Peter Nejsum

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5589618/publications.pdf

Version: 2024-02-01

159525 45285 9,974 94 30 citations h-index papers

g-index 99 99 99 14761 docs citations times ranked citing authors all docs

90

#	Article	IF	CITATIONS
1	Helminths and COVID-19 susceptibility, disease progression, and vaccination efficacy. Trends in Parasitology, 2022, 38, 277-279.	1.5	10
2	Helminth products modulate innate immune recognition of nucleic acids in systemic lupus erythematosus. Lupus, 2022, 31, 415-423.	0.8	1
3	Molecular epidemiology of <i>Ascaris</i> species recovered from humans and pigs in Cameroon. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2022, 116, 949-958.	0.7	O
4	Comparison of separation methods for immunomodulatory extracellular vesicles from helminths. , 2022, 1, .		9
5	Antigens from the parasitic nematode Trichuris suis induce metabolic reprogramming and trained immunity to constrain inflammatory responses in macrophages. Cytokine, 2022, 156, 155919.	1.4	3
6	Parasite worm antigens instruct macrophages to release immunoregulatory extracellular vesicles. Journal of Extracellular Vesicles, 2021, 10, e12131.	5.5	6
7	Emerging interactions between diet, gastrointestinal helminth infection, and the gut microbiota in livestock. BMC Veterinary Research, 2021, 17, 62.	0.7	12
8	Parasite-Probiotic Interactions in the Gut: Bacillus sp. and Enterococcus faecium Regulate Type-2 Inflammatory Responses and Modify the Gut Microbiota of Pigs During Helminth Infection. Frontiers in Immunology, 2021, 12, 793260.	2.2	7
9	The protein and microRNA cargo of extracellular vesicles from parasitic helminths – current status and research priorities. International Journal for Parasitology, 2020, 50, 635-645.	1.3	73
10	Fluorescent Labeling of Helminth Extracellular Vesicles Using an In Vivo Whole Organism Approach. Biomedicines, 2020, 8, 213.	1.4	15
11	Evidence for mitochondrial pseudogenes (numts) as a source of contamination in the phylogeny of human whipworms. Infection, Genetics and Evolution, 2020, 86, 104627.	1.0	1
12	Effects of the dietary fibre inulin and Trichuris suis products on inflammatory responses in lipopolysaccharide-stimulated macrophages. Molecular Immunology, 2020, 121, 127-135.	1.0	7
13	Phylogenetic relationships among Toxocara spp. and Toxascaris sp. from different regions of the world. Veterinary Parasitology, 2020, 282, 109133.	0.7	10
14	Unique glycan and lipid composition of helminth-derived extracellular vesicles may reveal novel roles in host-parasite interactions. International Journal for Parasitology, 2020, 50, 647-654.	1.3	12
15	Dietary Inulin and Trichuris suis Infection Promote Beneficial Bacteria Throughout the Porcine Gut. Frontiers in Microbiology, 2020, 11, 312.	1.5	22
16	AFM-Based High-Throughput Nanomechanical Screening of Single Extracellular Vesicles. Analytical Chemistry, 2020, 92, 10274-10282.	3.2	72
17	Mebendazole treatment persistently alters the size profile and morphology of Trichuris trichiura eggs. Acta Tropica, 2020, 204, 105347.	0.9	7
18	Fermentable Dietary Fiber Promotes Helminth Infection and Exacerbates Host Inflammatory Responses. Journal of Immunology, 2020, 204, 3042-3055.	0.4	21

#	Article	IF	CITATIONS
19	Insights into the molecular systematics of Trichuris infecting captive primates based on mitochondrial DNA analysis. Veterinary Parasitology, 2019, 272, 23-30.	0.7	17
20	Diagnosis and drug resistance of human soil-transmitted helminth infections: A public health perspective. Advances in Parasitology, 2019, 104, 247-326.	1.4	14
21	A new level of complexity in parasite-host interaction: The role of extracellular vesicles. Advances in Parasitology, 2019, 104, 39-112.	1.4	25
22	Exploration of extracellular vesicles from <i>Ascaris suum</i> provides evidence of parasite–host cross talk. Journal of Extracellular Vesicles, 2019, 8, 1578116.	5.5	103
23	Augmented COlorimetric NANoplasmonic (CONAN) Method for Grading Purity and Determine Concentration of EV Microliter Volume Solutions. Frontiers in Bioengineering and Biotechnology, 2019, 7, 452.	2.0	29
24	Balancing knowledge and basic principles in veterinary parasitology – Competencies for future Danish veterinary graduates. Veterinary Parasitology, 2018, 252, 117-119.	0.7	1
25	Ascaris Suum Infection Downregulates Inflammatory Pathways in the Pig Intestine In Vivo and in Human Dendritic Cells In Vitro. Journal of Infectious Diseases, 2018, 217, 310-319.	1.9	32
26	Modulation of human macrophage activity by Ascaris antigens is dependent on macrophage polarization state. Immunobiology, 2018, 223, 405-412.	0.8	22
27	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	5.5	6,961
28	Mucosal Barrier and Th2 Immune Responses Are Enhanced by Dietary Inulin in Pigs Infected With Trichuris suis. Frontiers in Immunology, 2018, 9, 2557.	2.2	39
29	Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles. Frontiers in Immunology, 2018, 9, 2349.	2.2	92
30	Ancient DNA from latrines in Northern Europe and the Middle East (500 BC–1700 AD) reveals past parasites and diet. PLoS ONE, 2018, 13, e0195481.	1.1	63
31	Immune responses and parasitological observations induced during probiotic treatment with medicinal Trichuris suis ova in a healthy volunteer. Immunology Letters, 2017, 188, 32-37.	1.1	22
32	Whipworm kinomes reflect a unique biology and adaptation to the host animal. International Journal for Parasitology, 2017, 47, 857-866.	1.3	10
33	Transcriptional immune response in mesenteric lymph nodes in pigs with different levels of resistance to Ascaris suum. Acta Parasitologica, 2017, 62, 141-153.	0.4	5
34	Ascaris phylogeny based on multiple whole mtDNA genomes. Infection, Genetics and Evolution, 2017, 48, 4-9.	1.0	19
35	Pathway of oxfendazole from the host into the worm: Trichuris suis in pigs. International Journal for Parasitology: Drugs and Drug Resistance, 2017, 7, 416-424.	1.4	10
36	Analysis of Ribosomal DNA Cannot Unequivocally Assign Ascaris to Species Level or Identify Hybrids. Journal of Infectious Diseases, 2017, 216, 616-617.	1.9	4

#	Article	lF	Citations
37	The whipworm (<i>Trichuris suis</i>) secretes prostaglandin E2 to suppress proinflammatory properties in human dendritic cells. FASEB Journal, 2017, 31, 719-731.	0.2	52
38	A polyphenol-enriched diet and Ascaris suum infection modulate mucosal immune responses and gut microbiota composition in pigs. PLoS ONE, 2017, 12, e0186546.	1.1	82
39	Highlights of the São Paulo ISEV workshop on extracellular vesicles in crossâ€kingdom communication. Journal of Extracellular Vesicles, 2017, 6, 1407213.	5.5	38
40	Dermatobia hominis misdiagnosed as abscesses in a traveler returning from Brazil to Denmark. Acta Dermatovenerologica Alpina, Panonica Et Adriatica, 2017, 26, 43-44.	0.1	2
41	The level of embryonation influences detection of Ostertagia ostertagi eggs by semi-quantitative PCR. Parasites and Vectors, 2016, 9, 368.	1.0	9
42	Ascaris from Humans and Pigs Appear to Be Reproductively Isolated Species. PLoS Neglected Tropical Diseases, 2016, 10, e0004855.	1.3	23
43	Profiling circulating miRNAs in serum from pigs infected with the porcine whipworm, Trichuris suis. Veterinary Parasitology, 2016, 223, 30-33.	0.7	26
44	Whipworms in humans and pigs: origins and demography. Parasites and Vectors, 2016, 9, 37.	1.0	21
45	Molecular diversity of avian schistosomes in Danish freshwater snails. Parasitology Research, 2016, 115, 1027-1037.	0.6	21
46	Glucose Absorption by the Bacillary Band of Trichuris muris. PLoS Neglected Tropical Diseases, 2016, 10, e0004971.	1.3	17
47	A Phosphorylcholine-Containing Glycolipid-like Antigen Present on the Surface of Infective Stage Larvae of Ascaris spp. Is a Major Antibody Target in Infected Pigs and Humans. PLoS Neglected Tropical Diseases, 2016, 10, e0005166.	1.3	12
48	Anthelmintic activity of trans-cinnamaldehyde and A- and B-type proanthocyanidins derived from cinnamon (Cinnamomum verum). Scientific Reports, 2015, 5, 14791.	1.6	70
49	Human Trichuriasis: Whipworm Genetics, Phylogeny, Transmission and Future Research Directions. Current Tropical Medicine Reports, 2015, 2, 209-217.	1.6	26
50	Secretion of RNA-Containing Extracellular Vesicles by the Porcine Whipworm, <i>Trichuris suis </i> Journal of Parasitology, 2015, 101, 336-340.	0.3	57
51	Genetic blueprint of the zoonotic pathogen Toxocara canis. Nature Communications, 2015, 6, 6145.	5.8	103
52	DNA Typing of Ancient Parasite Eggs from Environmental Samples Identifies Human and Animal Worm Infections in Viking-Age Settlement. Journal of Parasitology, 2015, 101, 57.	0.3	36
53	Taenia hydatigena cysticercosis in slaughtered pigs, goats, and sheep in Tanzania. Tropical Animal Health and Production, 2015, 47, 1523-1530.	0.5	41
54	Filarial infections in domestic dogs in Lusaka, Zambia. Veterinary Parasitology, 2015, 210, 250-254.	0.7	10

#	Article	IF	CITATIONS
55	The use of genetically marked infection cohorts to study changes in establishment rates during the time course of a repeated Ascaridia galli infection in chickens. International Journal for Parasitology, 2015, 45, 393-398.	1.3	4
56	The jejunal cellular responses in chickens infected with a single dose of Ascaridia galli eggs. Parasitology Research, 2015, 114, 2507-2515.	0.6	17
57	A genetic analysis of Trichuris trichiura and Trichuris suis from Ecuador. Parasites and Vectors, 2015, 8, 168.	1.0	25
58	Serum antibody responses in pigs trickle-infected with Ascaris and Trichuris: Heritabilities and associations with parasitological findings. Veterinary Parasitology, 2015, 211, 306-311.	0.7	13
59	Mitochondrial Genome Analyses Suggest Multiple Trichuris Species in Humans, Baboons, and Pigs from Different Geographical Regions. PLoS Neglected Tropical Diseases, 2015, 9, e0004059.	1.3	45
60	Trichuris suis and Oesophagostomum dentatum Show Different Sensitivity and Accumulation of Fenbendazole, Albendazole and Levamisole In Vitro. PLoS Neglected Tropical Diseases, 2014, 8, e2752.	1.3	14
61	Molecular Epidemiology of Ascariasis: A Global Perspective on the Transmission Dynamics of Ascaris in People and Pigs. Journal of Infectious Diseases, 2014, 210, 932-941.	1.9	109
62	Genome and transcriptome of the porcine whipworm Trichuris suis. Nature Genetics, 2014, 46, 701-706.	9.4	93
63	Uptake of benzimidazoles by Trichuris suis in vivo in pigs. International Journal for Parasitology: Drugs and Drug Resistance, 2014, 4, 112-117.	1.4	17
64	Functional study of a genetic marker allele associated with resistance to <i>Ascaris suum </i> Parasitology, 2014, 141, 777-787.	0.7	9
65	Genetic variations in the beta-tubulin gene and the internal transcribed spacer 2 region of Trichuris species from man and baboons. Parasites and Vectors, 2013, 6, 236.	1.0	26
66	DNA of Dientamoeba fragilis detected within surface-sterilized eggs of Enterobius vermicularis. Experimental Parasitology, 2013, 133, 57-61.	0.5	37
67	Warble infestations by Hypoderma tarandi (Diptera; Oestridae) recorded for the first time in West Greenland muskoxen. International Journal for Parasitology: Parasites and Wildlife, 2013, 2, 214-216.	0.6	3
68	Genetic variation in codons 167, 198 and 200 of the beta-tubulin gene in whipworms (Trichuris spp.) from a range of domestic animals and wildlife. Veterinary Parasitology, 2013, 193, 141-149.	0.7	20
69	From the Twig Tips to the Deeper Branches. , 2013, , 265-285.		8
70	Impact of Ascaris suum in Livestock., 2013,, 363-381.		22
71	Genetic variation in mitochondrial DNA among <i>Enterobius vermicularis</i> in Denmark. Parasitology, 2013, 140, 109-114.	0.7	14
72	Population dynamics of <i>Ascaridia galli</i> following single infection in young chickens. Parasitology, 2013, 140, 1078-1084.	0.7	20

#	Article	IF	CITATIONS
73	Is Supplementary Bead Beating for DNA Extraction from Nematode Eggs by Use of the NucliSENS easyMag Protocol Necessary?. Journal of Clinical Microbiology, 2013, 51, 1345-1347.	1.8	27
74	Mitochondrial and Nuclear Ribosomal DNA Evidence Supports the Existence of a New Trichuris Species in the Endangered François' Leaf-Monkey. PLoS ONE, 2013, 8, e66249.	1.1	40
75	Clear Genetic Distinctiveness between Human- and Pig-Derived Trichuris Based on Analyses of Mitochondrial Datasets. PLoS Neglected Tropical Diseases, 2012, 6, e1539.	1.3	98
76	Ascaridia galli in chickens: intestinal localization and comparison of methods to isolate the larvae within the first week of infection. Parasitology Research, 2012, 111, 2273-2279.	0.6	27
77	Evaluation of a serodiagnostic test using Ascaris suum haemoglobin for the detection of roundworm infections in pig populations. Veterinary Parasitology, 2012, 189, 267-273.	0.7	38
78	Genetic diversity of Ascaris in southwestern Uganda. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2012, 106, 75-83.	0.7	20
79	Detection of a quantitative trait locus associated with resistance to Ascaris suum infection in pigs. International Journal for Parasitology, 2012, 42, 383-391.	1.3	15
80	Localization of Ascaridia galli larvae in the jejunum of chickens 3 days post infection. Veterinary Parasitology, 2012, 185, 186-193.	0.7	29
81	Genetic analysis of Trichuris suis and Trichuris trichiura recovered from humans and pigs in a sympatric setting in Uganda. Veterinary Parasitology, 2012, 188, 68-77.	0.7	69
82	Zoonotic Ascariasis, United Kingdom. Emerging Infectious Diseases, 2011, 17, 1964-1966.	2.0	33
83	The Transcriptome of Trichuris suis – First Molecular Insights into a Parasite with Curative Properties for Key Immune Diseases of Humans. PLoS ONE, 2011, 6, e23590.	1.1	43
84	Ascaris suum draft genome. Nature, 2011, 479, 529-533.	13.7	246
85	Prevalence of gastrointestinal nematodes in growing pigs in Kabale District in Uganda. Tropical Animal Health and Production, 2011, 43, 567-572.	0.5	47
86	Molecular evidence for sustained transmission of zoonotic Ascaris suum among zoo chimpanzees (Pan troglodytes). Veterinary Parasitology, 2010, 171, 273-276.	0.7	30
87	Molecular and parasitological tools for the study of <i>Ascaridia galli </i> population dynamics in chickens. Avian Pathology, 2010, 39, 81-85.	0.8	27
88	Multiplex PCR on single unembryonated Ascaris (roundworm) eggs. Parasitology Research, 2009, 104, 939-943.	0.6	22
89	Albendazole and mebendazole have low efficacy against Trichuris trichiura in school-age children in Kabale District, Uganda. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2009, 103, 443-446.	0.7	41
90	Population Dynamics of Ascaris suum in Trickle-infected Pigs. Journal of Parasitology, 2009, 95, 1048-1053.	0.3	28

#	Article	IF	CITATIONS
91	A novel technique for identification of Ascaris suum cohorts in pigs. Veterinary Parasitology, 2008, 154, 171-174.	0.7	6
92	Molecular evidence for the infection of zoo chimpanzees by pig Ascaris. Veterinary Parasitology, 2006, 139, 203-210.	0.7	20
93	Population structure in Ascaris suum (Nematoda) among domestic swine in Denmark as measured by whole genome DNA fingerprinting. Hereditas, 2006, 142, 7-14.	0.5	32
94	Ascariasis Is a Zoonosis in Denmark. Journal of Clinical Microbiology, 2005, 43, 1142-1148.	1.8	130