i> Raman metabolic labelling. Journal of Materials Chemistry B, 2020, 8, 4447-4459.	5.8	18
51	Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Advanced Drug Delivery Reviews, 2020, 167, 89-108.	13.7	91
52	Streptococcal Extracellular Membrane Vesicles Are Rapidly Internalized by Immune Cells and Alter Their Cytokine Release. Frontiers in Immunology, 2020, 11, 80.	4.8	64
53	Diffusion and transport of extracellular vesicles. Nature Nanotechnology, 2020, 15, 168-169.	31.5	15
54	T-Cell–Derived miRNA-214 Mediates Perivascular Fibrosis in Hypertension. Circulation Research, 2020, 126, 988-1003.	4.5	59

#	Article	IF	CITATIONS
55	Highâ€Aspectâ€Ratio Nanostructured Surfaces as Biological Metamaterials. Advanced Materials, 2020, 32, e1903862.	21.0	161
56	Myxobacteria-Derived Outer Membrane Vesicles: Potential Applicability Against Intracellular Infections. Cells, 2020, 9, 194.	4.1	29
57	Assembling Living Building Blocks to Engineer Complex Tissues. Advanced Functional Materials, 2020, 30, 1909009.	14.9	76
58	Gold Nanocluster Extracellular Vesicle Supraparticles: Self-Assembled Nanostructures for Three-Dimensional Uptake Visualization. Langmuir, 2020, 36, 3912-3923.	3.5	11
59	Size-Tunable Nanoneedle Arrays for Influencing Stem Cell Morphology, Gene Expression, and Nuclear Membrane Curvature. ACS Nano, 2020, 14, 5371-5381.	14.6	51
60	Hurdles to uptake of mesenchymal stem cells and their progenitors in therapeutic products. Biochemical Journal, 2020, 477, 3349-3366.	3.7	11
61	Toll-Like Receptor 2 Release by Macrophages: An Anti-inflammatory Program Induced by Glucocorticoids and Lipopolysaccharide. Frontiers in Immunology, 2019, 10, 1634.	4.8	52
62	Design, construction and characterisation of a novel nanovibrational bioreactor and cultureware for osteogenesis. Scientific Reports, 2019, 9, 12944.	3.3	17
63	Spatiotemporal quantification of acoustic cell patterning using VoronoÃ⁻ tessellation. Lab on A Chip, 2019, 19, 562-573.	6.0	30
64	Residue-Specific Solvation-Directed Thermodynamic and Kinetic Control over Peptide Self-Assembly with 1D/2D Structure Selection. ACS Nano, 2019, 13, 1900-1909.	14.6	40
65	Boron Ions: Simultaneous Boron Ionâ€Channel/Growth Factor Receptor Activation for Enhanced Vascularization (Adv. Biosys. 1/2019). Advanced Biology, 2019, 3, 1970014.	3.0	0
66	Porous Silicon Nanoneedles Modulate Endocytosis to Deliver Biological Payloads. Advanced Materials, 2019, 31, e1806788.	21.0	101
67	Single-Nanometer Changes in Nanopore Geometry Influence Curvature, Local Properties, and Protein Localization in Membrane Simulations. Nano Letters, 2019, 19, 4770-4778.	9.1	14
68	Evaluation of the Storage Stability of Extracellular Vesicles. Journal of Visualized Experiments, 2019, ,	0.3	16
69	Immunogold FIB‧EM: Combining Volumetric Ultrastructure Visualization with 3D Biomolecular Analysis to Dissect Cell–Environment Interactions. Advanced Materials, 2019, 31, 1900488.	21.0	16
70	3D gelatin-chitosan hybrid hydrogels combined with human platelet lysate highly support human mesenchymal stem cell proliferation and osteogenic differentiation. Journal of Tissue Engineering, 2019, 10, 204173141984585.	5.5	59
71	Buoyancyâ€Driven Gradients for Biomaterial Fabrication and Tissue Engineering. Advanced Materials, 2019, 31, e1900291.	21.0	61
72	Nanoneedle-Mediated Stimulation of Cell Mechanotransduction Machinery. ACS Nano, 2019, 13, 2913-2926.	14.6	101

#	Article	IF	CITATIONS
73	Emerging Technologies for Tissue Engineering: From Gene Editing to Personalized Medicine. Tissue Engineering - Part A, 2019, 25, 688-692.	3.1	26
74	Extracellular Vesicles—Connecting Kingdoms. International Journal of Molecular Sciences, 2019, 20, 5695.	4.1	177
75	Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Advanced Drug Delivery Reviews, 2019, 138, 259-275.	13.7	146
76	Engineering Strategies for Oral Therapeutic Enzymes to Enhance Their Stability and Activity. Advances in Experimental Medicine and Biology, 2019, 1148, 151-172.	1.6	3
77	Engineering Extracellular Vesicles with the Tools of Enzyme Prodrug Therapy. Advanced Materials, 2018, 30, e1706616.	21.0	77
78	Auxetic Cardiac Patches with Tunable Mechanical and Conductive Properties toward Treating Myocardial Infarction. Advanced Functional Materials, 2018, 28, 1800618.	14.9	167
79	Drug Delivery: Engineering Extracellular Vesicles with the Tools of Enzyme Prodrug Therapy (Adv.) Tj ETQq1 1 0.78	4314 rgB 21.0	T /Overlock
80	Control of cell behaviour through nanovibrational stimulation: nanokicking. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170290.	3.4	23
81	Receptor control in mesenchymal stem cell engineering. Nature Reviews Materials, 2018, 3, .	48.7	96
82	Cell-geometry-dependent changes in plasma membrane order direct stem cell signalling and fate. Nature Materials, 2018, 17, 237-242.	27.5	152
83	Molecular clutch drives cell response to surface viscosity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1192-1197.	7.1	115
84	Correlated Heterospectral Lipidomics for Biomolecular Profiling of Remyelination in Multiple Sclerosis. ACS Central Science, 2018, 4, 39-51.	11.3	44
85	Biocompatible Chitosan-Functionalized Upconverting Nanocomposites. ACS Omega, 2018, 3, 86-95.	3.5	21
86	Biogenic and Biomimetic Carriers as Versatile Transporters To Treat Infections. ACS Infectious Diseases, 2018, 4, 881-892.	3.8	33
87	Current approaches for modulation of the nanoscale interface in the regulation of cell behavior. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2455-2464.	3.3	22
88	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
89	A Novel Class of Injectable Bioceramics That Glue Tissues and Biomaterials. Materials, 2018, 11, 2492.	2.9	42
90	Biocompatible bacteria-derived vesicles show inherent antimicrobial activity. Journal of Controlled Release, 2018, 290, 46-55.	9.9	90

6

#	Article	IF	CITATIONS
91	Single Particle Automated Raman Trapping Analysis. Nature Communications, 2018, 9, 4256.	12.8	37
92	Extracellular vesicles protect glucuronidase model enzymes during freeze-drying. Scientific Reports, 2018, 8, 12377.	3.3	65
93	Engineering Anisotropic Muscle Tissue using Acoustic Cell Patterning. Advanced Materials, 2018, 30, e1802649.	21.0	140
94	Bacteriaâ€Based Materials for Stem Cell Engineering. Advanced Materials, 2018, 30, e1804310.	21.0	52
95	Glycosylated superparamagnetic nanoparticle gradients for osteochondral tissue engineering. Biomaterials, 2018, 176, 24-33.	11.4	92
96	Strategic design of extracellular vesicle drug delivery systems. Advanced Drug Delivery Reviews, 2018, 130, 12-16.	13.7	171
97	Luminal coating of the intestine. Nature Materials, 2018, 17, 754-755.	27.5	1
98	Re-Engineering Extracellular Vesicles as Smart Nanoscale Therapeutics. ACS Nano, 2017, 11, 69-83.	14.6	432
99	Localized and Controlled Delivery of Nitric Oxide to the Conventional Outflow Pathway via Enzyme Biocatalysis: Toward Therapy for Glaucoma. Advanced Materials, 2017, 29, 1604932.	21.0	85
100	Engineered microenvironments for synergistic VECF – Integrin signalling during vascularization. Biomaterials, 2017, 126, 61-74.	11.4	61
101	Mechanotransduction and Growth Factor Signalling to Engineer Cellular Microenvironments. Advanced Healthcare Materials, 2017, 6, 1700052.	7.6	56
102	Extracting the contents of living cells. Science, 2017, 356, 379-380.	12.6	45
103	Raman spectroscopy and regenerative medicine: a review. Npj Regenerative Medicine, 2017, 2, 12.	5.2	147
104	Comparative Study of Osteogenic Activity of Multilayers Made of Synthetic and Biogenic Polyelectrolytes. Macromolecular Bioscience, 2017, 17, 1700078.	4.1	7
105	Confined Sandwichlike Microenvironments Tune Myogenic Differentiation. ACS Biomaterials Science and Engineering, 2017, 3, 1710-1718.	5.2	5
106	Extracellular vesicles – A promising avenue for the detection and treatment of infectious diseases?. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 118, 56-61.	4.3	46
107	Quantitative volumetric Raman imaging of three dimensional cell cultures. Nature Communications, 2017, 8, 14843.	12.8	109
108	Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nature Biomedical Engineering, 2017, 1, 758-770.	22.5	77

Gregor Fuhrmann

#	Article	IF	CITATIONS
109	Recent advances in oral delivery of macromolecular drugs and benefits of polymer conjugation. Current Opinion in Colloid and Interface Science, 2017, 31, 67-74.	7.4	24
110	Raman spectroscopy imaging reveals interplay between atherosclerosis and medial calcification in the human aorta. Science Advances, 2017, 3, e1701156.	10.3	60
111	Hybrid Protein–Glycosaminoglycan Hydrogels Promote Chondrogenic Stem Cell Differentiation. ACS Omega, 2017, 2, 7609-7620.	3.5	39
112	Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. EMBO Journal, 2017, 36, 2373-2389.	7.8	144
113	Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy. Biomaterials, 2017, 140, 128-137.	11.4	41
114	Protease-degradable microgels for protein delivery for vascularization. Biomaterials, 2017, 113, 170-175.	11.4	72
115	Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency. Biomaterials, 2017, 116, 10-20.	11.4	49
116	Gelatin—Hyaluronic Acid Hydrogels with Tuned Stiffness to Counterbalance Cellular Forces and Promote Cell Differentiation. Macromolecular Bioscience, 2016, 16, 1311-1324.	4.1	54
117	Protein Adsorption as a Key Mediator in the Nanotopographical Control of Cell Behavior. ACS Nano, 2016, 10, 6638-6647.	14.6	105
118	Differentiation of Human Mesenchymal Stem Cells Toward Quality Cartilage Using Fibrinogenâ€Based Nanofibers. Macromolecular Bioscience, 2016, 16, 1348-1359.	4.1	14
119	A conducting polymer with enhanced electronic stability applied in cardiac models. Science Advances, 2016, 2, e1601007.	10.3	173
120	Molecular composition of GAG-collagen I multilayers affects remodeling of terminal layers and osteogenic differentiation of adipose-derived stem cells. Acta Biomaterialia, 2016, 41, 86-99.	8.3	42
121	PLLA/ZnO nanocomposites: Dynamic surfaces to harness cell differentiation. Colloids and Surfaces B: Biointerfaces, 2016, 144, 152-160.	5.0	22
122	Role of chemical crosslinking in material-driven assembly of fibronectin (nano)networks: 2D surfaces and 3D scaffolds. Colloids and Surfaces B: Biointerfaces, 2016, 148, 324-332.	5.0	9
123	Bioinspired Microenvironments: Material-Driven Fibronectin Assembly Promotes Maintenance of Mesenchymal Stem Cell Phenotypes (Adv. Funct. Mater. 36/2016). Advanced Functional Materials, 2016, 26, 6671-6671.	14.9	0
124	Synergistic growth factor microenvironments. Chemical Communications, 2016, 52, 13327-13336.	4.1	46
125	Materialâ€Ðriven Fibronectin Assembly Promotes Maintenance of Mesenchymal Stem Cell Phenotypes. Advanced Functional Materials, 2016, 26, 6563-6573.	14.9	23
126	Material-driven fibronectin assembly for high-efficiency presentation of growth factors. Science Advances, 2016, 2, e1600188.	10.3	104

#	Article	IF	CITATIONS
127	Living biointerfaces based on non-pathogenic bacteria support stem cell differentiation. Scientific Reports, 2016, 6, 21809.	3.3	19
128	Lateral Chain Length in Polyalkyl Acrylates Determines the Mobility of Fibronectin at the Cell/Material Interface. Langmuir, 2016, 32, 800-809.	3.5	29
129	Material Cues as Potent Regulators of Epigenetics and Stem Cell Function. Cell Stem Cell, 2016, 18, 39-52.	11.1	222
130	Mapping Local Cytosolic Enzymatic Activity in Human Esophageal Mucosa with Porous Silicon Nanoneedles. Advanced Materials, 2015, 27, 5147-5152.	21.0	80
131	Extracellular Stiffness Modulates the Expression of Functional Proteins and Growth Factors in Endothelial Cells. Advanced Healthcare Materials, 2015, 4, 2056-2063.	7.6	31
132	Sandwich-like Microenvironments to Harness Cell/Material Interactions. Journal of Visualized Experiments, 2015, , e53090.	0.3	2
133	Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. Journal of Controlled Release, 2015, 205, 35-44.	9.9	511
134	Controlled Assembly of Fibronectin Nanofibrils Triggered by Random Copolymer Chemistry. ACS Applied Materials & Interfaces, 2015, 7, 18125-18135.	8.0	16
135	Simple coating with fibronectin fragment enhances stainless steel screw osseointegration in healthy and osteoporotic rats. Biomaterials, 2015, 63, 137-145.	11.4	91
136	Cell-derived vesicles for drug therapy and diagnostics: Opportunities and challenges. Nano Today, 2015, 10, 397-409.	11.9	124
137	Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials, 2015, 54, 213-225.	11.4	139
138	Biodegradable Nanoneedles for Localized Delivery of Nanoparticles <i>in Vivo:</i> Exploring the Biointerface. ACS Nano, 2015, 9, 5500-5509.	14.6	171
139	Dynamic Behavior of Vitronectin at the Cell–Material Interface. ACS Biomaterials Science and Engineering, 2015, 1, 927-934.	5.2	15
140	Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues. Biomaterials, 2015, 70, 94-104.	11.4	81
141	Different Organization of Type I Collagen Immobilized on Silanized and Nonsilanized Titanium Surfaces Affects Fibroblast Adhesion and Fibronectin Secretion. ACS Applied Materials & Interfaces, 2015, 7, 20667-20677.	8.0	27
142	Borax-Loaded PLLA for Promotion of Myogenic Differentiation. Tissue Engineering - Part A, 2015, 21, 2662-2672.	3.1	17
143	A Fractal Nature for Polymerized Laminin. PLoS ONE, 2014, 9, e109388.	2.5	16
144	Tissue Engineering and Regenerative Medicine: A Year in Review. Tissue Engineering - Part B: Reviews, 2014, 20, 1-16.	4.8	111

#	Article	IF	CITATIONS
145	Improving the Stability and Activity of Oral Therapeutic Enzymes—Recent Advances and Perspectives. Pharmaceutical Research, 2014, 31, 1099-1105.	3.5	41
146	Extracellular Vesicles Derived from Preosteoblasts Influence Embryonic Stem Cell Differentiation. Stem Cells and Development, 2014, 23, 1625-1635.	2.1	51
147	A Material-Based Platform to Modulate Fibronectin Activity and Focal Adhesion Assembly. BioResearch Open Access, 2014, 3, 286-296.	2.6	35
148	Living biointerfaces based on non-pathogenic bacteria to direct cell differentiation. Scientific Reports, 2014, 4, 5849.	3.3	15
149	Celiac Disease: A Challenging Disease for Pharmaceutical Scientists. Pharmaceutical Research, 2013, 30, 619-626.	3.5	19
150	Vitronectin alters fibronectin organization at the cell–material interface. Colloids and Surfaces B: Biointerfaces, 2013, 111, 618-625.	5.0	20
151	Nano-analytical electron microscopy reveals fundamental insights into human cardiovascular tissue calcification. Nature Materials, 2013, 12, 576-583.	27.5	228
152	Sustained gastrointestinal activity of dendronized polymer–enzyme conjugates. Nature Chemistry, 2013, 5, 582-589.	13.6	92
153	Polymer–Enzyme Conjugates for Oral Drug Delivery Applications. Chimia, 2013, 67, 685.	0.6	1
154	Designing Regenerative Biomaterial Therapies for the Clinic. Science Translational Medicine, 2012, 4, 160sr4.	12.4	212
155	The Copolymer P(HEMA-co-SS) Binds Gluten and Reduces Immune Response in Gluten-Sensitized Mice and Human Tissues. Gastroenterology, 2012, 142, 316-325.e12.	1.3	71
156	In vivo fluorescence imaging of exogenous enzyme activity in the gastrointestinal tract. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9032-9037.	7.1	36
157	Tyrosine-based rivastigmine-loaded organogels in the treatment of Alzheimer's disease. Biomaterials, 2010, 31, 6031-6038.	11.4	74
158	In vitro evaluation of the stability of proline-specific endopeptidases under simulated gastrointestinal conditions. Journal of Controlled Release, 2010, 148, e37-e39.	9.9	3
159	Prevention Measures and Exploratory Pharmacological Treatments of Celiac Disease. American Journal of Gastroenterology, 2010, 105, 2551-2561.	0.4	21
160	Complexity in biomaterials for tissue engineering. Nature Materials, 2009, 8, 457-470.	27.5	1,495
161	Exploring and Engineering the Cell Surface Interface. Science, 2005, 310, 1135-1138.	12.6	2,383