Hannes Link

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5591379/publications.pdf

Version: 2024-02-01

34	2,117 citations	21	33
papers		h-index	g-index
39	39	39	2736
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nature Methods, 2021, 18, 747-756.	19.0	403
2	Systematic identification of allosteric protein-metabolite interactions that control enzyme activity in vivo. Nature Biotechnology, 2013, 31, 357-361.	17.5	225
3	Real-time metabolome profiling of the metabolic switch between starvation and growth. Nature Methods, 2015, 12, 1091-1097.	19.0	209
4	Reserve Flux Capacity in the Pentose Phosphate Pathway Enables Escherichia coli's Rapid Response to Oxidative Stress. Cell Systems, 2018, 6, 569-578.e7.	6.2	162
5	Transcriptional regulation is insufficient to explain substrateâ€induced flux changes in <i>Bacillus subtilis</i> . Molecular Systems Biology, 2013, 9, 709.	7.2	149
6	Advancing metabolic models with kinetic information. Current Opinion in Biotechnology, 2014, 29, 8-14.	6.6	99
7	Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 595-601.	7.1	76
8	Systematic identification of metabolites controlling gene expression in E. coli. Nature Communications, 2019, 10, 4463.	12.8	71
9	Allosteric Feedback Inhibition Enables Robust Amino Acid Biosynthesis in E.Âcoli by Enforcing Enzyme Overabundance. Cell Systems, 2019, 8, 66-75.e8.	6.2	67
10	Breakdown of Vibrio cholerae biofilm architecture induced by antibiotics disrupts community barrier function. Nature Microbiology, 2019, 4, 2136-2145.	13.3	64
11	Multi-omics Analysis of CRISPRi-Knockdowns Identifies Mechanisms that Buffer Decreases of Enzymes in E.Âcoli Metabolism. Cell Systems, 2021, 12, 56-67.e6.	6.2	57
12	Time-Optimized Isotope Ratio LC–MS/MS for High-Throughput Quantification of Primary Metabolites. Analytical Chemistry, 2017, 89, 1624-1631.	6.5	52
13	Adaptation of <i>Bacillus subtilis</i> to Life at Extreme Potassium Limitation. MBio, 2017, 8, .	4.1	49
14	A dynamic pathway analysis approach reveals a limiting futile cycle in N-acetylglucosamine overproducing Bacillus subtilis. Nature Communications, 2016, 7, 11933.	12.8	45
15	Spatial alanine metabolism determines local growth dynamics of Escherichia coli colonies. ELife, 2021, 10, .	6.0	36
16	Metabolism of non-growing bacteria. Biological Chemistry, 2020, 401, 1479-1485.	2.5	33
17	Broadening the Scope of Enforced ATP Wasting as a Tool for Metabolic Engineering in <i>Escherichia coli</i> li>. Biotechnology Journal, 2019, 14, e1800438.	3.5	32
18	Crosstalk between transcription and metabolism: how much enzyme is enough for a cell?. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2018, 10, e1396.	6.6	26

#	Article	IF	CITATIONS
19	Capacity for instantaneous catabolism of preferred and non-preferred carbon sources in Escherichia coli and Bacillus subtilis. Scientific Reports, 2018, 8, 11760.	3.3	26
20	CRISPRi-Based Downregulation of Transcriptional Feedback Improves Growth and Metabolism of Arginine Overproducing <i>E. coli</i> ACS Synthetic Biology, 2019, 8, 1983-1990.	3.8	26
21	Response of Methylocystis sp. Strain SC2 to Salt Stress: Physiology, Global Transcriptome, and Amino Acid Profiles. Applied and Environmental Microbiology, 2017, 83, .	3.1	25
22	Three regulators of <scp>G</scp> protein signaling differentially affect mating, morphology and virulence in the smut fungus <scp><i>U</i></scp> <i>stilago maydis</i> . Molecular Microbiology, 2017, 105, 901-921.	2.5	23
23	Systematic Identification of Protein–Metabolite Interactions in Complex Metabolite Mixtures by Ligand-Detected Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 2016, 55, 2590-2600.	2.5	20
24	Allosteric Activation of Escherichia coli Glucosamine-6-Phosphate Deaminase (NagB) <i>In Vivo</i> Justified by Intracellular Amino Sugar Metabolite Concentrations. Journal of Bacteriology, 2016, 198, 1610-1620.	2.2	18
25	Selective Enrichment of Slow-Growing Bacteria in a Metabolism-Wide CRISPRi Library with a TIMER Protein. ACS Synthetic Biology, 2018, 7, 2775-2782.	3.8	17
26	<scp>C4</scp> â€dicarboxylates and <scp>I</scp> â€aspartate utilization by <scp><i>Escherichia coli</i></scp> Kâ€12 in the mouse intestine: <scp>I</scp> â€aspartate as a major substrate for fumarate respiration and as a nitrogen source. Environmental Microbiology, 2021, 23, 2564-2577.	3.8	17
27	Homeostasis of the biosynthetic E.Âcoli metabolome. IScience, 2022, 25, 104503.	4.1	15
28	Engineered Production of Short-Chain Acyl-Coenzyme A Esters in $\langle i \rangle$ Saccharomyces cerevisiae $\langle i \rangle$. ACS Synthetic Biology, 2018, 7, 1105-1115.	3.8	14
29	High-throughput enrichment of temperature-sensitive argininosuccinate synthetase for two-stage citrulline production in E. coli. Metabolic Engineering, 2020, 60, 14-24.	7.0	14
30	Metabolome and proteome analyses reveal transcriptional misregulation in glycolysis of engineered E. coli. Nature Communications, 2021, 12, 4929.	12.8	12
31	Deciphering the physiological response of <i>Escherichia coli</i> under high ATP demand. Molecular Systems Biology, 2021, 17, e10504.	7.2	10
32	Metabolic Engineering of Corynebacterium glutamicum for Production of UDP-N-Acetylglucosamine. Frontiers in Bioengineering and Biotechnology, 2021, 9, 748510.	4.1	9
33	L-Proline Synthesis Mutants of Bacillus subtilis Overcome Osmotic Sensitivity by Genetically Adapting L-Arginine Metabolism. Frontiers in Microbiology, 0, 13 , .	3.5	9
34	Systematic alteration of inÂvitro metabolic environments reveals empirical growth relationships in cancer cell phenotypes. Cell Reports, 2021, 34, 108647.	6.4	5