
Sébastien Dementin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/559280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relating diffusion along the substrate tunnel and oxygen sensitivity in hydrogenase. Nature Chemical Biology, 2010, 6, 63-70.	8.0	188
2	Inhibition and Aerobic Inactivation Kinetics ofDesulfovibrio fructosovoransNiFe Hydrogenase Studied by Protein Film Voltammetry. Journal of the American Chemical Society, 2004, 126, 12162-12172.	13.7	157
3	Experimental approaches to kinetics of gas diffusion in hydrogenase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11188-11193.	7.1	150
4	A Glutamate Is the Essential Proton Transfer Gate during the Catalytic Cycle of the [NiFe] Hydrogenase. Journal of Biological Chemistry, 2004, 279, 10508-10513.	3.4	129
5	Introduction of Methionines in the Gas Channel Makes [NiFe] Hydrogenase Aero-Tolerant. Journal of the American Chemical Society, 2009, 131, 10156-10164.	13.7	105
6	Understanding and Tuning the Catalytic Bias of Hydrogenase. Journal of the American Chemical Society, 2012, 134, 8368-8371.	13.7	103
7	Changing the Ligation of the Distal [4Fe4S] Cluster in NiFe Hydrogenase Impairs Inter- and Intramolecular Electron Transfers. Journal of the American Chemical Society, 2006, 128, 5209-5218.	13.7	98
8	Original Design of an Oxygen-Tolerant [NiFe] Hydrogenase: Major Effect of a Valine-to-Cysteine Mutation near the Active Site. Journal of the American Chemical Society, 2011, 133, 986-997.	13.7	91
9	O2-independent formation of the inactive states of NiFe hydrogenase. Nature Chemical Biology, 2013, 9, 15-17.	8.0	73
10	Electrochemical Investigations of Hydrogenases and Other Enzymes That Produce and Use Solar Fuels. Accounts of Chemical Research, 2018, 51, 769-777.	15.6	55
11	CODHâ€№: A Highâ€Efficiency COâ€Scavenging CO Dehydrogenase with Resistance to O ₂ . Angewandte Chemie - International Edition, 2017, 56, 15466-15469.	13.8	54
12	Crystallographic studies of [NiFe]-hydrogenase mutants: towards consensus structures for the elusive unready oxidized states. Journal of Biological Inorganic Chemistry, 2015, 20, 11-22.	2.6	52
13	Rates of Intra- and Intermolecular Electron Transfers in Hydrogenase Deduced from Steady-State Activity Measurements. Journal of the American Chemical Society, 2011, 133, 10211-10221.	13.7	48
14	The mechanism of inhibition by H2 of H2-evolution by hydrogenases. Chemical Communications, 2013, 49, 6840.	4.1	48
15	The Carbon Monoxide Dehydrogenase from Desulfovibrio vulgaris. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 1574-1583.	1.0	48
16	Redox-dependent rearrangements of the NiFeS cluster of carbon monoxide dehydrogenase. ELife, 2018, 7, .	6.0	43
17	O ₂ Inhibition of Ni ontaining CO Dehydrogenase Is Partly Reversible. Chemistry - A European Journal, 2015, 21, 18934-18938.	3.3	38
18	Combining experimental and theoretical methods to learn about the reactivity of gas-processing metalloenzymes. Energy and Environmental Science, 2014, 7, 3543-3573.	30.8	36

#	Article	IF	CITATIONS
19	Maturation of the [Ni–4Fe–4S] active site of carbon monoxide dehydrogenases. Journal of Biological Inorganic Chemistry, 2018, 23, 613-620.	2.6	29
20	Reliable estimation of the kinetic parameters of redox enzymes by taking into account mass transport towards rotating electrodes in protein film voltammetry experiments. Electrochimica Acta, 2017, 245, 1059-1064.	5.2	19
21	The two CO-dehydrogenases of Thermococcus sp. AM4. Biochimica Et Biophysica Acta - Bioenergetics, 2020, 1861, 148188.	1.0	19
22	A Threonine Stabilizes the NiC and NiR Catalytic Intermediates of [NiFe]-hydrogenase. Journal of Biological Chemistry, 2015, 290, 8550-8558.	3.4	18
23	The Solvent-Exposed Fe–S D-Cluster Contributes to Oxygen-Resistance in <i>Desulfovibrio vulgaris</i> Ni–Fe Carbon Monoxide Dehydrogenase. ACS Catalysis, 2020, 10, 7328-7335.	11.2	18
24	Structural insight into metallocofactor maturation in carbon monoxide dehydrogenase. Journal of Biological Chemistry, 2019, 294, 13017-13026.	3.4	15
25	Visualizing the gas channel of a monofunctional carbon monoxide dehydrogenase. Journal of Inorganic Biochemistry, 2022, 230, 111774.	3.5	11
26	Modulation of the RNA polymerase activity by AtcB, a protein associated with a DnaK chaperone network in Shewanella oneidensis. Biochemical and Biophysical Research Communications, 2021, 535, 66-72.	2.1	2