
Makoto Ojika

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5588638/publications.pdf Version: 2024-02-01

Μλκότο Οιικλ

#	Article	IF	CITATIONS
1	d-Mannose binding, aggregation property, and antifungal activity of amide derivatives of pradimicin A. Bioorganic and Medicinal Chemistry, 2022, 55, 116590.	3.0	2
2	Chemical modification of pradimicin A to suppress aggregation without impairing D-mannose-binding and antifungal activities. Tetrahedron, 2022, , 132919.	1.9	0
3	Binding Evaluation of Pradimicins for Oligomannose Motifs from Fungal Mannans. Bulletin of the Chemical Society of Japan, 2021, 94, 732-754.	3.2	6
4	ldentification of biosynthetic intermediates for the mating hormone α2 of the plant pathogen Phytophthora. Bioscience, Biotechnology and Biochemistry, 2021, 85, 1802-1808.	1.3	0
5	The Oxidation of Equol by Tyrosinase Produces a Unique Di-ortho-Quinone: Possible Implications for Melanocyte Toxicity. International Journal of Molecular Sciences, 2021, 22, 9145.	4.1	4
6	A Pradimicin-Based Staining Dye for Glycoprotein Detection. Journal of Natural Products, 2021, 84, 2496-2501.	3.0	5
7	Oxidative Transformations of 3,4-Dihydroxyphenylacetaldehyde Generate Potential Reactive Intermediates as Causative Agents for Its Neurotoxicity. International Journal of Molecular Sciences, 2021, 22, 11751.	4.1	4
8	AP2/ERF Transcription Factor NbERF-IX-33 Is Involved in the Regulation of Phytoalexin Production for the Resistance of Nicotiana benthamiana to Phytophthora infestans. Frontiers in Plant Science, 2021, 12, 821574.	3.6	13
9	Relationship among structure, cytotoxicity, and Michael acceptor reactivity of quinocidin. Bioorganic and Medicinal Chemistry, 2020, 28, 115308.	3.0	0
10	Detoxification of the solanaceous phytoalexins rishitin, lubimin, oxylubimin and solavetivone via a cytochrome P450 oxygenase. Plant Signaling and Behavior, 2020, 15, 1707348.	2.4	17
11	Identification of Îμ-Poly-L-lysine as an Antimicrobial Product from an Epichloë Endophyte and Isolation of Fungal Îμ-PL Synthetase Gene. Molecules, 2020, 25, 1032.	3.8	30
12	The Plant Pathogen <i>Phytophthora</i> and Mating Hormones: Science of Sexual Reproduction of a Crop Pest. Kagaku To Seibutsu, 2020, 58, 549-554.	0.0	1
13	Tyrosinaseâ€catalyzed oxidation of resveratrol produces a highly reactive <i>ortho</i> â€quinone: Implications for melanocyte toxicity. Pigment Cell and Melanoma Research, 2019, 32, 766-776.	3.3	18
14	Clavariopsins C–I, Antifungal Cyclic Depsipeptides from the Aquatic Hyphomycete <i>Clavariopsis aquatica</i> . Journal of Natural Products, 2019, 82, 1971-1978.	3.0	7
15	The Oxidative Pathway to Dopamine–Protein Conjugates and Their Pro-Oxidant Activities: Implications for the Neurodegeneration of Parkinson's Disease. International Journal of Molecular Sciences, 2019, 20, 2575.	4.1	16
16	Molecular Basis of Mannose Recognition by Pradimicins and their Application to Microbial Cell Surface Imaging. Cell Chemical Biology, 2019, 26, 950-959.e8.	5.2	13
17	Nicotiana benthamiana RanBP1-1 Is Involved in the Induction of Disease Resistance via Regulation of Nuclear-Cytoplasmic Transport of Small GTPase Ran. Frontiers in Plant Science, 2019, 10, 222.	3.6	8
18	Lycosides, Unusual Carotenoid-Derived Terpenoid Glycosides from a Vegetable Juice, Inhibit Asexual Reproduction of the Plant Pathogen <i>Phytophthora</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 163-169.	5.2	4

#	Article	IF	CITATIONS
19	Resistance to Phytophthora infestans: exploring genes required for disease resistance in Solanaceae plants. Journal of General Plant Pathology, 2018, 84, 312-320.	1.0	17
20	New Crambescidin-Type Alkaloids from the Indonesian Marine Sponge Clathria bulbotoxa. Marine Drugs, 2018, 16, 84.	4.6	14
21	Tyrosinase-Catalyzed Oxidation of the Leukoderma-Inducing Agent Raspberry Ketone Produces (<i>E</i>)-4-(3-Oxo-1-butenyl)-1,2-benzoquinone: Implications for Melanocyte Toxicity. Chemical Research in Toxicology, 2017, 30, 859-868.	3.3	22
22	Universality of the Phytophthora mating hormones and diversity of their production profile. Scientific Reports, 2017, 7, 5007.	3.3	12
23	An Unusual Diterpene—Enhygromic Acid and Deoxyenhygrolides from a Marine Myxobacterium, Enhygromyxa sp Marine Drugs, 2017, 15, 109.	4.6	17
24	The Metabolic Fate of ortho-Quinones Derived from Catecholamine Metabolites. International Journal of Molecular Sciences, 2016, 17, 164.	4.1	21
25	Isolation and Biosynthetic Analysis of Haliamide, a New PKS-NRPS Hybrid Metabolite from the Marine Myxobacterium Haliangium ochraceum. Molecules, 2016, 21, 59.	3.8	36
26	Linckosides enhance proliferation and induce morphological changes in human olfactory ensheathing cells. Molecular and Cellular Neurosciences, 2016, 75, 1-13.	2.2	6
27	Heterologous Production of the Marine Myxobacterial Antibiotic Haliangicin and Its Unnatural Analogues Generated by Engineering of the Biochemical Pathway. Scientific Reports, 2016, 6, 22091.	3.3	31
28	The Phytophthora mating hormone α2 is an antagonist of the counterhormone α1. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1062-1065.	1.3	1
29	The Full-Size ABCG Transporters Nb-ABCG1 and Nb-ABCG2 Function in Pre- and Postinvasion Defense against <i>Phytophthora infestans</i> in <i>Nicotiana benthamiana</i> . Plant Cell, 2016, 28, 1163-1181.	6.6	66
30	Total Synthesis of Miuraenamides A and D. Journal of Organic Chemistry, 2016, 81, 9886-9894.	3.2	15
31	Norepinephrine and its metabolites are involved in the synthesis of neuromelanin derived from the <i>locus coeruleus</i> . Journal of Neurochemistry, 2015, 135, 768-776.	3.9	58
32	Methanol extract of mycelia from Phytophthora infestans-induced resistance in potato. Comptes Rendus - Biologies, 2015, 338, 185-196.	0.2	5
33	Bioactive Maleic Anhydrides and Related Diacids from the Aquatic Hyphomycete <i>Tricladium castaneicola</i> . Journal of Natural Products, 2015, 78, 639-644.	3.0	9
34	Tyrosinaseâ€catalyzed metabolism of rhododendrol (RD) in B16 melanoma cells: production of RDâ€pheomelanin and covalent binding with thiol proteins. Pigment Cell and Melanoma Research, 2015, 28, 295-306.	3.3	37
35	Reduction of the Nitro Group to Amine by Hydroiodic Acid to Synthesize o-Aminophenol Derivatives as Putative Degradative Markers of Neuromelanin. Molecules, 2014, 19, 8039-8050.	3.8	22
36	Nucleoporin 75 Is Involved in the Ethylene-Mediated Production of Phytoalexin for the Resistance of <i>Nicotiana benthamiana</i> to <i>Phytophthora infestans</i> . Molecular Plant-Microbe Interactions, 2014, 27, 1318-1330.	2.6	27

#	Article	IF	CITATIONS
37	Human tyrosinase is able to oxidize both enantiomers of rhododendrol. Pigment Cell and Melanoma Research, 2014, 27, 1149-1153.	3.3	36
38	Tyrosinaseâ€catalyzed oxidation of rhododendrol produces 2â€methylchromaneâ€6,7â€dione, the putative ultimate toxic metabolite: implications for melanocyte toxicity. Pigment Cell and Melanoma Research, 2014, 27, 744-753.	3.3	66
39	<i>Nicotiana benthamiana</i> Calreticulin 3a Is Required for the Ethylene-Mediated Production of Phytoalexins and Disease Resistance Against Oomycete Pathogen <i>Phytophthora infestans</i> . Molecular Plant-Microbe Interactions, 2013, 26, 880-892.	2.6	46
40	Sponge-derived acetylenic alcohols, petrosiols, inhibit proliferation and migration of platelet-derived growth factor (PDGF)-induced vascular smooth muscle cells. Bioorganic and Medicinal Chemistry, 2013, 21, 1804-1810.	3.0	16
41	Petrosiols A–E, neurotrophic diyne tetraols isolated from the Okinawan sponge Petrosia strongylata. Tetrahedron, 2013, 69, 101-106.	1.9	30
42	Arenarol isolated from a marine sponge abrogates endothelin-1-stimulated melanogenesis by interrupting MEK phosphorylation in normal human melanocytes. Cytotechnology, 2013, 65, 915-926.	1.6	2
43	Novel Cerebroside, Termitomycesphin I, from the Mushroom,Termitomyces titanicus. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1407-1409.	1.3	6
44	Termitomycesphins G and H, Additional Cerebrosides from the Edible Chinese Mushroom <i>Termitomyces albuminosus</i> . Bioscience, Biotechnology and Biochemistry, 2012, 76, 791-793.	1.3	26
45	Mechanism of putative neo-antigen formation from N-propionyl-4-S-cysteaminylphenol, a tyrosinase substrate, in melanoma models. Biochemical Pharmacology, 2012, 84, 646-653.	4.4	15
46	Structure–activity relationship of α hormones, the mating factors of phytopathogen Phytophthora. Bioorganic and Medicinal Chemistry, 2012, 20, 681-686.	3.0	8
47	Aplyronines D–H from the sea hare Aplysia kurodai: isolation, structures, and cytotoxicity. Tetrahedron, 2012, 68, 982-987.	1.9	21
48	Cell-Morphology Profiling of a Natural Product Library Identifies Bisebromoamide and Miuraenamide A as Actin Filament Stabilizers. ACS Chemical Biology, 2011, 6, 425-431.	3.4	63
49	The second Phytophthora mating hormone defines interspecies biosynthetic crosstalk. Nature Chemical Biology, 2011, 7, 591-593.	8.0	52
50	Syntheses of the four stereoisomers of Phytophthora mating hormone $\hat{I}\pm 2$ and a concise synthesis of mating hormone $\hat{I}\pm 1$. Tetrahedron, 2011, 67, 8887-8894.	1.9	8
51	Miuraenamides: Antimicrobial Cyclic Depsipeptides Isolated from a Rare and Slightly Halophilic Myxobacterium. Chemistry - an Asian Journal, 2008, 3, 126-133.	3.3	55
52	PCR Detection of Type I Polyketide Synthase Genes in Myxobacteria. Applied and Environmental Microbiology, 2008, 74, 5571-5574.	3.1	21
53	Zooxanthellamide D, a Polyhydroxy Polyene Amide from a Marine Dinoflagellate, and Chemotaxonomic Perspective of theSymbiodiniumPolyols#. Journal of Natural Products, 2007, 70, 407-411.	3.0	20
54	Aplyronine A, a potent antitumor macrolide of marine origin, and the congeners aplyronines B and C: isolation, structures, and bioactivities. Tetrahedron, 2007, 63, 3138-3167.	1.9	57

#	Article	IF	CITATIONS
55	Total synthesis of (4R,5S,6E,14S)- and (4R,5S,6E,14R)-cystothiazoles F. Tetrahedron: Asymmetry, 2007, 18, 513-519.	1.8	6
56	Linckosides M–Q: neuritogenic steroid glycosides from the Okinawan starfish Linckia laevigata. Journal of Natural Medicines, 2007, 61, 138-145.	2.3	19
57	Biosynthesis of 2â€ ² -O-Methylmyxalamide D in the MyxobacteriumCystobacter fuscus: a Polyketide Synthase-Nonribosomal Peptide Synthetase System for the Myxalamide D Skeleton and a Methyltransferase for the FinalO-Methylation. Bioscience, Biotechnology and Biochemistry, 2006, 70, 699-705.	1.3	2
58	Miuraenamides A and B, Novel Antimicrobial Cyclic Depsipeptides from a New Slightly Halophilic Myxobacterium: Taxonomy, Production, and Biological Properties. Journal of Antibiotics, 2006, 59, 385-391.	2.0	66
59	Structure–activity relationships of novel neuritogenic steroid glycosides from the Okinawan starfish Linckia laevigata. Bioorganic and Medicinal Chemistry, 2006, 14, 4458-4465.	3.0	32
60	Granulatosideâ€A, a Starfish Steroid Glycoside, Enhances PC12 Cell Neuritogenesis Induced by Nerve Growth Factor through an Activation of MAP Kinase. ChemMedChem, 2006, 1, 1351-1354.	3.2	13
61	Characterization of a Phytophthora Mating Hormone. Science, 2005, 309, 1828-1828.	12.6	63
62	Construction of a Bacterial Artificial Chromosome Library for a Myxobacterium of the GenusCystobacterand Characterization of an Antibiotic Biosynthetic Gene Cluster. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1372-1380.	1.3	29
63	Novel Relationship between the Antifungal Activity and Cytotoxicity of Marine-Derived Metabolite Xestoquinone and Its Family. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1749-1752.	1.3	16
64	Zooxanthellamide Cs:Â Vasoconstrictive Polyhydroxylated Macrolides with the Largest Lactone Ring Size from a Marine Dinoflagellate ofSymbiodiniumsp Journal of the American Chemical Society, 2005, 127, 10406-10411.	13.7	40
65	Syntheses of cystothiazole A and its stereoisomers: importance of stereochemistry for antifungal activity. Tetrahedron, 2004, 60, 187-194.	1.9	19
66	(+)-Cystothiazole G: isolation and structural elucidation. Tetrahedron, 2004, 60, 4735-4738.	1.9	20
67	Linckosides C–E, three new neuritogenic steroid glycosides from the Okinawan starfish Linckia laevigata. Bioorganic and Medicinal Chemistry, 2004, 12, 4259-4265.	3.0	31
68	Novel antifungal polyene amides from the myxobacterium Cystobacter fuscus: isolation, antifungal activity and absolute structure determination. Tetrahedron, 2004, 60, 10217-10221.	1.9	17
69	Zooxanthellactone, a Novel Î ³ -Lactone-type Oxylipine from Dinoflagellates ofSymbiodiniumsp.: Structure, Distribution, and Biological Activity. Bioscience, Biotechnology and Biochemistry, 2004, 68, 848-852.	1.3	17
70	Zooxanthellamide B, a Novel Large Polyhydroxy Metabolite from a Marine Dinoflagellate of Symbiodiniumsp Bioscience, Biotechnology and Biochemistry, 2004, 68, 955-958.	1.3	23
71	Zooxanthellamide A, a novel polyhydroxy metabolite from a marine dinoflagellate of Symbiodinium sp Tetrahedron, 2003, 59, 1067-1071.	1.9	27
72	Acylspermidine Derivatives Isolated from a Soft Coral, Sinularia sp., Inhibit Plant Vacuolar H+-Pyrophosphatase. Journal of Biochemistry, 2003, 133, 811-816.	1.7	12

#	Article	IF	CITATIONS
73	Structural Studies and Antifungal Activity of Unique Polyene Amides, Clathrynamide A and Three New Derivatives, from a Marine Sponge,PsammoclemmaSp Bioscience, Biotechnology and Biochemistry, 2003, 67, 1568-1573.	1.3	17
74	Three New Cytotoxic Acylspermidines from the Soft Coral,Sinulariasp Bioscience, Biotechnology and Biochemistry, 2003, 67, 1410-1412.	1.3	32
75	Biosynthetic Studies on a Myxobacterial Antibiotic, Cystothiazole A: Biosynthetic Precursors of the Carbon Skeleton. Journal of Antibiotics, 2003, 56, 372-378.	2.0	10
76	New Haliangicin Isomers, Potent Antifungal Metabolites Produced by a Marine Myxobacterium. Journal of Antibiotics, 2003, 56, 630-638.	2.0	48
77	linckosides A and B, two new neuritogenic steroid glycosides from the okinawan starfish linckia laevigata. Bioorganic and Medicinal Chemistry, 2002, 10, 1961-1966.	3.0	56
78	New Cyclic Depsipeptide Antibiotics, Clavariopsins A and B, Produced by an Aquatic Hyphomycetes, Clavariopsis aquatica Journal of Antibiotics, 2001, 54, 22-28.	2.0	27
79	New Cyclic Depsipeptide Antibiotics, Clavariopsins A and B, Produced by an Aquatic Hyphomycetes, Clavariopsis aquatica Journal of Antibiotics, 2001, 54, 17-21.	2.0	25
80	Neuritogenic cerebrosides from an edible chinese mushroom. Part 2â€â€For Part 1, see ref 1.: structures of two additional termitomycesphins and activity enhancement of an inactive cerebroside by hydroxylation. Bioorganic and Medicinal Chemistry, 2001, 9, 2171-2177.	3.0	43
81	Termitomycesphins A–D, Novel Neuritogenic Cerebrosides from the Edible Chinese Mushroom Termitomyces albuminosus. Tetrahedron, 2000, 56, 5835-5841.	1.9	72
82	Isolation, Chemistry, and Biochemistry of Ptaquiloside, a Bracken Carcinogen. Angewandte Chemie - International Edition, 1998, 37, 1818-1826.	13.8	27
83	Cystothiazoles C-F, new bithiazole-type antibiotics from the myxobacterium Cystobacter fuscus. Tetrahedron, 1998, 54, 11399-11404.	1.9	73
84	Cystothiazoles A and B, New Bithiazole-type Antibiotics from the Myxobacterium Cystobacter fuscus Journal of Antibiotics, 1998, 51, 275-281.	2.0	106
85	Dolastatin H and Isodolastatin H, Potent Cytotoxic Peptides from the Sea HareDolabella auricularia:Â Isolation, Stereostructures, and Synthesis. Journal of the American Chemical Society, 1996, 118, 1874-1880.	13.7	62
86	Aplyronine A, a Potent Antitumor Substance of Marine Origin, Aplyronines B and C, and Artificial Analogues:Â Total Synthesis and Structureâ^'Cytotoxicity Relationships. Journal of Organic Chemistry, 1996, 61, 5326-5351.	3.2	106
87	Total Synthesis of Aplyronine A, a Potent Antitumor Substance of Marine Origin. Journal of the American Chemical Society, 1994, 116, 7443-7444.	13.7	101
88	Isolation and stereostructure of doliculide, a cytotoxic cyclodepsipeptide from the Japanese sea hare Dolabella auricularia. Journal of Organic Chemistry, 1994, 59, 4710-4711.	3.2	71
89	Absolute Stereochemistry of Aplyronine A, a Potent Antitumor Substance of Marine Origin. Journal of the American Chemical Society, 1994, 116, 7441-7442.	13.7	88
90	Further studies on aplyronine A, an antitumor substance isolated from the sea hare Aplysia kurodai. Tetrahedron Letters, 1993, 34, 8501-8504.	1.4	32

#	Article	IF	CITATIONS
91	Studies on the stereochemistry of aplyronine A: Determination of the stereochemistry of the C21î—,C34 fragment. Tetrahedron Letters, 1993, 34, 8505-8508.	1.4	37
92	Aplyronine A, a potent antitumor substance and the congeners aplyronines B and C isolated from the sea hare Aplysia kurodai. Journal of the American Chemical Society, 1993, 115, 11020-11021.	13.7	156
93	Specific binding ofadaic acid, a new tumor promoter in mouse skin. FEBS Letters, 1989, 250, 615-618.	2.8	60
94	Induction of ornithine decarboxylase activity in mouse skin by a possible tumor promoter, okadaic acid Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1987, 63, 51-53.	3.8	32