Jurandir V Magalhaes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5589515/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance. Annual Review of Plant Biology, 2015, 66, 571-598.	18.7	705
2	A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nature Genetics, 2007, 39, 1156-1161.	21.4	665
3	Aluminumâ€activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant Journal, 2009, 57, 389-399.	5.7	442
4	Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize. Plant Journal, 2010, 61, 728-740.	5.7	266
5	Aluminum tolerance in maize is associated with higher <i>MATE1</i> gene copy number. Proceedings of the United States of America, 2013, 110, 5241-5246.	7.1	265
6	The Physiology and Biophysics of an Aluminum Tolerance Mechanism Based on Root Citrate Exudation in Maize. Plant Physiology, 2002, 129, 1194-1206.	4.8	186
7	Comparative Mapping of a Major Aluminum Tolerance Gene in Sorghum and Other Species in the Poaceae. Genetics, 2004, 167, 1905-1914.	2.9	132
8	Duplicate and Conquer: Multiple Homologs of <i>PHOSPHORUS-STARVATION TOLERANCE1</i> Enhance Phosphorus Acquisition and Sorghum Performance on Low-Phosphorus Soils Â. Plant Physiology, 2014, 166, 659-677.	4.8	117
9	A promoterâ€swap strategy between the <i>AtALMT</i> and <i>AtMATE</i> genes increased Arabidopsis aluminum resistance and improved carbonâ€use efficiency for aluminum resistance. Plant Journal, 2012, 71, 327-337.	5.7	70
10	Physiological basis of reduced Al tolerance in ditelosomic lines of Chinese Spring wheat. Planta, 2001, 212, 829-834.	3.2	68
11	Mechanisms of metal resistance in plants: aluminum and heavy metals. Plant and Soil, 2002, 247, 109-119.	3.7	66
12	Enhancing the aluminium tolerance of barley by expressing the citrate transporter genes SbMATE and FRD3. Journal of Experimental Botany, 2014, 65, 2381-2390.	4.8	58
13	Multiple interval QTL mapping and searching for PSTOL1 homologs associated with root morphology, biomass accumulation and phosphorus content in maize seedlings under low-P. BMC Plant Biology, 2015, 15, 172.	3.6	53
14	The genetic architecture of phosphorus efficiency in sorghum involves pleiotropic QTL for root morphology and grain yield under low phosphorus availability in the soil. BMC Plant Biology, 2019, 19, 87.	3.6	51
15	Two in one sweep: aluminum tolerance and grain yield in P-limited soils are associated to the same genomic region in West African Sorghum. BMC Plant Biology, 2014, 14, 206.	3.6	50
16	How a microbial drug transporter became essential for crop cultivation on acid soils: aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family. Annals of Botany, 2010, 106, 199-203.	2.9	48
17	Repeat variants for the SbMATE transporter protect sorghum roots from aluminum toxicity by transcriptional interplay in <i>cis</i> and <i>trans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 313-318.	7.1	38
18	Association Mapping Provides Insights into the Origin and the Fine Structure of the Sorghum Aluminum Tolerance Locus, AltSB. PLoS ONE, 2014, 9, e87438.	2.5	36

JURANDIR V MAGALHAES

#	Article	IF	CITATIONS
19	Genetic dissection of Al tolerance QTLs in the maize genome by high density SNP scan. BMC Genomics, 2014, 15, 153.	2.8	35
20	Genetic Architecture of Phosphorus Use Efficiency in Tropical Maize Cultivated in a Lowâ€₽ Soil. Crop Science, 2014, 54, 1530-1538.	1.8	33
21	Incomplete transfer of accessory loci influencing <i><scp>S</scp>b<scp>MATE</scp></i> expression underlies genetic background effects for aluminum tolerance in sorghum. Plant Journal, 2013, 73, 276-288.	5.7	31
22	Emerging Pleiotropic Mechanisms Underlying Aluminum Resistance and Phosphorus Acquisition on Acidic Soils. Frontiers in Plant Science, 2018, 9, 1420.	3.6	30
23	Back to Acid Soil Fields: The Citrate Transporter SbMATE Is a Major Asset for Sustainable Grain Yield for Sorghum Cultivated on Acid Soils. G3: Genes, Genomes, Genetics, 2016, 6, 475-484.	1.8	29
24	The Relationship between Population Structure and Aluminum Tolerance in Cultivated Sorghum. PLoS ONE, 2011, 6, e20830.	2.5	29
25	Root Adaptation via Common Genetic Factors Conditioning Tolerance to Multiple Stresses for Crops Cultivated on Acidic Tropical Soils. Frontiers in Plant Science, 2020, 11, 565339.	3.6	19
26	Aluminum tolerance mechanisms in Kenyan maize germplasm are independent from the citrate transporter ZmMATE1. Scientific Reports, 2020, 10, 7320.	3.3	14
27	Exploiting sorghum genetic diversity for enhanced aluminum tolerance: Allele mining based on the AltSB locus. Scientific Reports, 2018, 8, 10094.	3.3	12
28	Mechanisms of metal resistance in plants: aluminum and heavy metals. , 2002, , 109-119.		11
29	Association mapping and genomic selection for sorghum adaptation to tropical soils of Brazil in a sorghum multiparental random mating population. Theoretical and Applied Genetics, 2021, 134, 295-312.	3.6	9
30	Mechanisms of Aluminum Tolerance. , 2011, , 133-153.		8
31	The role of root morphology and architecture in phosphorus acquisition: physiological, genetic, andÂmolecular basis. , 2017, , 123-147.		8
32	Sorghum root epigenetic landscape during limiting phosphorus conditions. Plant Direct, 2022, 6, .	1.9	5
33	ZmMATE1 improves grain yield and yield stability in maize cultivated on acid soil. Crop Science, 2021, 61, 3497-3506.	1.8	3
34	Maize Al Tolerance. , 2009, , 367-380.		2