
Ahmadjon Abdujabbarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5595601/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shadow of rotating regular black holes. Physical Review D, 2016, 93, .	4.7	251
2	Shadow of rotating non-Kerr black hole. Physical Review D, 2013, 88, .	4.7	215
3	Rotating regular black hole solution. Physical Review D, 2014, 89, .	4.7	192
4	Shadow of Kerr-Taub-NUT black hole. Astrophysics and Space Science, 2013, 344, 429-435.	1.4	167
5	A coordinate-independent characterization of a black hole shadow. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2423-2435.	4.4	160
6	Optical properties of black holes in the presence of a plasma: The shadow. Physical Review D, 2015, 92, .	4.7	153
7	Test particle motion around a black hole in a braneworld. Physical Review D, 2010, 81, .	4.7	108
8	Shadow of the rotating black hole with quintessential energy in the presence of plasma. International Journal of Modern Physics D, 2017, 26, 1750051.	2.1	107
9	Black hole mimicker hiding in the shadow: Optical properties of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>γ</mml:mi> metric. Physical Review D, 2019, 100, .</mml:math 	4.7	98
10	Shadow of rotating Hořava-Lifshitz black hole. Astrophysics and Space Science, 2013, 348, 179-188.	1.4	91
11	Energetics and optical properties of 6-dimensional rotating black hole in pure Gauss–Bonnet gravity. European Physical Journal C, 2015, 75, 1.	3.9	89
12	Quasinormal modes of test fields around regular black holes. Physical Review D, 2015, 91, .	4.7	87
13	Shadow of rotating wormhole in plasma environment. Astrophysics and Space Science, 2016, 361, 1.	1.4	78
14	Optical properties of a braneworld black hole: Gravitational lensing and retrolensing. Physical Review D, 2017, 96, .	4.7	75
15	Particle motion around black hole in Hořava-Lifshitz gravity. Physical Review D, 2011, 83, .	4.7	70
16	Ultra-high-energy collisions of particles in the field of near-extreme Kehagias-Sfetsos naked singularities and their appearance to distant observers. Physical Review D, 2014, 89, .	4.7	65
17	Gravitational lensing by regular black holes surrounded by plasma. International Journal of Modern Physics D, 2017, 26, 1741011.	2.1	64
18	Particle motion and electromagnetic fields of rotating compact gravitating objects with gravitomagnetic charge. General Relativity and Gravitation, 2008, 40, 2515-2532.	2.0	62

#	Article	IF	CITATIONS
19	Penrose process in Kerr-Taub-NUT spacetime. Astrophysics and Space Science, 2011, 334, 237-241.	1.4	57
20	Charged-particle motion around a rotating non-Kerr black hole immersed in a uniform magnetic field. Physical Review D, 2013, 87, .	4.7	49
21	Charged particle motion and electromagnetic field in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>γ</mml:mi></mml:mrow> spacetime. Physical Review D. 2019. 99</mml:math 	4.7	49
22	Dynamics of magnetized particles around 4-D Einstein Gauss–Bonnet black hole. Physics of the Dark Universe, 2020, 30, 100715.	4.9	49
23	Magnetized particle motion and acceleration around a Schwarzschild black hole in a magnetic field. Physica Scripta, 2014, 89, 084008.	2.5	47
24	Dynamics of test particles around a Bardeen black hole surrounded by perfect fluid dark matter. Physical Review D, 2020, 102, .	4.7	47
25	ELECTROMAGNETIC FIELDS OF SLOWLY ROTATING MAGNETIZED GRAVASTARS. Modern Physics Letters A, 2009, 24, 733-737.	1.2	46
26	Axion-plasmon or magnetized plasma effect on an observable shadow and gravitational lensing of a Schwarzschild black hole. Physical Review D, 2021, 104, .	4.7	45
27	Effect of an external magnetic field on particle acceleration by a rotating black hole surrounded with quintessential energy. International Journal of Modern Physics D, 2018, 27, 1850088.	2.1	44
28	Acceleration of particles by black hole with gravitomagnetic charge immersed in magnetic field. Astrophysics and Space Science, 2013, 343, 173-179.	1.4	43
29	Acceleration of particles in spacetimes of black string. Physical Review D, 2013, 88, .	4.7	42
30	Weak gravitational lensing Schwarzschild-MOG black hole in plasma. European Physical Journal C, 2021, 81, 1.	3.9	41
31	Magnetized particle capture cross section for braneworld black hole. Astrophysics and Space Science, 2011, 335, 499-504.	1.4	40
32	Energy extraction and particle acceleration around a rotating black hole in Hořava-Lifshitz gravity. Physical Review D, 2011, 84, .	4.7	40
33	Motion and high energy collision of magnetized particles around a Hořava-Lifshitz black hole. Astrophysics and Space Science, 2015, 360, 1.	1.4	39
34	Test particle motion around a black hole in Einstein-Maxwell-scalar theory. Physical Review D, 2020, 102, .	4.7	39
35	Particle acceleration near a rotating black hole in a Randall-Sundrum brane with a cosmological constant. Physical Review D, 2013, 88, .	4.7	38
36	Particle motion and Penrose processes around rotating regular black hole. Astrophysics and Space Science, 2015, 357, 1.	1.4	38

Ahmadjon Abdujabbarov

#	Article	IF	CITATIONS
37	Effect of plasma on gravitational lensing by a Schwarzschild black hole immersed in perfect fluid dark matter. Physical Review D, 2021, 104, .	4.7	38
38	Can the dynamics of test particles around charged stringy black holes mimic the spin of Kerr black holes?. Physical Review D, 2020, 102, .	4.7	37
39	Gravitational lensing by a magnetized compact object in the presence of plasma. International Journal of Modern Physics D, 2019, 28, 2040013.	2.1	34
40	Distinguishing magnetically and electrically charged Reissner–Nordström black holes by magnetized particle motion. European Physical Journal C, 2021, 81, 1.	3.9	34
41	Magnetized particle motion around magnetized Schwarzschild-MOG black hole. European Physical Journal C, 2020, 80, 1.	3.9	34
42	Dynamics of test particles around renormalization group improved Schwarzschild black holes. Physical Review D, 2020, 102, .	4.7	33
43	Charged and magnetized particles motion in the field of generic singular black holes governed by general relativity coupled to nonlinear electrodynamics. Physical Review D, 2020, 101, .	4.7	32
44	Gravitational lensing for a boosted Kerr black hole in the presence of plasma. European Physical Journal C, 2018, 78, 1.	3.9	31
45	Particle acceleration around a five-dimensional Kerr black hole. Physical Review D, 2013, 88, .	4.7	30
46	Electromagnetic fields of slowly rotating magnetized compact stars in conformal gravity. Physical Review D, 2018, 97, .	4.7	30
47	Charged particle motion around a quasi-Kerr compact object immersed in an external magnetic field. Physical Review D, 2019, 99, .	4.7	30
48	Energy extraction and particle acceleration around a rotating black hole in quintessence. Astrophysics and Space Science, 2016, 361, 1.	1.4	29
49	Particle motion around generic black holes coupled to non-linear electrodynamics. European Physical Journal C, 2019, 79, 1.	3.9	29
50	Energy conditions of non-singular black hole spacetimes in conformal gravity. European Physical Journal C, 2017, 77, 1.	3.9	28
51	Charged particle motion around a magnetized Reissner-Nordström black hole. Physical Review D, 2021, 103, .	4.7	27
52	Magnetized Particle Motion around Black Holes in Conformal Gravity: Can Magnetic Interaction Mimic Spin of Black Holes?. Universe, 2020, 6, 44.	2.5	26
53	Magnetic fields of spherical compact stars in modified theories of gravity:f(R)type gravity and HoA™ava-Lifshitz gravity. Physical Review D, 2013, 88, .	4.7	24
54	Rotating and nonlinear magnetic-charged black hole surrounded by quintessence. Physical Review D, 2020, 101, .	4.7	22

#	Article	IF	CITATIONS
55	Constraining alternative theories of gravity using GW150914 and GW151226. Physical Review D, 2016, 94, .	4.7	21
56	Regular nonminimal magnetic black hole as a source of quasiperiodic oscillations. Physical Review D, 2021, 103, .	4.7	21
57	Scalar perturbations and quasi-normal modes of a nonlinear magnetic-charged black hole surrounded by quintessence. European Physical Journal C, 2019, 79, 1.	3.9	20
58	Motion of particles and gravitational lensing around the (2+1)-dimensional BTZ black hole in Gauss–Bonnet gravity. European Physical Journal C, 2021, 81, 1.	3.9	20
59	Magnetized Particle Motion in $\hat{1}^3$ -Spacetime in a Magnetic Field. Galaxies, 2020, 8, 76.	3.0	19
60	Charged particle motion around non-singular black holes in conformal gravity in the presence of external magnetic field. European Physical Journal C, 2020, 80, 1.	3.9	19
61	Gravitational weak lensing by black hole in Horndeski gravity in presence of plasma. European Physical Journal Plus, 2022, 137, 1.	2.6	19
62	Dynamics of charged particles and magnetic dipoles around magnetized quasi-Schwarzschild black holes. European Physical Journal C, 2021, 81, 1.	3.9	18
63	Dynamics of magnetized particles around Einstein-Æther black hole with uniform magnetic field. Nuclear Physics B, 2021, 966, 115364.	2.5	18
64	Regular Bardeen Black Holes in Anti-de Sitter Spacetime versus Kerr Black Holes through Particle Dynamics. Galaxies, 2021, 9, 63.	3.0	18
65	Dynamics of Test Particles and Twin Peaks QPOs around Regular Black Holes in Modified Gravity. Galaxies, 2021, 9, 75.	3.0	18
66	Electromagnetic fields and charged particle motion around magnetized wormholes. Astrophysics and Space Science, 2009, 321, 225-232.	1.4	17
67	Weak gravitational lensing: A compact object with arbitrary quadrupole moment immersed in plasma. Physical Review D, 2018, 98, .	4.7	17
68	Dynamics and fundamental frequencies of test particles orbiting Kerr–Newman–NUT–Kiselev black hole in Rastall gravity. European Physical Journal Plus, 2021, 136, 1.	2.6	17
69	On the properties of a deformed extension of the NUT space-time. European Physical Journal C, 2020, 80, 1.	3.9	16
70	Optical properties of an axially symmetric black hole in the Rastall gravity. European Physical Journal Plus, 2022, 137, .	2.6	16
71	Plasma magnetosphere of rotating magnetized neutron star inÂtheÂbraneworld. Astrophysics and Space Science, 2010, 330, 257-266.	1.4	15
72	A toy model for a baby universe inside a black hole. European Physical Journal C, 2020, 80, 1.	3.9	15

#	Article	IF	CITATIONS
73	Particle motion around a static axially symmetric wormhole. Physical Review D, 2021, 104, .	4.7	15
74	Gravitational lensing around Kehagias–Sfetsos compact objects surrounded by plasma. European Physical Journal C, 2019, 79, 1.	3.9	14
75	Dynamics of Magnetized and Magnetically Charged Particles around Regular Nonminimal Magnetic Black Holes. Galaxies, 2021, 9, 71.	3.0	14
76	Spinning test particle motion around a traversable wormhole. Physical Review D, 2021, 104, .	4.7	14
77	Quantum interference effects in conformal Weyl gravity. International Journal of Modern Physics A, 2017, 32, 1750116.	1.5	13
78	QUANTUM INTERFERENCE EFFECTS IN HOÅ~AVA–LIFSHITZ GRAVITY. Modern Physics Letters A, 2010, 25, 3115-3127.	1.2	12
79	Testing the Einstein-Æther gravity: particle dynamics and gravitational lensing. European Physical Journal Plus, 2022, 137, .	2.6	12
80	External electromagnetic fields of a slowly rotating magnetized star with gravitomagnetic charge. Astrophysics and Space Science, 2012, 337, 679-683.	1.4	11
81	Gravitational weak lensing of Schwarzschild-like black hole in presence of plasma. European Physical Journal Plus, 2022, 137, 1.	2.6	11
82	Qualifying ringdown and shadow of black holes under general parametrized metrics with photon orbits. European Physical Journal C, 2021, 81, 1.	3.9	10
83	Spinning test particle motion around a rotating wormhole. Physical Review D, 2022, 106, .	4.7	10
84	Spin down of rotating compact magnetized strange stars in general relativity. Astrophysics and Space Science, 2012, 338, 157-161.	1.4	8
85	Effects of gravitational lensing on neutrino oscillation in \$\$ gamma \$\$-spacetime. European Physical Journal C, 2022, 82, .	3.9	8
86	General relativistic effects in neutron star electrodynamics. Physical Review D, 2021, 103, .	4.7	7
87	Plasma magnetosphere and spin down of rotating magnetized strange stars in general relativity. Astrophysics and Space Science, 2013, 346, 507-512.	1.4	6
88	Quasiharmonic oscillations of charged particles in static axially symmetric space-times immersed in a uniform magnetic field. Physical Review D, 2020, 101, .	4.7	5
89	Epicyclic oscillations of test particles near marginally stable circular orbits around charged Kiselev black holes. Physical Review D, 2021, 104, .	4.7	5
90	Dynamics of charged and magnetized particles around cylindrical black holes immersed in external magnetic field. International Journal of Modern Physics D, 2021, 30, 2150019.	2.1	5

#	Article	IF	CITATIONS
91	Quasi-periodic oscillation around regular Bardeen black holes in 4D Einstein–Gauss–Bonnet gravity. International Journal of Modern Physics D, 2022, 31, .	2.1	5
92	Generic Three-Parameter Wormhole Solution in Einstein-Scalar Field Theory. Particles, 2022, 5, 1-11.	1.7	3
93	Dynamics of test particles around magnetically charged regular black holes. International Journal of Modern Physics D, 2022, 31, .	2.1	3
94	Strong gravitational lensing around Kehagias–Sfetsos compact objects surrounded by plasma. European Physical Journal Plus, 2022, 137, 1.	2.6	2
95	Shadow and massless particles around regular Bardeen black holes in 4D Einstein Gauss–Bonnet gravity. International Journal of Modern Physics D, 2022, 31, .	2.1	2
96	Effects of geometric optics in conformal Weyl gravity. Arabian Journal of Mathematics, 2019, 8, 259-267.	0.9	1
97	Geometric Optics in Conformal Weyl Gravity. International Journal of Modern Physics D, 0, , .	2.1	1
98	Distinguishing regular and singular black holes in modified gravity. Arabian Journal of Mathematics, 0, , 1.	0.9	1
99	Constraining spacetime deformation based on astrophysical observations from radio pulsars. Arabian Journal of Mathematics, 2022, 11, 133-139.	0.9	0
100	Preface of "Particles and Fields in Black Hole Environment― Galaxies, 2022, 10, 82.	3.0	0