Colin P Snape

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5588648/publications.pdf

Version: 2024-02-01

360 papers

14,772 citations

61 h-index 98 g-index

364 all docs 364 docs citations

times ranked

364

13133 citing authors

#	Article	IF	CITATIONS
1	Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature, 2009, 457, 718-721.	27.8	611
2	Silica-templated melamine–formaldehyde resin derived adsorbents for CO2 capture. Carbon, 2008, 46, 1464-1474.	10.3	307
3	Impact of Water Coadsorption for Carbon Dioxide Capture in Microporous Polymer Sorbents. Journal of the American Chemical Society, 2012, 134, 10741-10744.	13.7	259
4	Materials challenges for the development of solid sorbents for post-combustion carbon capture. Journal of Materials Chemistry, 2012, 22, 2815-2823.	6.7	255
5	CO2 capture using some fly ash-derived carbon materials. Fuel, 2005, 84, 2204-2210.	6.4	239
6	Thermal stability of polyethylenimine based carbon dioxide adsorbents and its influence on selection of regeneration strategies. Microporous and Mesoporous Materials, 2008, 116, 504-512.	4.4	236
7	Preparation of carbon dioxide adsorbents from the chemical activation of urea–formaldehyde and melamine–formaldehyde resins. Fuel, 2007, 86, 22-31.	6.4	233
8	Swellable, Water- and Acid-Tolerant Polymer Sponges for Chemoselective Carbon Dioxide Capture. Journal of the American Chemical Society, 2014, 136, 9028-9035.	13.7	201
9	Evidence for Inclusion Complexes of Lipids with V-amylose in Maize, Rice and Oat Starches. Journal of Cereal Science, 1993, 18, 107-109.	3.7	193
10	Release of covalently-bound alkane biomarkers in high yields from kerogen via catalytic hydropyrolysis. Organic Geochemistry, 1995, 23, 981-986.	1.8	169
11	Physico-chemical properties of potato starches. Food Chemistry, 2011, 125, 958-965.	8.2	167
12	Evaluation of Activated Carbon Adsorbents for CO ₂ Capture in Gasification. Energy &	5.1	166
13	Structural analysis of supercritical-gas extracts of coals. Fuel, 1979, 58, 413-422.	6.4	164
14	Quantitative reliability of aromaticity and related measurements on coals by 13C n.m.r. A debate. Fuel, 1989, 68, 547-548.	6.4	162
15	Structural characterization of kerogen in 3.4Ga Archaean cherts from the Pilbara Craton, Western Australia. Precambrian Research, 2007, 155, 1-23.	2.7	148
16	Recyling of plastic wastes via pyrolysis. Resources, Conservation and Recycling, 2000, 29, 273-283.	10.8	142
17	Capturing CO2 from ambient air using a polyethyleneimine–silica adsorbent in fluidized beds. Chemical Engineering Science, 2014, 116, 306-316.	3.8	136
18	Parametric study on the regeneration heat requirement of an amine-based solid adsorbent process for post-combustion carbon capture. Applied Energy, 2016, 168, 394-405.	10.1	136

#	Article	IF	CITATIONS
19	A comprehensive comparison of dye-sensitized NiO photocathodes for solar energy conversion. Physical Chemistry Chemical Physics, 2016, 18, 10727-10738.	2.8	135
20	Thermal and kinetic analysis of diverse biomass fuels under different reaction environment: A way forward to renewable energy sources. Energy Conversion and Management, 2020, 203, 112266.	9.2	131
21	Survey of carbon-13 chemical shifts in aromatic hydrocarbons and its application to coal-derived materials. Analytical Chemistry, 1979, 51, 2189-2198.	6.5	127
22	Molecular structure of coals: A debate. Fuel, 1989, 68, 1091-1106.	6.4	127
23	Oxy-fuel combustion study of biomass fuels in a 20 kWth fluidized bed combustor. Fuel, 2018, 215, 778-786.	6.4	124
24	Pyrolysis of virgin and waste polypropylene and its mixtures with waste polyethylene and polystyrene. Waste Management, 2004, 24, 173-181.	7.4	120
25	Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous waste streams. Fuel, 2002, 81, 691-698.	6.4	118
26	Influence of Process Variables on Oils from Tire Pyrolysis and Hydropyrolysis in a Swept Fixed Bed Reactor. Energy & Ene	5.1	110
27	Composition and properties of starches extracted from tubers of different potato varieties grown under the same environmental conditions. Food Chemistry, 2003, 82, 283-289.	8.2	107
28	Analysis of conjugated steroid androgens: Deconjugation, derivatisation and associated issues. Journal of Pharmaceutical and Biomedical Analysis, 2009, 49, 1133-1140.	2.8	105
29	Hydropyrolysis of insoluble carbonaceous matter in the Murchison meteorite: new insights into its macromolecular structure 1 1Associate editor: G. D. Cody. Geochimica Et Cosmochimica Acta, 2004, 68, 1385-1393.	3.9	104
30	Charcoal reflectance measurements: implications for structural characterization and assessment of diagenetic alteration. Journal of Archaeological Science, 2010, 37, 1590-1599.	2.4	97
31	Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis. Geochimica Et Cosmochimica Acta, 2003, 67, 1521-1530.	3.9	95
32	Advances on transition metal oxides catalysts for formaldehyde oxidation: A review. Catalysis Reviews - Science and Engineering, 2017, 59, 189-233.	12.9	93
33	Microwave Pyrolysis of Wood Pellets. Industrial & Engineering Chemistry Research, 2010, 49, 459-463.	3.7	90
34	Coking and deactivation of a mesoporous Ni–CaO–ZrO2 catalyst in dry reforming of methane: A study under different feeding compositions. Fuel, 2015, 143, 527-535.	6.4	90
35	Experimental study of mercury removal from exhaust gases. Fuel, 2014, 128, 451-457.	6.4	88
36	Solid-State 13C MAS NMR Studies of Hyper-Cross-Linked Polystyrene Resins. Macromolecules, 1996, 29, 6284-6293.	4.8	87

3

#	Article	IF	CITATIONS
37	Molecular mass calibration in size-exclusion chromatography of coal derivatives. Fuel, 1984, 63, 1556-1560.	6.4	86
38	Influence of production variables and starting material on charcoal stable isotopic and molecular characteristics. Geochimica Et Cosmochimica Acta, 2008, 72, 6090-6102.	3.9	83
39	Î13C values of coal-derived PAHs from different processes and their application to source apportionment. Organic Geochemistry, 1999, 30, 881-889.	1.8	82
40	Activation of carbon nanofibres for hydrogen storage. Carbon, 2006, 44, 1376-1385.	10.3	79
41	Hydropyrolysis as a new tool for radiocarbon pre-treatment and the quantification of black carbon. Quaternary Geochronology, 2009, 4, 140-147.	1.4	79
42	Performance of polyethyleneimine–silica adsorbent for post-combustion CO2 capture in a bubbling fluidized bed. Chemical Engineering Journal, 2014, 251, 293-303.	12.7	79
43	Developing hierarchically ultra-micro/mesoporous biocarbons for highly selective carbon dioxide adsorption. Chemical Engineering Journal, 2019, 361, 199-208.	12.7	79
44	Degradation of Lignin in Wheat Straw during Growth of the Oyster Mushroom (Pleurotus ostreatus) Using Off-line Thermochemolysis with Tetramethylammonium Hydroxide and Solid-State13C NMR. Journal of Agricultural and Food Chemistry, 2001, 49, 2709-2716.	5.2	78
45	Comparison of covalently-bound aliphatic biomarkers released via hydropyrolysis with their solvent-extractable counterparts for a suite of Kimmeridge clays. Organic Geochemistry, 1998, 29, 1487-1505.	1.8	77
46	Preparation and CO2 adsorption of diamine modified montmorillonite via exfoliation grafting route. Chemical Engineering Journal, 2013, 215-216, 699-708.	12.7	74
47	Single-pulse excitation carbon-13 NMR measurements on the Argonne premium coal samples. Energy & Energ	5.1	73
48	The scope for generating bio-oils with relatively low oxygen contents via hydropyrolysis. Organic Geochemistry, 1999, 30, 1527-1534.	1.8	72
49	Temporal and spatial variation in major ion chemistry and source identification of secondary inorganic aerosols in Northern Zhejiang Province, China. Chemosphere, 2017, 179, 316-330.	8.2	71
50	Compositional differences in biomarker constituents of the hydrocarbon, resin, asphaltene and kerogen fractions: An example from the Jet Rock (Yorkshire, UK). Organic Geochemistry, 2006, 37, 369-383.	1.8	70
51	The Properties of Individual Carbon Residuals and Their Influence on The Deactivation of Ni–CaO–ZrO ₂ Catalysts in CH ₄ Dry Reforming. ChemCatChem, 2014, 6, 640-648.	3.7	69
52	Quantitative Solid State13C NMR Studies of Highly Cross-Linked Poly(divinylbenzene) Resins. Macromolecules, 1997, 30, 2868-2875.	4.8	68
53	Fixed-bed pyrolysis and hydropyrolysis of sunflower bagasse: Product yields and compositions. Fuel Processing Technology, 1996, 46, 49-62.	7.2	67
54	The flammability of urethane-modified polyisocyanurates and its relationship to thermal degradation chemistry. Polymer, 2001, 42, 913-923.	3.8	67

#	Article	lF	Citations
55	CO ₂ Capture with Activated Carbon Grafted by Nitrogenous Functional Groups. Energy & Lamp; Fuels, 2013, 27, 4818-4823.	5.1	67
56	Effect of Process Variables in Catalytic Hydropyrolysis on the Release of Covalently Bound Aliphatic Hydrocarbons from Sedimentary Organic Matter. Energy & Energy & 1997, 11, 522-531.	5.1	66
57	Scale-up and design of a continuous microwave treatment system for the processing of oil-contaminated drill cuttings. Chemical Engineering Research and Design, 2010, 88, 146-154.	5.6	66
58	Nitrogen-enriched and hierarchically porous carbon macro-spheres – ideal for large-scale CO ₂ capture. Journal of Materials Chemistry A, 2014, 2, 5481-5489.	10.3	66
59	Assessment of hydropyrolysis as a method for the quantification of black carbon using standard reference materials. Geochimica Et Cosmochimica Acta, 2012, 97, 131-147.	3.9	65
60	Spherical potassium intercalated activated carbon beads for pulverised fuel CO2 post-combustion capture. Carbon, 2015, 94, 243-255.	10.3	65
61	Quantitative 13C NMR study of structural variations within the vitrinite and inertinite maceral groups for a semifusinite-rich bituminous coal. Fuel, 1998, 77, 805-813.	6.4	64
62	High liquid yields from bituminous coal via hydropyrolysis with dispersed catalysts. Energy &	5.1	63
63	monitoring Biomacromolecular degradation of Calluna Vulgaris in a 23year field experiment using solid state 13C-NMR and pyrolysis-GC/MS. Soil Biology and Biochemistry, 1998, 30, 1517-1528.	8.8	63
64	Impact of biomass char on coal char burn-out under air and oxy-fuel conditions. Fuel, 2013, 114, 128-134.	6.4	62
65	Quantitative aspects of solid state 13C n.m.r. of coals and related materials. Fuel, 1983, 62, 999-1002.	6.4	61
66	Use of Compound-Specific Stable Isotope Analysis to Source Anthropogenic Natural Gas-Derived Polycyclic Aromatic Hydrocarbons in a Lagoon Sediment. Environmental Science & En	10.0	61
67	Bark decay by the white-rot fungus Lentinula edodes: Polysaccharide loss, lignin resistance and the unmasking of suberin. International Biodeterioration and Biodegradation, 2006, 57, 14-23.	3.9	61
68	Kinetic and thermodynamic evaluation of effective combined promoters for CO2 hydrate formation. Journal of Natural Gas Science and Engineering, 2020, 78, 103313.	4.4	61
69	Evidence for the rapid incorporation of hopanoids into kerogen. Geochimica Et Cosmochimica Acta, 2003, 67, 1383-1394.	3.9	60
70	Paraffinic hydrocarbons from supercritical-gas extracts of coal as organic geochemical markers. Nature, 1979, 277, 284-287.	27.8	59
71	Determination of phenolic structures in flax fibre by solid-state 13C NMR. Phytochemistry, 1994, 35, 489-491.	2.9	59
72	Release of kerogen-bound hopanoids by hydropyrolysis. Organic Geochemistry, 1998, 29, 989-1001.	1.8	59

#	Article	IF	CITATIONS
73	Influence of carrier gas flow and heating rates in fixed bed hydropyrolysis of coal. Fuel, 1987, 66, 1413-1417.	6.4	58
74	Shale gas reserve evaluation by laboratory pyrolysis and gas holding capacity consistent with field data. Nature Communications, 2019, 10, 3659.	12.8	58
75	Comparison of leaf and stem cell-wall components in barley straw by solid-state 13C NMR. Phytochemistry, 1998, 49, 1191-1194.	2.9	56
76	Hydropyrolysis: Implications for Radiocarbon Pretreatment and Characterization of Black Carbon. Radiocarbon, 2010, 52, 1336-1350.	1.8	56
77	Cryogenian evolution of stigmasteroid biosynthesis. Science Advances, 2017, 3, e1700887.	10.3	56
78	Stable carbon isotopic characterisation of free and bound lipid constituents of archaeological ceramic vessels released by solvent extraction, alkaline hydrolysis and catalytic hydropyrolysis. Journal of Analytical and Applied Pyrolysis, 2004, 71, 613-634.	5.5	55
79	Impact of CO2 on biomass pyrolysis, nitrogen partitioning, and char combustion in a drop tube furnace. Journal of Analytical and Applied Pyrolysis, 2015, 113, 323-331.	5.5	55
80	Effect of Potassium on the Mechanisms of Biomass Pyrolysis Studied using Complementary Analytical Techniques. ChemSusChem, 2016, 9, 863-872.	6.8	55
81	Biodegradation of Oak (Quercus alba) Wood during Growth of the Shiitake Mushroom (Lentinula) Tj ETQq1 1 0.	784314 rg	gBT_/Overlock
82	Development of Mesophase from a Low-Temperature Coal Tar Pitch. Energy & Development of Mesophase from a Low-Temperature Coal Tar Pitch. Energy & Development of Mesophase from a Low-Temperature Coal Tar Pitch. Energy & Development of Mesophase from a Low-Temperature Coal Tar Pitch. Energy & Development of Mesophase from a Low-Temperature Coal Tar Pitch. Energy & Development of Mesophase from a Low-Temperature Coal Tar Pitch. Energy & Development of Mesophase from a Low-Temperature Coal Tar Pitch. Energy & Development of Mesophase from a Low-Temperature Coal Tar Pitch. Energy & Development of Mesophase from a Low-Temperature Coal Tar Pitch. Energy & Development of Mesophase from a Low-Temperature Coal Tar Pitch.	5.1	54
83	Molecular Basis of the Gelatinisation and Swelling Characteristics of Waxy Rice Starches Grown in the Same Location During the Same Season. Journal of Cereal Science, 2003, 37, 363-376.	3.7	53
84	An accurate volumetric differential pressure method for the determination of hydrogen storage capacity at high pressures in carbon materials. Carbon, 2006, 44, 918-927.	10.3	53
85	Development of adsorbent technologies for post-combustion CO2 capture. Energy Procedia, 2009, 1, 881-884.	1.8	53
86	In Situ Analysis of Biomass Pyrolysis by High Temperature Rheology in Relations with ¹ H NMR. Energy & Fuels, 2012, 26, 6432-6441.	5.1	53
87	Estimation of the concentration of donatable hydrogen in a coal solvent by n.m.r Fuel, 1982, 61, 707-712.	6.4	52
88	Application of quantitative 13C nuclear magnetic resonance spectroscopy to coal-derived materials. Fuel, 1978, 57, 658-662.	6.4	50
89	Determination of nonprotonated aromatic carbon concentrations in coals by single pulse excitation carbon-13 NMR. Energy & Energy	5.1	50
90	The potential of bound biomarker profiles released via catalytic hydropyrolysis to reconstruct basin charging history for oils. Organic Geochemistry, 2004, 35, 1441-1459.	1.8	50

#	Article	IF	Citations
91	A catalytic hydropyrolysis method for the rapid screening of microbial cultures for lipid biomarkers. Organic Geochemistry, 2005, 36, 63-82.	1.8	50
92	The effect of water pressure on hydrocarbon generation reactions: some inferences from laboratory experiments. Petroleum Geoscience, 2009, 15, 17-26.	1.5	50
93	The efficiency of charcoal decontamination for radiocarbon dating by three pre-treatments – ABOX, ABA and hypy. Quaternary Geochronology, 2014, 22, 25-32.	1.4	50
94	Source apportionment of polycyclic aromatic hydrocarbons in a coastal lagoon by molecular and isotopic characterisation. Marine Chemistry, 2003, 84, 123-135.	2.3	49
95	Trapping hydropyrolysates on silica and their subsequent thermal desorption to facilitate rapid fingerprinting by GC–MS. Organic Geochemistry, 2004, 35, 73-89.	1.8	49
96	Fate of aliphatic groups in low-rank coals during extraction and pyrolysis processes. Fuel, 1985, 64, 1394-1400.	6.4	48
97	Potential of gas chromatography isotope ratio mass spectrometry to source polycyclic aromatic hydrocarbon emissions. Analytical Communications, 1996, 33, 331.	2.2	48
98	Study of biological stabilization processes of cattle and poultry manure by thermogravimetric analysis and 13C NMR. Chemosphere, 2007, 68, 1889-1897.	8.2	48
99	Mechanical degradation of biomass wood pellets during long term stockpile storage. Fuel Processing Technology, 2017, 160, 143-151.	7.2	48
100	Synthesis, characterization and evaluation of activated spherical carbon materials for CO2 capture. Fuel, 2013, 113, 854-862.	6.4	47
101	CO2 removal potential of carbons prepared by co-pyrolysis of sugar and nitrogen containing compounds. Journal of Analytical and Applied Pyrolysis, 2005, 74, 298-306.	5.5	46
102	Fate of Soil Organic Carbon and Polycyclic Aromatic Hydrocarbons in a Vineyard Soil Treated with Biochar. Environmental Science & Environmental Scienc	10.0	46
103	The Effect of Biomass on Fluidity Development in Coking Blends Using High-Temperature SAOS Rheometry. Energy & Samp; Fuels, 2012, 26, 1767-1775.	5.1	45
104	Estimation of aliphatic H/C ratios for coal liquefaction products by spin-echo 13C n.m.r Fuel, 1983, 62, 621-624.	6.4	44
105	Definition of fossil fuel-derived asphaltenes in terms of average structural properties. Fuel, 1984, 63, 883-887.	6.4	44
106	Differences in the mode of incorporation and biogenicity of the principal aliphatic constituents of a Type I oil shale. Organic Geochemistry, 1998, 28, 797-811.	1.8	44
107	Thermal desorption and pyrolysis of oil contaminated drill cuttings by microwave heating. Journal of Analytical and Applied Pyrolysis, 2008, 81, 27-32.	5.5	44
108	The occurrence of unusual hopenes in hydropyrolysates generated from severely biodegraded oil seep asphaltenes. Organic Geochemistry, 2008, 39, 1243-1248.	1.8	44

#	Article	IF	CITATIONS
109	Developing activated carbon adsorbents for pre-combustion CO2 capture. Energy Procedia, 2009, 1, 599-605.	1.8	44
110	Changes in mechanical properties of wood pellets during artificial degradation in a laboratory environment. Fuel Processing Technology, 2016, 148, 395-402.	7.2	44
111	Identification of straight-chain fatty acids in coal extracts and their geochemical relation with straight-chain alkanes. Fuel, 1981, 60, 903-908.	6.4	43
112	Changes in Molecular Biomarker and Bulk Carbon Skeletal Parameters of Vitrinite Concentrates as a Function of Rank. Energy & Energy & 1996, 10, 149-157.	5.1	43
113	Quantitative solid-state 13C n.m.r. measurements on cokes, chars and coal tar pitch fractions. Fuel, 1996, 75, 1721-1726.	6.4	43
114	Release of bound aliphatic biomarkers via hydropyrolysis from Type II kerogen at high maturity. Organic Geochemistry, 2008, 39, 1119-1124.	1.8	43
115	Comparison of Rice Husk and Wheat Straw: From Slow and Fast Pyrolysis to Char Combustion. Energy & Lamp; Fuels, 2013, 27, 7115-7125.	5.1	43
116	Aerosol composition and sources during high and low pollution periods in Ningbo, China. Atmospheric Research, 2016, 178-179, 559-569.	4.1	43
117	The copyrolysis of poly(vinylchloride) with cellulose derived materials as a model for municipal waste derived chars. Fuel, 1995, 74, 28-31.	6.4	42
118	Comparison of the Combustion Reactivity of TGA and Drop Tube Furnace Chars from a Bituminous Coal. Energy & Ene	5.1	42
119	Molecular Simulation Study on Methane Adsorption Capacity and Mechanism in Clay Minerals: Effect of Clay Type, Pressure, and Water Saturation in Shales. Energy & Energy & 2019, 33, 765-778.	5.1	42
120	Determination of organic sulfur forms in some coals and kerogens by high pressure temperature-programmed reduction. Fuel, 1994, 73, 1159-1166.	6.4	41
121	In-Situ1H NMR Investigation of Particle Size, Mild Oxidation, and Heating Regime Effects on Plasticity Development during Coal Carbonizationâ€. Energy & Development during Coal Carbonizationâ€. Energy & Development during Coal Carbonizationâ€.	5.1	41
122	Molecular basis of the gelatinisation and swelling characteristics of waxy barley starches grown in the same location during the same season. Part II. Crystallinity and gelatinisation characteristics. Journal of Cereal Science, 2004, 39, 57-66.	3.7	41
123	Geochemistry and petrology of palaeocene coals from Spitzbergen $\hat{a}\in$ " Part 2: Maturity variations and implications for local and regional burial models. International Journal of Coal Geology, 2015, 143, 1-10.	5.0	41
124	Surface-modified spherical activated carbon materials for pre-combustion carbon dioxide capture. RSC Advances, 2015, 5, 33681-33690.	3.6	41
125	Use of compound-specificl 13C and D stable isotope measurements as an aid in the source apportionment of polyaromatic hydrocarbons. Rapid Communications in Mass Spectrometry, 2003, 17, 2611-2613.	1.5	40
126	Decay of cultivated apricot wood (Prunus armeniaca) by the ascomycete Hypocrea sulphurea, using solid state 13C NMR and off-line TMAH thermochemolysis with GC–MS. International Biodeterioration and Biodegradation, 2005, 55, 175-185.	3.9	40

#	Article	IF	Citations
127	Kerogen-bound glycerol dialkyl tetraether lipids released by hydropyrolysis of marine sediments: A bias against incorporation of sedimentary organisms?. Organic Geochemistry, 2008, 39, 1359-1371.	1.8	40
128	Influence of oxidation upon the CO2 capture performance of a phenolic-resin-derived carbon. Fuel Processing Technology, 2013, 110, 53-60.	7.2	40
129	The impact of hydrothermal carbonisation on the char reactivity of biomass. Fuel Processing Technology, 2018, 177, 152-158.	7.2	40
130	Estimation of oxygen group concentrations in coal extracts by nuclear magnetic resonance spectrometry. Analytical Chemistry, 1982, 54, 20-25.	6.5	39
131	Investigation of organic sulphur forms in coals by high pressure temperature-programmed reduction. Fuel, 1993, 72, 367-371.	6.4	39
132	High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel, 2013, 109, 559-562.	6.4	39
133	Assignment of aliphatic carbon peaks in the 13C n.m.r. spectra of coal liquefaction products. Fuel, 1982, 61, 775-777.	6.4	38
134	Silica-Immobilized Sulfur Compounds as Solid Calibrants for Temperature-Programmed Reduction and Probes for the Thermal Behavior of Organic Sulfur Forms in Fossil Fuels. Energy & Samp; Fuels, 1995, 9, 707-716.	5.1	38
135	Structural characterisation of catalytic coke by solid-state 13C-NMR spectroscopy. Catalysis Today, 1997, 37, 285-293.	4.4	37
136	Development of Low-Cost Functional Adsorbents for Control of Mercury (Hg) Emissions from Coal Combustion. Energy & Emissions from Coal Combustion.	5.1	37
137	A new sustainable route in supercritical CO2 to functionalize silica SBA-15 with 3-aminopropyltrimethoxysilane as material for carbon capture. Chemical Engineering Journal, 2015, 264, 886-898.	12.7	37
138	Evaluating the effect of biochar addition on the anaerobic digestion of swine manure: application of Py-GC/MS. Environmental Science and Pollution Research, 2018, 25, 25600-25611.	5.3	37
139	Relationship between carbon aromaticities and HC ratios for bituminous coals. Fuel, 1994, 73, 1926-1928.	6.4	36
140	High pressure water pyrolysis of coal to evaluate the role of pressure on hydrocarbon generation and source rock maturation at high maturities under geological conditions. Organic Geochemistry, 2015, 78, 44-51.	1.8	36
141	Potassium and Zeolitic Structure Modified Ultra-microporous Adsorbent Materials from a Renewable Feedstock with Favorable Surface Chemistry for CO ₂ Capture. ACS Applied Materials & Interfaces, 2017, 9, 26826-26839.	8.0	36
142	Characterization of Partially Carbonized Coals by Solid-State13C NMR and Optical Microscopy. Energy & Lamp; Fuels, 1998, 12, 833-842.	5.1	35
143	TGA and Drop Tube Furnace Investigation of Alkali and Alkaline Earth Metal Compounds as Coal Combustion Additives. Energy & Energ	5.1	35
144	The chemical nature of asphaltenes from some coal liquefaction processes. Fuel Processing Technology, 1984, 8, 155-168.	7.2	34

#	Article	IF	Citations
145	Variations in the stable isotope ratios of specific aromatic and aliphatic hydrocarbons from coal conversion processes. Analyst, The, 1998, 123, 1519-1523.	3.5	34
146	The structure and reactivity of density separated coal fractions. Fuel, 1999, 78, 1639-1644.	6.4	34
147	Treatment of Oil-Contaminated Drill Cuttings by Microwave Heating in a High-Power Single-Mode Cavity. Industrial & Digneering Chemistry Research, 2005, 44, 6837-6844.	3.7	34
148	Ni Mg Mixed Metal Oxides for p-Type Dye-Sensitized Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 24556-24565.	8.0	34
149	Process simulations of post-combustion CO 2 capture for coal and natural gas-fired power plants using a polyethyleneimine/silica adsorbent. International Journal of Greenhouse Gas Control, 2017, 58, 276-289.	4.6	34
150	Resolving coal and petroleum-derived polycyclic aromatic hydrocarbons (PAHs) in some contaminated land samples using compound-specific stable carbon isotope ratio measurements in conjunction with molecular fingerprintsa~†. Fuel, 2003, 82, 2017-2023.	6.4	33
151	Conjugated steroids: analytical approaches and applications. Analytical and Bioanalytical Chemistry, 2009, 393, 453-458.	3.7	33
152	Impact of high water pressure on oil generation and maturation in Kimmeridge Clay and Monterey source rocks: Implications for petroleum retention and gas generation in shale gas systems. Marine and Petroleum Geology, 2016, 73, 72-85.	3.3	33
153	Relationship between the thermal degradation chemistry and flammability of commercial flexible polyurethane foams. Journal of Applied Polymer Science, 2006, 100, 3024-3033.	2.6	32
154	A laboratory pyrolysis study to investigate the effect of water pressure on hydrocarbon generation and maturation of coals in geological basins. Organic Geochemistry, 2012, 52, 103-113.	1.8	32
155	Molecular characterization of the thermally labile fraction of biochar by hydropyrolysis and pyrolysis-GC/MS. Journal of Analytical and Applied Pyrolysis, 2016, 121, 230-239.	5.5	32
156	Increased charcoal yield and production of lighter oils from the slow pyrolysis of biomass. Journal of Analytical and Applied Pyrolysis, 2017, 124, 536-541.	5.5	32
157	A novel approach to CO2 capture in Fluid Catalytic Cracking—Chemical Looping Combustion. Fuel, 2019, 244, 140-150.	6.4	32
158	The nature and origin of harbolite and a related asphaltite from southeastern Turkey. Chemical Geology, 1981, 34, 151-164.	3.3	31
159	Physical characteristics of cold cured anthracite/coke breeze briquettes prepared from a coal tar acid resin. Fuel, 1999, 78, 1691-1695.	6.4	31
160	Co-processing of single plastic waste streams in low temperature carbonisation. Fuel, 1999, 78, 1697-1702.	6.4	31
161	Sulfur speciation in mercury-contaminated sediments of a coastal lagoon: the role of elemental sulfur. Journal of Environmental Monitoring, 2001, 3, 483-486.	2.1	31
162	Application of silylation to the characterization of benzene-insoluble coal extract fractions. Fuel, 1979, 58, 898-900.	6.4	30

#	Article	IF	Citations
163	Understanding the mechanisms behind coking pressure: Relationship to pore structure. Fuel, 2007, 86, 2167-2178.	6.4	30
164	The Origin of Molecular Mobility During Biomass Pyrolysis as Revealed by Inâ€situ ¹ Hâ€NMR Spectroscopy. ChemSusChem, 2012, 5, 1258-1265.	6.8	30
165	High Density and Super Ultraâ€Microporousâ€Activated Carbon Macrospheres with High Volumetric Capacity for CO ₂ Capture. Advanced Sustainable Systems, 2018, 2, 1700115.	5.3	30
166	Beneficial effects of hydrogen pressure in the pyrolysis of biomass: a study of Euphorbia Rigida. Fuel Processing Technology, 1993, 36, 299-305.	7.2	29
167	An investigation into the effect of fast heating on fluidity development and coke quality for blends of coal and biomass. Biomass and Bioenergy, 2013, 56, 295-306.	5.7	29
168	Pyrolysis of coals as a function of rank as studied by in situ electron spin resonance spectroscopy. Carbon, 1989, 27, 197-208.	10.3	28
169	Hydropyrolysis: A new technique for the analysis of macromolecular material in meteorites. Planetary and Space Science, 2005, 53, 1280-1286.	1.7	27
170	Carbon Dioxide Separation from Nitrogen/Hydrogen Mixtures over Activated Carbon Beads: Adsorption Isotherms and Breakthrough Studies. Energy & Ener	5.1	27
171	Mass spectrometric characterization of polynuclear aromatic nitrogen compounds in coal tar pitches separated by extrography. Fuel, 1993, 72, 19-23.	6.4	26
172	Characterisation of coke from FCC refinery catalysts by quantitative solid state 13C NMR. Applied Catalysis A: General, 1995, 129, 125-132.	4.3	26
173	Solid State 13C MAS NMR Studies of Anion Exchange Resins and Their Precursors. Industrial & Samp; Engineering Chemistry Research, 1995, 34, 2740-2749.	3.7	26
174	Effects of storage temperatures and annealing conditions on the structure and properties of potato (Solanum tuberosum) starch. International Journal of Biological Macromolecules, 2005, 36, 1-8.	7. 5	26
175	The use of model compounds to investigate the release of covalently bound biomarkers via hydropyrolysis. Organic Geochemistry, 2006, 37, 1705-1714.	1.8	26
176	Determination of the Effects Caused by Different Polymers on Coal Fluidity during Carbonization Using High-Temperature ¹ H NMR and Rheometry. Energy & Fuels, 2008, 22, 471-479.	5.1	26
177	Developing strategies for the regeneration of polyethylenimine based CO2 adsorbents. Energy Procedia, 2009, 1, 875-880.	1.8	26
178	The potential of hydropyrolysis as a route for coal liquefaction. International Journal of Energy Research, 1994, 18, 233-242.	4.5	25
179	Quantification by in situ 1 H n.m.r. of the contributions from pyridine-extractables and metaplast to the generation of coal plasticity. Fuel, 1997, 76, 1301-1308.	6.4	25
180	In situ 1H NMR study of the fluidity enhancement for a bituminous coal by coal tar pitch and a hydrogen-donor liquefaction residue. Fuel, 1998, 77, 921-926.	6.4	25

#	Article	IF	Citations
181	Sourcing of Fossil Fuel-Derived PAH in the Environment. Polycyclic Aromatic Compounds, 2000, 20, 97-109.	2.6	25
182	Use of Rheometry and 1H NMR Spectroscopy for Understanding the Mechanisms behind the Generation of Coking Pressure. Energy & Ener	5.1	25
183	Application of catalytic hydropyrolysis for the rapid preparation of lignin concentrates from wood. Organic Geochemistry, 2004, 35, 61-72.	1.8	25
184	Influence of climate and hydrology on carbon in an early Miocene peatland. Earth and Planetary Science Letters, 2007, 253, 445-454.	4.4	25
185	Study of the effect of ceria on the activity and selectivity of Co and Ce co-doped birnessite manganese oxide for formaldehyde oxidation. Journal of Hazardous Materials, 2022, 424, 127583.	12.4	25
186	Pyrolytic desulfurization of some high-sulfur coals. Energy & Fuels, 1991, 5, 582-586.	5.1	24
187	Solid state13C andin situ1H NMR study on the effect of melamine on the thermal degradation of a flexible polyurethane foam. Polymer International, 2000, 49, 1177-1182.	3.1	24
188	Solid state 13C NMR study of the char forming processes in polychloroprene. Polymer Degradation and Stability, 2001, 74, 397-405.	5.8	24
189	Simple off-line flash pyrolysis procedure with in situ silylation for the analysis of hydroxybenzenes in humic acids and coals. Journal of Chromatography A, 2002, 967, 235-242.	3.7	24
190	Comparison of the generation of oil by the extraction and the hydropyrolysis of biomass. Fuel, 2006, 85, 382-392.	6.4	24
191	Geochemical characterisation of heavily biodegraded tar sand bitumens by catalytic hydropyrolysis. Journal of Analytical and Applied Pyrolysis, 2009, 86, 135-140.	5.5	24
192	Variation of coal extract structure with molecular mass. Fuel, 1983, 62, 724-731.	6.4	23
193	Effect of low temperature catalytic hydrogenation on pyrolysis and hydropyrolysis of a bituminous coal. Fuel, 1988, 67, 901-905.	6.4	23
194	Degradation of mangrove tissues by arboreal termites (<i>Nasutitermes acajutlae</i>) and their role in the mangrove C cycle (Puerto Rico): Chemical characterization and organic matter provenance using bulk I' ¹³ C, C/N, alkaline CuO oxidationâ€GC/MS, and solidâ€state ¹³ C NMR. Geochemistry, Geophysics, Geosystems, 2013, 14, 3176-3191.	2.5	23
195	Prediction of bubble fluidisation during chemical looping combustion using CFD simulation. Computers and Chemical Engineering, 2017, 99, 82-95.	3.8	22
196	Direct primary brown coal liquefaction via non-catalytic and catalytic co-processing with model, waste and petroleum-derived hydrogen donors. Fuel, 2018, 234, 364-370.	6.4	22
197	Selective low temperature chemical looping combustion of higher alkanes with Cu- and Mn- oxides. Energy, 2019, 173, 658-666.	8.8	22
198	Effect of heating rate on normal and catalytic fixed-bed hydropyrolysis of coals. Fuel, 1996, 75, 1393-1396.	6.4	21

#	Article	IF	CITATIONS
199	The Role of Semifusinite in Plasticity Development for a Coking Coal. Energy & Energy & 1998, 12, 1040-1046.	5.1	21
200	Determination of the Effect of Different Additives in Coking Blends Using a Combination of in Situ High-Temperature1H NMR and Rheometry. Energy & Energy & 2005, 19, 2423-2431.	5.1	21
201	A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment. SAE International Journal of Fuels and Lubricants, 0, 2, 38-44.	0.2	21
202	Evaluation of hydrochars from lignin hydrous pyrolysis to produce biocokes after carbonization. Journal of Analytical and Applied Pyrolysis, 2017, 124, 742-751.	5.5	21
203	Opposite Effects of Co and Cu Dopants on the Catalytic Activities of Birnessite MnO ₂ Catalyst for Low-Temperature Formaldehyde Oxidation. Journal of Physical Chemistry C, 2020, 124, 26320-26331.	3.1	21
204	It's the product not the polymer: Rethinking plastic pollution. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1490.	6.5	21
205	Evaluation of NMR spectroscopy for the quantitative characterization of urea—formaldehyde resins. Talanta, 1982, 29, 489-494.	5 . 5	20
206	Solid-state13C NMR study of palm trunk cell walls. Journal of the Science of Food and Agriculture, 1994, 64, 487-491.	3.5	20
207	The nature of the synergistic effect of binary tetralin-alcohol solvents in Kansk-Achinsk brown coal liquefaction. Fuel Processing Technology, 1997, 50, 139-152.	7.2	20
208	Comparison of microscale sealed vessel pyrolysis (MSSVpy) and hydropyrolysis (Hypy) for the characterisation of extant and sedimentary organic matter. Journal of Analytical and Applied Pyrolysis, 2010, 87, 108-116.	5.5	20
209	Preparation and CO2 adsorption of amine modified layered double hydroxide via anionic surfactant-mediated route. Chemical Engineering Journal, 2012, 181-182, 267-275.	12.7	20
210	Impact of solvent type and condition on biomass liquefaction to produce heavy oils in high yield with low oxygen contents. Journal of Analytical and Applied Pyrolysis, 2015, 113, 340-348.	5.5	20
211	Correlating ultrasonic impulse and addition of ZnO promoter with CO2 conversion and methanol selectivity of CuO/ZrO2 catalysts. Ultrasonics Sonochemistry, 2018, 42, 48-56.	8.2	20
212	Low-temperature formaldehyde oxidation over manganese oxide catalysts: Potassium mediated lattice oxygen mobility. Molecular Catalysis, 2020, 497, 111204.	2.0	20
213	Synthesis of functionalized 3D microporous carbon foams for selective CO2 capture. Chemical Engineering Journal, 2020, 402, 125459.	12.7	20
214	Progress in the CO2 Capture Technologies for Fluid Catalytic Cracking (FCC) Units—A Review. Frontiers in Energy Research, 2020, 8, .	2.3	20
215	Comparative study of the inherent combustion reactivity of sawdust chars produced by TGA and in the drop tube furnace. Fuel Processing Technology, 2020, 201, 106361.	7.2	20
216	Chemical composition of SCG extracts obtained from coal and maceral concentrates. Fuel Processing Technology, 1996, 46, 99-115.	7.2	19

#	Article	IF	CITATIONS
217	Spectroscopic Studies of Internal Injector Deposits (IDID) Resulting from the Use of Non-Commercial Low Molecular Weight Polyisobutylenesuccinimide (PIBSI). SAE International Journal of Fuels and Lubricants, 0, 7, 762-770.	0.2	19
218	Geochemistry and petrology of Palaeocene coals from Spitsbergen â€" Part 1: Oil potential and depositional environment. International Journal of Coal Geology, 2015, 143, 22-33.	5.0	19
219	Retardation of oil cracking to gas and pressure induced combination reactions to account for viscous oil in deep petroleum basins: Evidence from oil and n-hexadecane pyrolysis at water pressures up to 900 bar. Organic Geochemistry, 2016, 97, 61-73.	1.8	19
220	Continuous testing of silica-PEI adsorbents in a labscale twin bubbling fluidized-bed system. International Journal of Greenhouse Gas Control, 2019, 82, 184-191.	4.6	19
221	Low dimensional nanostructures of fast ion conducting lithium nitride. Nature Communications, 2020, 11, 4492.	12.8	19
222	Demonstrating the applicability of chemical looping combustion for the regeneration of fluid catalytic cracking catalysts. Chemical Engineering Journal, 2020, 389, 124492.	12.7	19
223	Development of an Experimental Protocol to Evaluate FCC Stripper Performance in Terms of Coke Yield and Composition. Chemical Engineering Research and Design, 2000, 78, 738-744.	5.6	18
224	Hydropyrolysis as a preparative method for the compound-specific carbon isotope analysis of fatty acids. Rapid Communications in Mass Spectrometry, 2005, 19, 323-325.	1.5	18
225	Maximising carbon nanofiber and hydrogen production in the catalytic decomposition of ethylene over an unsupported Ni-Cu alloy. Applied Catalysis A: General, 2008, 339, 196-208.	4.3	18
226	A Novel Technique for Investigating the Characteristics and History of Deposits Formed Within High Pressure Fuel Injection Equipment. SAE International Journal of Fuels and Lubricants, 0, 5, 1155-1164.	0.2	18
227	Heavy Metal Removal from Aqueous Solutions Using Fly-Ash Derived Zeolite NaP1. International Journal of Environmental Research, 2022, 16, 1.	2.3	18
228	Effect of preheating in carbonization on the nature of resultant coal tars and pitches. Energy & Energy & Fuels, 1993, 7, 953-959.	5.1	17
229	Evaluating the Combustion Reactivity of Drop Tube Furnace and Thermogravimetric Analysis Coal Chars with a Selection of Metal Additives. Energy & Energy & 2011, 25, 981-989.	5.1	17
230	A hydrous pyrolysis study to ascertain how gas yields and the extent of maturation for a partially matured source rock and bitumen in isolation compared to their whole source rock. Journal of Analytical and Applied Pyrolysis, 2013, 103, 268-277.	5.5	17
231	Importance of Biomass and Binder Selection for Coking Briquette Preparation. Their Effect on Coal Thermoplastic Properties. Energy & Energy & 2018, 32, 10727-10736.	5.1	17
232	Evaluation of demineralized lignin and lignin-phenolic resin blends to produce biocoke suitable for blast furnace operation. Fuel, 2019, 258, 116125.	6.4	17
233	Design and development of 3D hierarchical ultra-microporous CO2-sieving carbon architectures for potential flow-through CO2 capture at typical practical flue gas temperatures. Journal of Materials Chemistry A, 2020, 8, 17025-17035.	10.3	17
234	Application of methylation to the separation of coal extracts. Fuel, 1981, 60, 365-366.	6.4	16

#	Article	IF	CITATIONS
235	Differential-pulse voltammetry at the hanging-mercury-drop electrode for identification of aromatic structures in coal extracts. Analytical Chemistry, 1982, 54, 1730-1733.	6.5	16
236	Comparison of alkanes released from a bituminous coal via hydropyrolysis and low temperature hydrogenation. Fuel, 1991, 70, 249-253.	6.4	16
237	Silica-immobilized compounds as models for probing coal pyrolysis and hydropyrolysis phenomena. Energy & Energy	5.1	16
238	The significance of 24-norcholestanes, 4-methylsteranes and dinosteranes in oils and source-rocks from East Sirte Basin (Libya). Applied Geochemistry, 2011, 26, 1694-1705.	3.0	16
239	Utilization of Carbonaceous Materials To Restore the Coking Properties of Weathered Coals. Energy & Lamp; Fuels, 2015, 29, 5744-5749.	5.1	16
240	Pore structural evolution of shale following thermochemical treatment. Marine and Petroleum Geology, 2020, 112, 104058.	3.3	16
241	Separation of aromatic species in coal-derived oils by alumina adsorption chromatography. Journal of Chromatography A, 1984, 283, 173-181.	3.7	15
242	Assessment of the effects of hydrogen pressure on biomass pyrolysis: A study of Euphorbia Rigida, sunflower oil industrial waste and pure cellulose. Renewable Energy, 1994, 5, 816-818.	8.9	15
243	Structural Uniformity of Toluene-Insolubles from Heat-Treated Coal Tar Pitch As Determined by Solid State 13C NMR Spectroscopy. Energy & E	5.1	15
244	A Study of the Polymerization and Condensation Reactions during the Heat Treatment of Pitches under Gas-Blowing Conditions. Energy & Energy & 14, 380-392.	5.1	15
245	The possible role of fissure formation in the prevention of coking pressure generation. Fuel, 2006, 85, 19-24.	6.4	15
246	Reduced Graphene Oxide-NiO Photocathodes for p-Type Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2019, 2, 7345-7353.	5.1	15
247	Coal and waste direct liquefaction, using glycerol, polyethylene waste and waste tyres pyrolysis oil. Optimisation of liquids yield by response surface methodology. Journal of Cleaner Production, 2020, 255, 120192.	9.3	15
248	Recent Advances in the Analysis of GDI and Diesel Fuel Injector Deposits. Fuel, 2020, 272, 117682.	6.4	15
249	Renewable binders from waste biomass for road construction: A review on thermochemical conversion technologies and current developments. Construction and Building Materials, 2022, 330, 127076.	7.2	15
250	Estimation of quaternary and tertiary aromatic carbon in coal liquefaction products by spin-echo 13C n.m.r Fuel, 1982, 61, 1164-1167.	6.4	14
251	Further information on defining asphaltenes in terms of average structural properties. Fuel, 1985, 64, 427-429.	6.4	14
252	Two-dimensional n.m.r. analysis of aromatic fractions from a coal liquefaction solvent. Fuel, 1986, 65, 877-880.	6.4	14

#	Article	IF	Citations
253	Characterisation of organic coal structure for liquefaction. Fuel Processing Technology, 1987, 15, 257-279.	7.2	14
254	Effect of catalyst precursors on coal reactivity in catalytic hydropyrolysis. Fuel, 1991, 70, 393-395.	6.4	14
255	Speciation of the Organic Sulfur Forms in a Recent Sediment and Type I and II-S Kerogens by High-Pressure Temperature-Programmed Reduction. Energy & Energy 1997, 11, 532-538.	5.1	14
256	Close Correspondence between Carbon Skeletal Parameters of Kerogens and Their Hydropyrolysis Oils. Energy & Samp; Fuels, 1997, 11, 539-545.	5.1	14
257	Information on the Aromatic Structure of Internal Diesel Injector Deposits From Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS). , 2014, , .		14
258	High conversions of miscanthus using sub- and supercritical water above 400°C. Journal of Analytical and Applied Pyrolysis, 2015, 113, 646-654.	5.5	14
259	Comparison of the impact of moisture on methane adsorption and nanoporosity for over mature shales and their kerogens. International Journal of Coal Geology, 2021, 237, 103705.	5.0	14
260	Should IQOS Emissions Be Considered as Smoke and Harmful to Health? A Review of the Chemical Evidence. ACS Omega, 2022, 7, 22111-22124.	3.5	14
261	ORGANIC GEOCHEMISTRY OF THE GÃ-YNÜK AND SEYITOMER OIL SHALES OF TURKEY. Journal of Petroleum Geology, 1991, 14, 459-464.	1.5	13
262	Similarities and differences of coal reactivity in liquefaction and pyrolysis. Fuel, 1991, 70, 285-288.	6.4	13
263	Cell wall composition of vascular and parenchyma tissues in broccoli stems. Journal of the Science of Food and Agriculture, 2003, 83, 1289-1292.	3.5	13
264	Direct evidence from hydropyrolysis for the retention of long alkyl moieties in black carbon fractions isolated by acidified dichromate oxidation. Journal of Analytical and Applied Pyrolysis, 2013, 103, 232-239.	5.5	13
265	Hydrocracking of hydropyrolysis tar with hydrous titanium oxide catalysts. Fuel, 1989, 68, 161-167.	6.4	12
266	Hydropyrolysis of steroids: a preparative step for compound-specific carbon isotope ratio analysis. Rapid Communications in Mass Spectrometry, 2005, 19, 3339-3342.	1.5	12
267	Use of high-temperature, high-torque rheometry to study the viscoelastic properties of coal during carbonization. Journal of Rheology, 2007, 51, 895-913.	2.6	12
268	Impact of low-cost filler material on coke quality. Fuel, 2007, 86, 2179-2185.	6.4	12
269	Templated polymeric materials as adsorbents for the postcombustion capture of CO2. Energy Procedia, 2009, 1, 869-874.	1.8	12
270	Influence of thermoplastic properties on coking pressure generation: Part IV – Further evidence of the role of bubble coalescence in the mechanism for pressure generation. Fuel, 2014, 129, 102-110.	6.4	12

#	Article	IF	CITATIONS
271	Radiocarbon dating of charcoal from the Bianjiashan site in Hangzhou: New evidence for the lower age limit of the Liangzhu Culture. Quaternary Geochronology, 2015, 30, 9-17.	1.4	12
272	Reactivity of cycloalkanes during the solvent extraction of coal. Fuel, 1984, 63, 1476-1478.	6.4	11
273	Supercritical toluene extraction of maceral concentrates obtained from Turkish coals. Fuel Processing Technology, 1993, 36, 25-32.	7.2	11
274	Application of coals as sorbents for the removal of Cr from aqueous waste streams. Environmental Geochemistry and Health, 2001, 23, 287-290.	3.4	11
275	Eastern Mediterranean sapropels: chemical structure, deposition and relation to oil-shales. Fuel, 2002, 81, 431-448.	6.4	11
276	Lignification in relation to the biennial growth habit in brassicas. Phytochemistry, 2003, 63, 765-769.	2.9	11
277	Stable carbon isotope analysis of wood hydropyrolysis residues: A potential indicator for the extent of cross-linking between lignin and polysaccharides. Organic Geochemistry, 2006, 37, 64-71.	1.8	11
278	Experimental Evaluation of a Chinese Sulfur-Containing Lean Iron Ore as the Oxygen Carrier for Chemical-Looping Combustion. Industrial & Engineering Chemistry Research, 2016, 55, 428-435.	3.7	11
279	Effect of process variables on producing biocoals by hydrothermal carbonisation of pine Kraft lignin at low temperatures. Fuel, 2022, 325, 124784.	6.4	11
280	Evaluation of the aromatic structure of coal tar pitch by solid and solution state n.m.r Fuel, 1989, 68, 1605-1608.	6.4	10
281	Influence of organic coal structure on liquefaction behaviour: An update with emphasis on low severity conditions. Fuel Processing Technology, 1990, 24, 119-125.	7.2	10
282	A Fundamental Study of The Deactivation of Fcc Catalysts: A Comparison of Quinoline and Phenanthrene as Catalysts Poisons. Studies in Surface Science and Catalysis, 1994, 88, 377-384.	1.5	10
283	Low-Cost Potassium-Containing Char Briquettes for NOx Reduction. Energy & E	5.1	10
284	Identification of a Polycyclic Aromatic Hydrocarbon Indicator for the Onset of Coke Formation during Visbreaking of a Vacuum Residue. Energy & Samp; Fuels, 2009, 23, 2157-2163.	5.1	10
285	Pyrolysis oil upgrading in high conversions using sub- and supercritical water above 400 \hat{A}° C. Journal of Analytical and Applied Pyrolysis, 2016, 119, 180-188.	5.5	10
286	Thermal Cracking of Oil under Water Pressure up to 900 bar at High Thermal Maturities. 1. Gas Compositions and Carbon Isotopes. Energy & Energy & 2016, 30, 2617-2627.	5.1	10
287	An Improved Form of Shrinking Core Model for Prediction of the Conversion during Reduction Process in Chemical Looping Combustion. Energy & Samp; Fuels, 2017, 31, 1993-2006.	5.1	10
288	Improving spatial predictability of petroleum resources within the Central Tertiary Basin, Spitsbergen: A geochemical and petrographic study of coals from the eastern and western coalfields. International Journal of Coal Geology, 2017, 179, 278-294.	5.0	10

#	Article	IF	Citations
289	Thermal Cracking of Oil under Water Pressure up to 900 Bar at High Thermal Maturities: 2. Insight from Light Hydrocarbon Generation and Carbon Isotope Fractionation. Energy & Energy & 19546-9558.	5.1	10
290	Secondary coking and cracking of shale oil vapours from pyrolysis or hydropyrolysis of a Kentucky Cleveland oil shale in a two-stage reactor. Fuel, 1994, 73, 1455-1458.	6.4	9
291	Black Sea sapropels: relationship to kerogens and fossil fuel precursors. Fuel, 2000, 79, 1725-1742.	6.4	9
292	A study of mesophase formation from a low temperature coal tar pitch using formaldehyde as a promoter for polymerisation. Carbon, 2004, 42, 2762-2765.	10.3	9
293	Evidence for network formation during the carbonization of coal from the combination of rheometry and 1H NMR techniques. Fuel, 2006, 85, 1821-1830.	6.4	9
294	Dynamics of Charcoal Alteration in a Tropical Biome: A Biochar-Based Study. Frontiers in Earth Science, 2018, 6, .	1.8	9
295	Spatially Resolved Molecular Compositions of Insoluble Multilayer Deposits Responsible for Increased Pollution from Internal Combustion Engines. ACS Applied Materials & Deposits Responsible for 12, 51026-51035.	8.0	9
296	Sulfur- and nitrogen-containing phenol-formaldehyde co-resites for probing the thermal behaviour of heteroatomic forms in solid fuels. Polymer, 1996, 37, 4041-4048.	3.8	8
297	Dynamic modelling of fluidisation in gas-solid bubbling fluidised beds. Powder Technology, 2017, 322, 461-470.	4.2	8
298	The Application of New Approaches to the Analysis of Deposits from the Jet Fuel Thermal Oxidation Tester (JFTOT). SAE International Journal of Fuels and Lubricants, 0, 10, .	0.2	8
299	Converting brown coal to synthetic liquid fuels through direct coal liquefaction technology: ⟨scp>Technoâ€economic⟨/scp⟩ evaluation. International Journal of Energy Research, 2020, 44, 11827-11839.	4.5	8
300	Elucidation of the nature of naphtheno-aromatic groups in heavy petroleum fractions by 13C n.m.r. and catalytic dehydrogenation. Fuel, 1991, 70, 1266-1270.	6.4	7
301	Influence of Coal Properties on Mercury Uptake from Aqueous Solution. Energy & Energy & 1999, 13, 1046-1050.	5.1	7
302	Use of Nitrogen Stable Isotope Analysis To Understand Char Nitrogen Evolution during the Fluidized-Bed Co-combustion of Coal and Sewage Sludge. Energy & Samp; Fuels, 2005, 19, 485-488.	5.1	7
303	Hydropyrolysis over a platinum catalyst as a preparative technique for the compoundâ€specific carbon isotope ratio measurement of C ₂₇ steroids. Rapid Communications in Mass Spectrometry, 2010, 24, 501-505.	1.5	7
304	Performance of a silica-polyethyleneimine adsorbent for post-combustion CO2 capture on a 100Âkg scale in a fluidized bed continuous unit. Chemical Engineering Journal, 2021, 407, 127209.	12.7	7
305	Characterisation of Coke on Deactivated Hydrodesulfurisation Catalysts and a Novel Approach to Catalyst Regeneration. Studies in Surface Science and Catalysis, 2001, 139, 359-365.	1.5	6
306	Degradation of biomass fuels during artificial storage in a laboratory environment. International Journal of Low-Carbon Technologies, 2012, 7, 113-119.	2.6	6

#	Article	IF	Citations
307	Prediction of formation of gas-phase bubbles correlated by vortices in the fuel reactor of chemical looping combustion. Fuel Processing Technology, 2015, 130, 235-244.	7.2	6
308	Simultaneous measurement of multiple organic tracers in fine aerosols from biomass burning and fungal spores by HPLC-MS/MS. RSC Advances, 2018, 8, 34136-34150.	3.6	6
309	Formation of bitumen in the Elgin–Franklin complex, Central Graben, North Sea: implications for hydrocarbon charging. Geological Society Special Publication, 2020, 484, 139-163.	1.3	6
310	Cyclic performance evaluation of a polyethylenimine/silica adsorbent with steam regeneration using simulated NGCC flue gas and actual flue gas of a gas-fired boiler in a bubbling fluidized bed reactor. International Journal of Greenhouse Gas Control, 2020, 95, 102975.	4.6	6
311	Molecular Formula Prediction for Chemical Filtering of 3D OrbiSIMS Datasets. Analytical Chemistry, 2022, 94, 4703-4711.	6.5	6
312	Desulphurisation of a spanish lignite via low temperature supercritical gas extraction. Fuel Processing Technology, 1990, 24, 187-193.	7.2	5
313	A spectroscopic study of structural changes occurring in supercritical gas extraction of a Spanish lignite with alcohols. Fuel, 1993, 72, 427-433.	6.4	5
314	The fluorescence of suspensions of powdered coals. Fuel, 2005, 84, 1749-1759.	6.4	5
315	Reactors Effects on Microwave Decontamination of Oily Wastes in a Multimode Cavity. Industrial & Lamp; Engineering Chemistry Research, 2007, 46, 4811-4818.	3.7	5
316	Migration and fate of 14CH4 in subsoil: tracer experiments to inform model development. Mineralogical Magazine, 2012, 76, 3345-3354.	1.4	5
317	Multiple Cosmic Sources for Meteorite Macromolecules?. Astrobiology, 2015, 15, 779-786.	3.0	5
318	Understanding the unusual fluidity characteristics of high ash Indian bituminous coals. Fuel Processing Technology, 2018, 176, 258-266.	7.2	5
319	Application of NMR to fossil fuels: an assessment of recent advances. Fresenius Zeitschrift Für Analytische Chemie, 1986, 324, 781-785.	0.8	4
320	Observation of carbon-13 nuclear Overhauser enhancements for coals. Energy & Energy	5.1	4
321	Effect of the Polymerization with Formaldehyde on the Thermal Reactivity of a Low-Temperature Coal Tar Pitch. Energy & Dos, 19, 374-381.	5.1	4
322	Evaluation of errors associated with $\hat{1}'13C$ analysis of lignin-derived TMAH thermochemolysis products by gas chromatography $\hat{a}\in \text{``combustion}\hat{a}\in \text{``isotope ratio mass spectrometry. Journal of Analytical and Applied Pyrolysis, 2006, 76, 88-95.}$	5.5	4
323	Biomedical and Forensic Applications of Combined Catalytic Hydrogenation-Stable Isotope Ratio Analysis. Analytical Chemistry Insights, 2007, 2, 117739010700200.	2.7	4
324	NOx removal by low-cost char pellets: Factors influencing the activity and selectivity towards NOx reduction. Fuel, 2007, 86, 949-956.	6.4	4

#	Article	IF	CITATIONS
325	Microwave Treatment of Oil-Contaminated Drill Cuttings at Pilot Scale. SPE Drilling and Completion, 2009, 24, 430-435.	1.6	4
326	Quantifying 12/13CH4 migration and fate following sub-surface release to an agricultural soil. Journal of Environmental Radioactivity, 2014, 133, 18-23.	1.7	4
327	Comments on the application of spin-echo 13C n.m.r. methods to fossil fuel-derived materials. Fuel, 1983, 62, 988-989.	6.4	3
328	Enthalpy relaxation and glass transitions in Point of Ayr coal. Fuel, 1995, 74, 136.	6.4	3
329	Release of Sulfur Dioxide from Sulfur-Containing Phenolic Resins during Temperature-Programmed Oxidation. Energy & Sump; Fuels, 1995, 9, 1104-1105.	5.1	3
330	Contrast-Matching Small-Angle Neutron Scattering to Monitor the Accessibility of Solvents to the Porosity of Coked FCC Catalysts. Industrial & Engineering Chemistry Research, 2002, 41, 6566-6571.	3.7	3
331	Investigation of the Fluid Behavior of Asphaltenes and Toluene Insolubles by High-Temperature Proton Nuclear Magnetic Resonance and Rheometry and Their Application to Visbreaking. Energy & Samp; Fuels, 2016, 30, 2012-2020.	5.1	3
332	Investigations of Diesel Injector Deposits Characterization and Testing., 0,,.		3
333	Biomedical and forensic applications of combined catalytic hydrogenation-stable isotope ratio analysis. Analytical Chemistry Insights, 2007, 2, 37-42.	2.7	3
334	The effect of oil extraction on porosity and methane adsorption for dry and moisture-equilibrated shales. Fuel, 2022, 316, 123304.	6.4	3
335	The chemical nature of material released from coal-derived asphaltenes by reprecipitation and cyclohexane extraction. Fuel Processing Technology, 1987, 16, 89-96.	7.2	2
336	1989 international conference on coal science. Fuel, 1990, 69, 534-535.	6.4	2
337	Effect of Precipitating Some of the More Intractable Material from a Hydrogen-Donor Solvent Coal Extract Solution on Its Hydroprocessing Behavior. Energy & Samp; Fuels, 1998, 12, 1228-1234.	5.1	2
338	Thermal Degradation of Poly(vinyl acetate): A Solid-State ¹³ C NMR Study. ACS Symposium Series, 2001, , 334-343.	0.5	2
339	Use of Oscillatory Shear Rheometry and Thermogravimetric Analysis To Examine the Microstructural Changes during Coal Pyrolysis/Carbonization for the Prediction of IRSID Strength Indices. Energy & Energ	5.1	2
340	Hydrocarbons generated by hydropyrolysis of suspended marine particulate organic matter: Relationship to the oceanography of the Black Sea and the Rhodes Gyre. Organic Geochemistry, 2009, 40, 270-282.	1.8	2
341	Synergistic effect in co-processing a residue from a transesterification process with vacuum gas oil in fluid catalytic cracking. Fuel, 2022, 327, 124973.	6.4	2
342	Influence of Organic Coal Structure on Liquefaction Behavior Under Low-Severity Conditions. ACS Symposium Series, 1991, , 182-192.	0.5	1

#	Article	IF	CITATIONS
343	Distribution of PAH generated in fluidized bed combustion and pyrolysis experiments. Coal Science and Technology, 1995, , 1947-1950.	0.0	1
344	A novel coal based process for groundwater treatment. Coal Science and Technology, 1995, 24, 1613-1616.	0.0	1
345	Comparison of oils and asphaltenes from extraction of bituminous coal and lignite with hydrogenated anthracene oil. Fuel, 1995, 74, 1013-1017.	6.4	1
346	The influence of feedstocks and catalyst formulation on thedeactivation of FCC catalysts. Studies in Surface Science and Catalysis, 1996, 100, 313-322.	1.5	1
347	Microwave driven trimethylsilylation of phenolformaldehyde resins: extent of reactions determined by 13C and 29Si n.m.r Fuel, 1998, 77, 369-374.	6.4	1
348	Comparison of Mercury Retention by Fly Ashes Using Different Experimental Devices. Industrial & Engineering Chemistry Research, 2009, 48, 10702-10707.	3.7	1
349	OxyCAP UK: Oxyfuel Combustion - academic Programme for the UK. Energy Procedia, 2014, 63, 504-510.	1.8	1
350	Methane transport in agricultural soil after injection of isotopically-enriched methane in the sub-surface. Scientific Data, 2018, 5, 180208.	5. 3	1
351	The Effect of Temperature on the Molecular Compositions of External and Internal Gasoline Direct Injection Deposits. , 0, , .		1
352	Liquid Fuels and Chemical Feedstocks. Issues in Environmental Science and Technology, 0, , 173-197.	0.4	1
353	Effect of heating rate on normal and catalytic fixed-bed hydropyrolysis. Coal Science and Technology, 1995, 24, 1367-1370.	0.0	0
354	Effects of chlorobenzene treatment on coal structure and liquefaction behaviour. Coal Science and Technology, 1995, 24, 1383-1386.	0.0	0
355	A study of the organic sulphur distribution in solid fuels by means of atmospheric pressure temperature programmed reduction (AP-TPR). Coal Science and Technology, 1995, 24, 1673-1676.	0.0	O
356	High Uptake of Palladium by Bituminous Coals. Energy & Energy & 1997, 11, 1101-1102.	5.1	0
357	Use of 13C-Labelled Compounds to Probe Catalytic Coke Formation In Fluid Catalytic Cracking. Studies in Surface Science and Catalysis, 2001, , 251-262.	1.5	O
358	Microwave remediation of oil contaminated soils. Diqiu Huaxue, 2006, 25, 113-113.	0.5	0
359	Developing National CCS Capacity and Advanced Skills: Examples from the UK. Energy Procedia, 2013, 37, 7281-7290.	1.8	0
360	CO2 Sorption Characteristics of Various Sorbents in the Bubbling Fluidized-Bed. Energy Procedia, 2017, 114, 2336-2340.	1.8	0