
## **Paul Fenter**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5589184/publications.pdf Version: 2024-02-01



DALL FENTED

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Understanding the Solid-State Electrode–Electrolyte Interface of a Model System Using<br>First-Principles Statistical Mechanics and Thin-Film X-ray Characterization. ACS Applied Materials<br>& Interfaces, 2022, 14, 7428-7439. | 8.0  | 1         |
| 2  | Structural Changes during the Conversion Reaction of Tungsten Oxide Electrodes with Tailored,<br>Mesoscale Porosity. ACS Nano, 2022, 16, 5384-5392.                                                                               | 14.6 | 6         |
| 3  | Emergent Behavior at the Calcite–Water Interface during Reactive Transport in a Simple Microfluidic<br>Channel. ACS Earth and Space Chemistry, 2022, 6, 861-870.                                                                  | 2.7  | 4         |
| 4  | Density Functional Tight-Binding Simulations Reveal the Presence of Surface Defects on the Quartz (101)–Water Interface. Journal of Physical Chemistry C, 2021, 125, 16246-16255.                                                 | 3.1  | 4         |
| 5  | The Patterson function as auto-hologram and graph enables the direct solution to the phase problem for coherently illuminated atomistic structures. New Journal of Physics, 2021, 23, 073018.                                     | 2.9  | 0         |
| 6  | Ion correlations drive charge overscreening and heterogeneous nucleation at solid–aqueous<br>electrolyte interfaces. Proceedings of the National Academy of Sciences of the United States of<br>America, 2021, 118, .             | 7.1  | 28        |
| 7  | Probing the <i>In Situ</i> Pseudocapacitive Charge Storage in Ti <sub>3</sub> C <sub>2</sub> MXene<br>Thin Films with X-ray Reflectivity. ACS Applied Materials & Interfaces, 2021, 13, 43597-43605.                              | 8.0  | 8         |
| 8  | Pore-Scale Oil Connectivity and Displacement by Controlled-Ionic-Composition Waterflooding Using Synchrotron X-Ray Microtomography. SPE Journal, 2021, 26, 3694-3701.                                                             | 3.1  | 4         |
| 9  | Replacement of Calcium Carbonate Polymorphs by Cerussite. ACS Earth and Space Chemistry, 2021, 5, 2433-2441.                                                                                                                      | 2.7  | 9         |
| 10 | Tailoring Interfaces in Solid-State Batteries Using Interfacial Thermochemistry and Band Alignment.<br>Chemistry of Materials, 2021, 33, 8447-8459.                                                                               | 6.7  | 7         |
| 11 | Pb Sorption at the Barite (001)–Water Interface. Journal of Physical Chemistry C, 2020, 124,<br>22035-22045.                                                                                                                      | 3.1  | 9         |
| 12 | Pore Scale Investigation of Oil Displacement Dynamics by Smart Waterflooding using Synchrotron<br>X-ray Microtomography. , 2020, , .                                                                                              |      | 2         |
| 13 | Molecular-scale origins of wettability at petroleum–brine–carbonate interfaces. Scientific Reports,<br>2020, 10, 20507.                                                                                                           | 3.3  | 5         |
| 14 | Direct recovery of interfacial topography from coherent X-ray reflectivity: model calculations for a<br>1D interface. Acta Crystallographica Section A: Foundations and Advances, 2020, 76, 458-467.                              | 0.1  | 3         |
| 15 | Nonclassical Behavior in Competitive Ion Adsorption at a Charged Solid–Water Interface. Journal of<br>Physical Chemistry Letters, 2020, 11, 4029-4035.                                                                            | 4.6  | 10        |
| 16 | Validating first-principles molecular dynamics calculations of oxide/water interfaces with x-ray reflectivity data. Physical Review Materials, 2020, 4, .                                                                         | 2.4  | 12        |
| 17 | Nonreciprocal interactions induced by water in confinement. Physical Review Research, 2020, 2, .                                                                                                                                  | 3.6  | 29        |
| 18 | Microscale Investigation of Dynamic Wettability Alteration Effect on Oil Displacement by Smart<br>Waterflooding Using Synchrotron-Based Microtomography. , 2020, , .                                                              |      | 3         |

| #  | Article                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Epitaxial Growth of Gibbsite Sheets on the Basal Surface of Muscovite Mica. Journal of Physical<br>Chemistry C, 2019, 123, 27615-27627.                                                                                                                              | 3.1  | 10        |
| 20 | Effect of Anions on the Changes in the Structure and Adsorption Mechanism of Zirconium Species at the Muscovite (001)–Water Interface. Journal of Physical Chemistry C, 2019, 123, 16699-16710.                                                                      | 3.1  | 7         |
| 21 | Understanding the Role of Overpotentials in Lithium Ion Conversion Reactions: Visualizing the Interface. ACS Nano, 2019, 13, 7825-7832.                                                                                                                              | 14.6 | 16        |
| 22 | Mapping Three-dimensional Dissolution Rates of Calcite Microcrystals: Effects of Surface Curvature and Dissolved Metal Ions. ACS Earth and Space Chemistry, 2019, 3, 833-843.                                                                                        | 2.7  | 40        |
| 23 | Structural analysis of the initial lithiation of NiO thin film electrodes. Physical Chemistry Chemical Physics, 2019, 21, 8897-8905.                                                                                                                                 | 2.8  | 13        |
| 24 | Effect of pH on the Formation of Gibbsite-Layer Films at the Muscovite (001)–Water Interface. Journal of Physical Chemistry C, 2019, 123, 6560-6571.                                                                                                                 | 3.1  | 14        |
| 25 | Oxidation induced strain and defects in magnetite crystals. Nature Communications, 2019, 10, 703.                                                                                                                                                                    | 12.8 | 40        |
| 26 | Dissolution Kinetics of Epitaxial Cadmium Carbonate Overgrowths on Dolomite. ACS Earth and Space Chemistry, 2019, 3, 212-220.                                                                                                                                        | 2.7  | 3         |
| 27 | Simultaneous Adsorption and Incorporation of Sr <sup>2+</sup> at the Barite (001)–Water Interface.<br>Journal of Physical Chemistry C, 2019, 123, 1194-1207.                                                                                                         | 3.1  | 21        |
| 28 | Cathodic Corrosion at the Bismuth–Ionic Liquid Electrolyte Interface under Conditions for CO <sub>2</sub> Reduction. Chemistry of Materials, 2018, 30, 2362-2373.                                                                                                    | 6.7  | 38        |
| 29 | Evolution of Strain in Heteroepitaxial Cadmium Carbonate Overgrowths on Dolomite. Crystal<br>Growth and Design, 2018, 18, 2871-2882.                                                                                                                                 | 3.0  | 6         |
| 30 | Mechanistic understanding of tungsten oxide in-plane nanostructure growth <i>via</i> sequential infiltration synthesis. Nanoscale, 2018, 10, 3469-3479.                                                                                                              | 5.6  | 25        |
| 31 | Pulsed Laser Deposition and Characterization of Heteroepitaxial<br>LiMn <sub>2</sub> O <sub>4</sub> /La <sub>0.5</sub> Sr <sub>0.5</sub> CoO <sub>3</sub> Bilayer Thin<br>Films as Model Lithium Ion Battery Cathodes. ACS Applied Nano Materials, 2018, 1, 642-653. | 5.0  | 18        |
| 32 | Templating Growth of a Pseudomorphic Lepidocrocite Microshell at the Calcite–Water Interface.<br>Chemistry of Materials, 2018, 30, 700-707.                                                                                                                          | 6.7  | 4         |
| 33 | Pb <sup>2+</sup> –Calcite Interactions under Far-from-Equilibrium Conditions: Formation of<br>Micropyramids and Pseudomorphic Growth of Cerussite. Journal of Physical Chemistry C, 2018, 122,<br>2238-2247.                                                         | 3.1  | 23        |
| 34 | Arsenic uptake in bacterial calcite. Geochimica Et Cosmochimica Acta, 2018, 222, 642-654.                                                                                                                                                                            | 3.9  | 20        |
| 35 | Effect of nitrogen passivation on interface composition and physical stress in SiO2/SiC(4H) structures. Applied Physics Letters, 2018, 113, .                                                                                                                        | 3.3  | 12        |
| 36 | Insights on the Alumina–Water Interface Structure by Direct Comparison of Density Functional<br>Simulations with X-ray Reflectivity. Journal of Physical Chemistry C, 2018, 122, 26934-26944.                                                                        | 3.1  | 19        |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Strain-Driven Mn-Reorganization in Overlithiated<br>Li <sub><i>x</i></sub> Mn <sub>2</sub> O <sub>4</sub> Epitaxial Thin-Film Electrodes. ACS Applied<br>Energy Materials, 2018, 1, 2526-2535.                                     | 5.1  | 18        |
| 38 | Heteroepitaxial growth of cadmium carbonate at dolomite and calcite surfaces: Mechanisms and rates. Geochimica Et Cosmochimica Acta, 2017, 205, 360-380.                                                                           | 3.9  | 28        |
| 39 | Reversible Li-Ion Conversion Reaction for a Ti <sub><i>x</i></sub> Ge Alloy in a Ti/Ge Multilayer. ACS<br>Applied Materials & Interfaces, 2017, 9, 8169-8176.                                                                      | 8.0  | 14        |
| 40 | Stern Layer Structure and Energetics at Mica–Water Interfaces. Journal of Physical Chemistry C, 2017, 121, 9402-9412.                                                                                                              | 3.1  | 119       |
| 41 | High Voltage LiNi <sub>0.5</sub> Mn <sub>0.3</sub> Co <sub>0.2</sub> O <sub>2</sub> /Graphite Cell<br>Cycled at 4.6 V with a FEC/HFDECâ€Based Electrolyte. Advanced Energy Materials, 2017, 7, 1700109.                            | 19.5 | 98        |
| 42 | Hydration Structure of the Barite (001)–Water Interface: Comparison of X-ray Reflectivity with<br>Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2017, 121, 12236-12248.                                         | 3.1  | 38        |
| 43 | Real-time observation of cation exchange kinetics and dynamics at the muscovite-water interface.<br>Nature Communications, 2017, 8, 15826.                                                                                         | 12.8 | 61        |
| 44 | Investigation of Glutaric Anhydride as an Electrolyte Additive for<br>Graphite/LiNi <sub>0.5</sub> Mn <sub>0.3</sub> Co <sub>0.2</sub> O <sub>2</sub> Full Cells. Journal of<br>the Electrochemical Society, 2017, 164, A173-A179. | 2.9  | 9         |
| 45 | Structural Dynamics and Evolution of Bismuth Electrodes during Electrochemical Reduction of CO <sub>2</sub> in Imidazolium-Based Ionic Liquid Solutions. ACS Catalysis, 2017, 7, 7285-7295.                                        | 11.2 | 41        |
| 46 | Lithiation of multilayer Ni/NiO electrodes: criticality of nickel layer thicknesses on conversion reaction kinetics. Physical Chemistry Chemical Physics, 2017, 19, 20029-20039.                                                   | 2.8  | 17        |
| 47 | Advanced hybrid battery with a magnesium metal anode and a spinel LiMn <sub>2</sub> O <sub>4</sub><br>cathode. Chemical Communications, 2016, 52, 9961-9964.                                                                       | 4.1  | 50        |
| 48 | Polyanthraquinoneâ€Based Organic Cathode for Highâ€Performance Rechargeable Magnesiumâ€ion<br>Batteries. Advanced Energy Materials, 2016, 6, 1600140.                                                                              | 19.5 | 210       |
| 49 | Phase control of Mn-based spinel films via pulsed laser deposition. Journal of Applied Physics, 2016, 120, .                                                                                                                       | 2.5  | 4         |
| 50 | Morphological Evolution of Multilayer Ni/NiO Thin Film Electrodes during Lithiation. ACS Applied<br>Materials & Interfaces, 2016, 8, 19979-19986.                                                                                  | 8.0  | 26        |
| 51 | Surface Charge of the Calcite (104) Terrace Measured by Rb <sup>+</sup> Adsorption in Aqueous<br>Solutions Using Resonant Anomalous X-ray Reflectivity. Journal of Physical Chemistry C, 2016, 120,<br>15216-15223.                | 3.1  | 24        |
| 52 | A Comparison of Adsorption, Reduction, and Polymerization of the Plutonyl(VI) and Uranyl(VI) Ions<br>from Solution onto the Muscovite Basal Plane. Langmuir, 2016, 32, 10473-10482.                                                | 3.5  | 8         |
| 53 | Structural Characterization of Aluminum (Oxy)hydroxide Films at the Muscovite (001)–Water<br>Interface. Langmuir, 2016, 32, 477-486.                                                                                               | 3.5  | 14        |
| 54 | Dimensionally Controlled Lithiation of Chromium Oxide. Chemistry of Materials, 2016, 28, 47-54.                                                                                                                                    | 6.7  | 18        |

| #  | Article                                                                                                                                                                                                        | IF                 | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| 55 | Replacement of Calcite (CaCO <sub>3</sub> ) by Cerussite (PbCO <sub>3</sub> ). Environmental Science<br>& Technology, 2016, 50, 12984-12991.                                                                   | 10.0               | 51            |
| 56 | Understanding Defect‣tabilized Noncovalent Functionalization of Graphene. Advanced Materials<br>Interfaces, 2015, 2, 1500277.                                                                                  | 3.7                | 19            |
| 57 | Phase-Controlled Electrochemical Activity of Epitaxial Mg-Spinel Thin Films. ACS Applied Materials<br>& Interfaces, 2015, 7, 28438-28443.                                                                      | 8.0                | 56            |
| 58 | Rb <sup>+</sup> Adsorption at the Quartz(101)–Aqueous Interface: Comparison of Resonant<br>Anomalous X-ray Reflectivity with ab Initio Calculations. Journal of Physical Chemistry C, 2015, 119,<br>4778-4788. | 3.1                | 34            |
| 59 | Interfacial ionic â€~liquids': connecting static and dynamic structures. Journal of Physics Condensed<br>Matter, 2015, 27, 032101.                                                                             | 1.8                | 67            |
| 60 | Effects of the background electrolyte on Th(IV) sorption to muscovite mica. Geochimica Et<br>Cosmochimica Acta, 2015, 165, 280-293.                                                                            | 3.9                | 11            |
| 61 | Improving Electrodeposition of Mg through an Open Circuit Potential Hold. Journal of Physical Chemistry C, 2015, 119, 23366-23372.                                                                             | 3.1                | 19            |
| 62 | X-ray–driven reaction front dynamics at calcite-water interfaces. Science, 2015, 349, 1330-1334.                                                                                                               | 12.6               | 69            |
| 63 | Full-field X-ray reflection microscopy of epitaxial thin-films. Journal of Synchrotron Radiation, 2014, 21, 1252-1261.                                                                                         | 2.4                | 41            |
| 64 | Hydration layer structure at solid–water interfaces. MRS Bulletin, 2014, 39, 1056-1061.                                                                                                                        | 3.5                | 65            |
| 65 | Lithium Intercalation Behavior in Multilayer Silicon Electrodes. Advanced Energy Materials, 2014, 4,<br>1301494.                                                                                               | 19.5               | 35            |
| 66 | Electrodes: Lithium Intercalation Behavior in Multilayer Silicon Electrodes (Adv. Energy Mater.) Tj ETQq0 0 0 rgB                                                                                              | 「/Qyerloch<br>19:5 | ۶ 10 Tf 50 30 |
| 67 | Structural Origins of Potential Dependent Hysteresis at the Electrified Graphene/Ionic Liquid<br>Interface. Journal of Physical Chemistry C, 2014, 118, 569-574.                                               | 3.1                | 111           |
| 68 | Atomic Layer Deposition of Gallium Sulfide Films Using Hexakis(dimethylamido)digallium and<br>Hydrogen Sulfide. Chemistry of Materials, 2014, 26, 1029-1039.                                                   | 6.7                | 79            |
| 69 | Incorporation of Pb at the Calcite (104)–Water Interface. Environmental Science & Technology,<br>2014, 48, 9263-9269.                                                                                          | 10.0               | 46            |
| 70 | On the variation of dissolution rates at the orthoclase (0 0 1) surface with pH and temperature.<br>Geochimica Et Cosmochimica Acta, 2014, 141, 598-611.                                                       | 3.9                | 16            |
| 71 | Surface-Mediated Formation of Pu(IV) Nanoparticles at the Muscovite-Electrolyte Interface.<br>Environmental Science & Technology, 2013, 47, 14178-14184.                                                       | 10.0               | 27            |
| 72 | Changes in adsorption free energy and speciation during competitive adsorption between monovalent cations at the muscovite (001)-water interface. Geochimica Et Cosmochimica Acta, 2013, 123, 416-426.         | 3.9                | 57            |

| #  | Article                                                                                                                                                                                                                                                                                                                                                                 | IF     | CITATIONS                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------|
| 73 | Optimizing a flow-through X-ray transmission cell for studies of temporal and spatial variations of<br>ion distributions at mineral–water interfaces. Journal of Synchrotron Radiation, 2013, 20, 125-136.                                                                                                                                                              | 2.4    | 17                             |
| 74 | Is the Calcite–Water Interface Understood? Direct Comparisons of Molecular Dynamics Simulations with Specular X-ray Reflectivity Data. Journal of Physical Chemistry C, 2013, 117, 5028-5042.                                                                                                                                                                           | 3.1    | 148                            |
| 75 | Investigation of Structure, Adsorption Free Energy, and Overcharging Behavior of Trivalent Yttrium<br>Adsorbed at the MuscoviteÂ(001)–Water Interface. Journal of Physical Chemistry C, 2013, 117,<br>23738-23749.                                                                                                                                                      | 3.1    | 36                             |
| 76 | APPLICATIONS OF XSW IN INTERFACIAL GEOCHEMISTRY. Series on Synchrotron Radiation Techniques and Applications, 2013, , 369-377.                                                                                                                                                                                                                                          | 0.2    | 0                              |
| 77 | XSW IMAGING. Series on Synchrotron Radiation Techniques and Applications, 2013, , 289-302.                                                                                                                                                                                                                                                                              | 0.2    | 2                              |
| 78 | Surface diffraction on a l̈-circle diffractometer using the l̈‡-axis geometry. Journal of Applied<br>Crystallography, 2013, 46, 639-643.                                                                                                                                                                                                                                | 4.5    | 5                              |
| 79 | Interfacial Bonding and Structure of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" &gt; <mml:msub> <mml:mi> Bi </mml:mi> <mml:mn> 2 </mml:mn> </mml:msub> <mml:msub> <mml:mi<br>Insulator Films on Si(111) Determined by Surface X-Ray Scattering. Physical Review Letters, 2013, 110,<br/>226103.</mml:mi<br></mml:msub></mml:math> | >Te7.8 | :mi> <mml:mi<br>11</mml:mi<br> |
| 80 | Understanding controls on interfacial wetting at epitaxial graphene: Experiment and theory. Physical Review B, 2012, 85, .                                                                                                                                                                                                                                              | 3.2    | 95                             |
| 81 | Adsorption of Plutonium Oxide Nanoparticles. Langmuir, 2012, 28, 2620-2627.                                                                                                                                                                                                                                                                                             | 3.5    | 27                             |
| 82 | Nanoscale Perturbations of Room Temperature Ionic Liquid Structure at Charged and Uncharged<br>Interfaces. ACS Nano, 2012, 6, 9818-9827.                                                                                                                                                                                                                                | 14.6   | 151                            |
| 83 | Monovalent Ion Adsorption at the Muscovite (001)–Solution Interface: Relationships among Ion<br>Coverage and Speciation, Interfacial Water Structure, and Substrate Relaxation. Langmuir, 2012, 28,<br>8637-8650.                                                                                                                                                       | 3.5    | 128                            |
| 84 | Real-Time Observations of Interfacial Lithiation in a Metal Silicide Thin Film. Journal of Physical Chemistry C, 2012, 116, 22341-22345.                                                                                                                                                                                                                                | 3.1    | 29                             |
| 85 | Sorption of tetravalent thorium on muscovite. Geochimica Et Cosmochimica Acta, 2012, 88, 66-76.                                                                                                                                                                                                                                                                         | 3.9    | 28                             |
| 86 | Stuffed structures. Nature Materials, 2012, 11, 183-184.                                                                                                                                                                                                                                                                                                                | 27.5   | 5                              |
| 87 | Comparison of Cation Adsorption by Isostructural Rutile and Cassiterite. Langmuir, 2011, 27, 4585-4593.                                                                                                                                                                                                                                                                 | 3.5    | 29                             |
| 88 | Heavy Metal Sorption at the Muscovite (001)–Fulvic Acid Interface. Environmental Science &<br>Technology, 2011, 45, 9574-9581.                                                                                                                                                                                                                                          | 10.0   | 35                             |
| 89 | Application of X-ray reflection interface microscopy to thin-film materials. Nuclear Instruments and<br>Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated<br>Equipment, 2011, 649, 188-190.                                                                                                                                 | 1.6    | 2                              |
| 90 | Direct and quantitative comparison of pixelated density profiles with high-resolution X-ray reflectivityAdata. Journal of Synchrotron Radiation, 2011, 18, 257-265.                                                                                                                                                                                                     | 2.4    | 18                             |

| #   | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Structural analysis of PTCDA monolayers on epitaxial graphene with ultra-high vacuum scanning tunneling microscopy and high-resolution X-ray reflectivity. Surface Science, 2011, 605, 1685-1693.                                  | 1.9  | 58        |
| 92  | Electronic structure of lithium battery interphase compounds: Comparison between inelastic x-ray scattering measurements and theory. Journal of Chemical Physics, 2011, 135, 224513.                                               | 3.0  | 39        |
| 93  | In situ imaging of orthoclase–aqueous solution interfaces with x-ray reflection interface<br>microscopy. Journal of Applied Physics, 2011, 110, 102211.                                                                            | 2.5  | 8         |
| 94  | Exploitation of the sorptive properties of mica for the preparation of higher-resolution alpha-spectroscopy samples. Radiochimica Acta, 2010, 98, 431-436.                                                                         | 1.2  | 11        |
| 95  | Direct method for imaging elemental distribution profiles with long-period x-ray standing waves.<br>Physical Review B, 2010, 81, .                                                                                                 | 3.2  | 9         |
| 96  | Rb <sup>+</sup> and Sr <sup>2+</sup> Adsorption at the TiO <sub>2</sub> (110)â^'Electrolyte Interface<br>Observed with Resonant Anomalous X-ray Reflectivity. Langmuir, 2010, 26, 950-958.                                         | 3.5  | 19        |
| 97  | Hydrated Cation Speciation at the Muscovite (001)â^ Water Interface. Langmuir, 2010, 26, 16647-16651.                                                                                                                              | 3.5  | 126       |
| 98  | Competitive adsorption of strontium and fulvic acid at the muscovite–solution interface observed with resonant anomalous X-ray reflectivity. Geochimica Et Cosmochimica Acta, 2010, 74, 1762-1776.                                 | 3.9  | 47        |
| 99  | Structure and oxidation state of hematite surfaces reacted with aqueous Fe(II) at acidic and neutral pH. Geochimica Et Cosmochimica Acta, 2010, 74, 1498-1512.                                                                     | 3.9  | 76        |
| 100 | Probing interfacial reactions with X-ray reflectivity and X-ray reflection interface microscopy:<br>Influence of NaCl on the dissolution of orthoclase at pOH 2 and 85°C. Geochimica Et Cosmochimica<br>Acta, 2010, 74, 3396-3411. | 3.9  | 14        |
| 101 | Interaction of muscovite (001) with Pu3+ bearing solutions at pH 3 through ex-situ observations.<br>Geochimica Et Cosmochimica Acta, 2010, 74, 6984-6995.                                                                          | 3.9  | 15        |
| 102 | Enhanced Uptake and Modified Distribution of Mercury(II) by Fulvic Acid on the Muscovite (001)<br>Surface. Environmental Science & Technology, 2009, 43, 5295-5300.                                                                | 10.0 | 43        |
| 103 | Water ordering and surface relaxations at the hematite (110)–water interface. Geochimica Et<br>Cosmochimica Acta, 2009, 73, 2242-2251.                                                                                             | 3.9  | 58        |
| 104 | Image contrast in X-ray reflection interface microscopy: comparison of data with model calculations and simulations. Journal of Synchrotron Radiation, 2008, 15, 558-571.                                                          | 2.4  | 23        |
| 105 | Fulvic Acid Sorption on Muscovite Mica as a Function of pH and Time Using In Situ X-ray Reflectivity.<br>Langmuir, 2008, 24, 7817-7829.                                                                                            | 3.5  | 19        |
| 106 | Adsorption of Rb+ and Sr2+ at the orthoclase (001)–solution interface. Geochimica Et Cosmochimica<br>Acta, 2008, 72, 1848-1863.                                                                                                    | 3.9  | 20        |
| 107 | Simultaneous inner- and outer-sphere arsenate adsorption on corundum and hematite. Geochimica Et<br>Cosmochimica Acta, 2008, 72, 1986-2004.                                                                                        | 3.9  | 220       |
| 108 | Bridging arsenate surface complexes on the hematite (012) surface. Geochimica Et Cosmochimica Acta,<br>2007, 71, 1883-1897.                                                                                                        | 3.9  | 103       |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Distribution of barium and fulvic acid at the mica–solution interface using in-situ X-ray reflectivity.<br>Geochimica Et Cosmochimica Acta, 2007, 71, 5763-5781.                                                                               | 3.9  | 53        |
| 110 | Interfacial water structure on the (012) surface of hematite: Ordering and reactivity in comparison with corundum. Geochimica Et Cosmochimica Acta, 2007, 71, 5313-5324.                                                                       | 3.9  | 79        |
| 111 | Quantitative Lateral Force Microscopy Study of the Dolomite (104)â^Water Interface. Langmuir, 2007, 23, 8909-8915.                                                                                                                             | 3.5  | 9         |
| 112 | Electric Double Layer at Metal Oxide Surfaces:Â Static Properties of the Cassiteriteâ^'Water Interface.<br>Langmuir, 2007, 23, 4925-4937.                                                                                                      | 3.5  | 63        |
| 113 | Structure of rutile TiO2 (110) in water and 1molal Rb+ at pH 12: Inter-relationship among surface charge, interfacial hydration structure, and substrate structural displacements. Surface Science, 2007, 601, 1129-1143.                      | 1.9  | 78        |
| 114 | Resonant anomalous X-ray reflectivity as a probe of ion adsorption at solid–liquid interfaces. Thin<br>Solid Films, 2007, 515, 5654-5659.                                                                                                      | 1.8  | 30        |
| 115 | Termination and Water Adsorption at the α-Al2O3(012)â^'Aqueous Solution Interface. Langmuir, 2006, 22, 4668-4673.                                                                                                                              | 3.5  | 99        |
| 116 | Cation sorption on the muscovite (001) surface in chloride solutions using high-resolution X-ray reflectivity. Geochimica Et Cosmochimica Acta, 2006, 70, 3549-3565.                                                                           | 3.9  | 182       |
| 117 | Structure of hydrated Zn2+ at the rutile TiO2 (110)-aqueous solution interface: Comparison of X-ray standing wave, X-ray absorption spectroscopy, and density functional theory results. Geochimica Et Cosmochimica Acta, 2006, 70, 4039-4056. | 3.9  | 52        |
| 118 | On the use of CCD area detectors for high-resolution specular X-ray reflectivity. Journal of Synchrotron Radiation, 2006, 13, 293-303.                                                                                                         | 2.4  | 47        |
| 119 | Observation of subnanometre-high surface topography with X-ray reflection phase-contrast microscopy. Nature Physics, 2006, 2, 700-704.                                                                                                         | 16.7 | 60        |
| 120 | Inner-sphere adsorption geometry of Se(IV) at the hematite (100)–water interface. Journal of Colloid and Interface Science, 2006, 297, 665-671.                                                                                                | 9.4  | 74        |
| 121 | Structure of the fluorapatite (100)-water interface by high-resolution X-ray reflectivity. American<br>Mineralogist, 2004, 89, 1647-1654.                                                                                                      | 1.9  | 45        |
| 122 | Termination interference along crystal truncation rods of layered crystals. Journal of Applied<br>Crystallography, 2004, 37, 977-987.                                                                                                          | 4.5  | 19        |
| 123 | Three-dimensional structure of the calcite–water interface by surface X-ray scattering. Surface Science, 2004, 573, 191-203.                                                                                                                   | 1.9  | 175       |
| 124 | Mineral–water interfacial structures revealed by synchrotron X-ray scattering. Progress in Surface<br>Science, 2004, 77, 171-258.                                                                                                              | 8.3  | 334       |
| 125 | Interaction of Uranyl with Calcite in the Presence of EDTA. Environmental Science & Technology, 2004, 38, 5078-5086.                                                                                                                           | 10.0 | 37        |
| 126 | Orthoclase dissolution kinetics probed by in situ X-ray reflectivity: effects of temperature, pH, and crystal orientation. Geochimica Et Cosmochimica Acta, 2003, 67, 197-211.                                                                 | 3.9  | 52        |

Paul Fenter

| #   | Article                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Structures of quartz (100)- and (101)-water interfaces determined by x-ray reflectivity and atomic force microscopy of natural growth surfaces. Geochimica Et Cosmochimica Acta, 2002, 66, 3037-3054. | 3.9  | 115       |
| 128 | Resolving orthoclase dissolution processes with atomic force microscopy and X-ray reflectivity.<br>Geochimica Et Cosmochimica Acta, 2001, 65, 3459-3474.                                              | 3.9  | 108       |
| 129 | Quantification of minor phases in growth kinetics experiments with powder X-ray diffraction.<br>American Mineralogist, 2000, 85, 1217-1222.                                                           | 1.9  | 11        |
| 130 | Surface speciation of calcite observed in situ by high-resolution X-ray reflectivity. Geochimica Et<br>Cosmochimica Acta, 2000, 64, 1221-1228.                                                        | 3.9  | 244       |
| 131 | Structure and growth of stearate monolayers on calcite: first results of an in situ X-ray reflectivity study. Geochimica Et Cosmochimica Acta, 1999, 63, 3145-3152.                                   | 3.9  | 55        |
| 132 | X-ray standing wave study of arsenite incorporation at the calcite surface. Geochimica Et<br>Cosmochimica Acta, 1999, 63, 3153-3157.                                                                  | 3.9  | 65        |
| 133 | Alkyl Monolayers on Silicon Prepared from 1-Alkenes and Hydrogen-Terminated Silicon. Journal of the American Chemical Society, 1995, 117, 3145-3155.                                                  | 13.7 | 1,093     |
| 134 | An unexpected packing of fluorinated nâ€alkane thiols on Au(111): A combined atomic force microscopy<br>and xâ€ray diffraction study. Journal of Chemical Physics, 1994, 101, 4301-4306.              | 3.0  | 166       |
| 135 | Medium-energy ion scattering studies of the structure of some reconstructed metal surfaces.<br>Nuclear Instruments & Methods in Physics Research B, 1990, 45, 398-402.                                | 1.4  | 1         |
| 136 | Structure of the Cs-induced (1×3) reconstruction of Au(110). Physical Review B, 1989, 39, 5810-5818.                                                                                                  | 3.2  | 80        |