Kulvir Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5588464/publications.pdf

Version: 2024-02-01

		109321		110387	
198	5,540	35		64	
papers	citations	h-index		g-index	
					1
198	198	198		4576	
all docs	docs citations	times ranked			
an docs	does citations	tilles ranked		citing authors	
			4		4

#	Article	IF	CITATIONS
1	Dielectric Properties of the Calcium Silicate Glass-Ceramics Prepared from Agro-Food Wastes. Silicon, 2022, 14, 1489-1496.	3.3	4
2	In-vitro Biological Evaluation of Diopside Bio-ceramic Synthesized From Sustainable Agro-food Waste Ashes. Silicon, 2022, 14, 7423-7433.	3.3	4
3	Perovskite-structured cobalt-free cathode materials for solid oxide fuel cells., 2022, , 357-373.		2
4	SrO effect on the structure, phase separation and crystallization kinetics of <mml:math altimg="si30.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>C</mml:mi><mml:mi>a</mml:mi><mml:mi>O</mml:mi>OOOlinebreak="goodbreak">â°'<mml:mi>S</mml:mi>B<mml:mi>><mml:mn>2</mml:mn><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub< td=""><td>3.1 mi><mml nml:msub</mml </td><td>:m͡n>2><mml:mi>O</mml:mi></td></mml:msub<></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mi></mml:math>	3.1 mi> <mml nml:msub</mml 	:m͡n>2> <mml:mi>O</mml:mi>
5	Journal of Non-Crystalline Solids, 2022, 576, 121301. Structural and optical properties of agro-food wastes derived glasses synthesized in two different crucibles. Materials Today: Proceedings, 2022, , .	1.8	О
6	Photoluminescent properties of rare-earth doped perovskite calcium silicates and related systems. , $2022, , 89-113.$		0
7	Synthesis of silica and carbon-based nanomaterials from rice husk ash by ambient fiery and furnace sweltering using a chemical method. Applied Surface Science Advances, 2022, 8, 100225.	6.8	16
8	Photoluminescence and structural properties of airâ€reduced rareâ€earth (<scp>Eu</scp>) doped calcium silicates derived using biomass wastes. Biofuels, Bioproducts and Biorefining, 2022, 16, 562-575.	3.7	1
9	Growth of different nanocrystalline phases in ZnO–Li2O–B2O3–TiO2–V2O5 glass and their effect on photoluminescence and photocatalytic activity. Ceramics International, 2022, 48, 20619-20626.	4.8	7
10	X-Ray Photoelectron spectroscopy and high resolution TEM studies of glass composites. Journal of Physics: Conference Series, 2022, 2267, 012127.	0.4	0
11	An interfacial study between SrZr0.85Cu0.15O3- and barium oxide-containing borosilicate glass sealant for solid oxide fuel cell application. Materials Chemistry and Physics, 2022, , 126441.	4.0	0
12	Synthesis, Characterization and Bioactivity of Fluoride Containing Borosilicate Glass Matrix Composite. Silicon, 2021, 13, 1723-1730.	3.3	4
13	Evaluating the role of composition and local structure on alkali outâ€diffusion in glasses for thinâ€film solar cells. Journal of the American Ceramic Society, 2021, 104, 851-859.	3.8	4
14	Influence of vanadium oxide on non-isothermal crystallization kinetics of zinc lithium borate glasses. Journal of Non-Crystalline Solids, 2021, 553, 120471.	3.1	21
15	Holey engineered 2D ZnO-nanosheets architecture for supersensitive ppm level H2 gas detection at room temperature. Sensors and Actuators B: Chemical, 2021, 326, 128839.	7.8	36
16	Mechanical and physical properties of SrO-ZrO2 modified SODA lime borosilicate glasses. AIP Conference Proceedings, 2021, , .	0.4	1
17	Dysprosium doped and titanium activated calcium silicates for cool white light emitting diode derived from natural resources. Journal of Molecular Structure, 2021, 1227, 129665.	3.6	5
18	Bioactive glasses and glass–ceramics for hyperthermia treatment of cancer: state-of-art, challenges, and future perspectives. Materials Today Bio, 2021, 10, 100100.	5.5	40

#	Article	IF	CITATIONS
19	Influence of Al3+ doping for V5+ on the structural, optical, thermal and electrical properties of V2-Al O5- ($x=0$ â \in "0.20) ceramics. Ceramics International, 2021, 47, 10724-10732.	4.8	5
20	Samarium doped calcium silicate derived from agro-food wastes and their structural, optical and luminescent properties. Ceramics International, 2021, 47, 21588-21598.	4.8	5
21	Effect of TiO2 doping on structural and electrical properties of melt-quench V2â°'xTixO5â^'δ, 0.15 â‰â€‰xâ systems. Journal of Materials Science: Materials in Electronics, 2021, 32, 12594-12607.	€‰â‰â€ 2 . 2	E‰0.30
22	Diffusional investigation of alkali ions from composition tuned glass substrates to Mo-thin film for solar cell application. Surfaces and Interfaces, 2021, 24, 101060.	3.0	3
23	Optical and photoluminescence properties of CaV2O6 functionalized by sodium doping. Materials Today Communications, 2021, 27, 102354.	1.9	0
24	Mixed alkaline earth modifiers effect on thermal, optical and structural properties of SrO-BaO-SiO2-B2O3-ZrO2 glass sealants. Journal of Non-Crystalline Solids, 2021, 564, 120812.	3.1	22
25	Review on silicate and borosilicateâ€based glass sealants and their interaction with components of solid oxide fuel cell. International Journal of Energy Research, 2021, 45, 20559-20582.	4.5	31
26	Ceramic biomaterials: Properties, state of the art and future prospectives. Ceramics International, 2021, 47, 28059-28074.	4.8	67
27	Influence of anatase-brookite composition on photocatalytic degradation of diethyl phthalate. Ceramics International, 2021, 47, 30702-30710.	4.8	8
28	Influence of samarium doping on the phase stability and optical properties of calcium silicates derived from agro-food wastes. Journal of Materials Science: Materials in Electronics, 2021, 32, 26397-26411.	2.2	0
29	Designing composition tuned glasses with enhanced properties for use as substrate in Cu2ZnSnS4 based thin film solar cells. Journal of Alloys and Compounds, 2020, 819, 152984.	5.5	13
30	Effect of MnO on structural, optical and thermoluminescence properties of lithium borosilicate glasses. Journal of Luminescence, 2020, 219, 116872.	3.1	20
31	Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceramics International, 2020, 46, 5521-5535.	4.8	141
32	<pre><mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mi>w</mml:mi>iovrow><mml:mi>i</mml:mi></mml:msup></mml:mrow><mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mi>i<mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:math></pre>	4.8	13
33	activated <mml:. 1141-1151.<="" 14,="" 2020,="" 46,="" 9370-9379.="" and="" bioactive="" biofuels,="" biomass="" bioproducts="" biorefining,="" calcium="" ceramics="" from="" glass="" international,="" silicate="" sustainable="" synthesized="" td="" wastes.=""><td>3.7</td><td>5</td></mml:.>	3.7	5
34	Effect of minor phase (CuO) on sinterability, grain size, and dielectric properties of CaCu3Ti4O12 ceramics. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	6
35	Structural, thermal and electrical study of copper-doped strontium zirconate. Ionics, 2020, 26, 6233-6244.	2.4	13
36	Dielectric and optical properties of glasses and glass-ceramics synthesized from agro-food wastes. Materials Chemistry and Physics, 2020, 246, 122754.	4.0	10

#	Article	IF	Citations
37	Biomass as a sustainable resource for valueâ€added modern materials: a review. Biofuels, Bioproducts and Biorefining, 2020, 14, 673-695.	3.7	51
38	Effect of transition metals (MO-TiO2, MnO2, Fe2O3, and ZnO) on crystallization and electrical conductivity of SiO2–CaO–Na2O–P2O5-based glass-ceramics. Ionics, 2020, 26, 2959-2967.	2.4	12
39	Structural, optical, thermal and conducting properties of V2â^'xLixO5â^'δ (0.15 â‰â€‰x â‰â€‱0.30 Reports, 2020, 10, 1089.) systems.	Scientific
40	Agro-waste ash and mineral oxides derived glass-ceramics and their interconnect study with Crofer 22 APU for SOFC application. Ceramics International, 2019, 45, 20501-20508.	4.8	14
41	Recycling and utilization of agro-food waste ashes: syntheses of the glasses for wide-band gap semiconductor applications. Journal of Material Cycles and Waste Management, 2019, 21, 801-809.	3.0	29
42	Evolution of Ca2SiO4 and Ca3Si2O7 crystalline phases synthesized from agro-food waste ashes. AIP Conference Proceedings, 2019, , .	0.4	3
43	Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering C, 2019, 102, 844-862.	7.3	883
44	Influence of TiO2 and thermal processing on morphological, structural and magnetic properties of Fe2O3/MnO2 modified glass-ceramics. Journal of Non-Crystalline Solids, 2019, 513, 64-69.	3.1	14
45	Growth control of molybdenum thin films with simultaneously improved adhesion and conductivity via sputtering for thin film solar cell application. Vacuum, 2019, 161, 347-352.	3.5	24
46	Blue-green light emitting inherent luminescent glasses synthesized from agro-food wastes. Journal of Materials Science: Materials in Electronics, 2019, 30, 3871-3881.	2.2	17
47	Effect of Ni substitution on the structural and optical properties of SrZr1-xNixO3 (0.05â‰xâ‰0.20) perovskites. Journal of Molecular Structure, 2019, 1180, 659-664.	3.6	11
48	Effect of MgO on structural, thermal and conducting properties of V2-Mg O5- (x = 0.05–0.30) systems. Ceramics International, 2019, 45, 695-701.	4.8	25
49	Antimicrobial and bioactive phosphate-free glass–ceramics for bone tissue engineering applications. Materials Science and Engineering C, 2018, 86, 9-17.	7.3	28
50	Intriguing role of TiO ₂ in glassâ€ceramics: Bioactive and magnetoâ€structural properties. Journal of the American Ceramic Society, 2018, 101, 2819-2830.	3.8	16
51	Mechanical and thermal properties of SrO/BaO modified Y2O3-Al2O3-B2O3-SiO2 glasses and their compatibility with solid oxide fuel cell components. Journal of Physics and Chemistry of Solids, 2018, 118, 248-254.	4.0	16
52	Optical and thermal properties of glasses and glass-ceramics derived from agricultural wastes. Ceramics International, 2018, 44, 947-952.	4.8	38
53	Braunite phase embedded Y2O3/MnO2-Al2O3-CaO-SiO2 glass ceramics and their properties. Materials Research Bulletin, 2018, 98, 34-40.	5.2	9
54	Transition metals (Mn, Ni, Co) doping in TiO2 nanoparticles and their effect on degradation of diethyl phthalate. International Journal of Environmental Science and Technology, 2018, 15, 2359-2368.	3.5	13

#	Article	IF	CITATIONS
55	Conductivity, dielectric, and structural studies of (30-x) SrO-xBaO-10Al2O3-45SiO2-5B2O3-10Y2O3 (5 â‰â€‰x â‰â€‰25) glasses. lonics, 2018, 24, 2343-2353.	2.4	12
56	Na2O doped CeO2 and their structural, optical, conducting and dielectric properties. Physica B: Condensed Matter, 2018, 550, 189-198.	2.7	26
57	Optimization of High Conducting Na3Zr2Si2PO12 Phase by new Phosphate Salt for Solid Electrolyte. Silicon, 2017, 9, 411-419.	3.3	13
58	Effect of Mn 2+ and Cu 2+ co-doping on structural and luminescent properties of ZnS nanoparticles. Ceramics International, 2017, 43, 7193-7201.	4.8	29
59	Sr doped BiMO 3 (MÂ=ÂMn, Fe, Y) perovskites: Structure correlated thermal and electrical properties. Materials Chemistry and Physics, 2017, 187, 96-103.	4.0	15
60	Influence of CaO/MgO ratio on the crystallization kinetics and interfacial compatibility with crofer 22APU and YSZ of strontium based alumino-borosilicate glasses for SOFC applications. International Journal of Hydrogen Energy, 2017, 42, 16244-16257.	7.1	20
61	Influence of modifier on dielectric and ferroelectric properties of aluminosilicate glasses. Journal of Non-Crystalline Solids, 2017, 465, 26-30.	3.1	6
62	Influence of thermal stability on dielectric properties of SiO2–K2O–CaO–MgO glasses. Journal of Thermal Analysis and Calorimetry, 2017, 128, 745-754.	3.6	9
63	Effect of mixed oxide/fluoride bonding on the dielectric properties of oxyfluoride glasses. Journal of Materials Science: Materials in Electronics, 2017, 28, 18986-18993.	2.2	5
64	Catalytic activity of tungsten carbide-carbon (WC@C) core-shell structured for ethanol electro-oxidation. Materials Chemistry and Physics, 2017, 186, 19-28.	4.0	10
65	Effect of ZrO2 on dielectric, optical and structural properties of yttrium calcium borosilicate glasses. Ceramics International, 2017, 43, 722-727.	4.8	74
66	High hardness-high toughness WC-20Co nanocomposites: Effect of VC variation and sintering temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 663, 21-28.	5 . 6	15
67	Optical, thermal, electrical and morphological study of La 1-x Ca x GaO $3-\hat{l}^{x}$ (x=0, 0.05, 0.10, 0.15 and 0.20) electrolyte. Journal of the European Ceramic Society, 2016, 36, 3165-3171.	5.7	10
68	Effect of Field Strength and Electronegativity of CaO and MgO on Structural and Optical Properties of SiO2–K2O-CaO-MgO Glasses. Silicon, 2016, 8, 437-442.	3. 3	20
69	Magnetic and bioactive properties of MnO2/Fe2O3 modified Na2O-CaO-P2O5-SiO2 glasses and nanocrystalline glass-ceramics. Ceramics International, 2016, 42, 11858-11865.	4.8	28
70	Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics. Scientific Reports, 2016, 6, 24617.	3.3	62
71	Effect of Variable Oxidation States of Vanadium on the Structural, Optical, and Dielectric Properties of B ₂ O ₃ â€"Li ₂ Oâ€"ZnOâ€"V ₂ O ₅ Glasses. Journal of Physical Chemistry B, 2016, 120, 12168-12176.	2.6	41
72	Combined and individual doxorubicin/vancomycin drug loading, release kinetics and apatite formation for the CaO–CuO–P ₂ 0 ₅ –SiO ₂ –B ₂ 0 ₃ mesoporous glasses. RSC Advances, 2016, 6, 51046-51056.	3.6	29

#	Article	IF	CITATIONS
73	Effect of vanadium on the optical and physical properties of lithium borate glasses. Journal of Non-Crystalline Solids, 2016, 432, 393-398.	3.1	27
74	Frequency independent low-k lithium borate nanocrystalline glass ceramic and glasses for microelectronic applications. Journal of Materials Chemistry C, 2016, 4, 3328-3336.	5.5	32
7 5	Non-isothermal crystallization kinetics of K 2 O modified sodium-phosphate glasses. Journal of Non-Crystalline Solids, 2016, 440, 76-84.	3.1	23
76	Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles. International Journal of Environmental Science and Technology, 2016, 13, 849-856.	3.5	52
77	Study on single step solid state synthesis of WC@C nanocomposite and electrochemical stability of synthesized WC@C & Pt/WC@C for alcohol oxidation (methanol/ethanol). Journal of Alloys and Compounds, 2016, 665, 186-196.	5.5	16
78	Effect of MgO on bioactivity, hardness, structural and optical properties of SiO2–K2O–CaO–MgO glasses. Ceramics International, 2016, 42, 436-444.	4.8	39
79	Structural Investigation of Catalytically Grown Carbon Nanotubes. Materials and Manufacturing Processes, 2016, 31, 989-994.	4.7	10
80	Dielectric, optical and structural properties of Bi4V2â^'Sr O11â^' (0.05â%xâ%0.20). Journal of Physics and Chemistry of Solids, 2015, 85, 18-25.	4.0	4
81	Preferential occupancy of Ca2+ dopant in La1-x Ca x InO3-δ (xÂ=Â0–0.20) perovskite: structural and electrical properties. Ionics, 2015, 21, 2839-2850.	2.4	13
82	Effect of two different dopants (Mg2+ and Ca2+) and processing parameters on \hat{I}^3 -phase stabilization and conductivity of Bi4V2O11 $\hat{a}^2\hat{I}^2$. Ceramics International, 2015, 41, 9496-9504.	4.8	3
83	Mechanical, dielectric and optical assessment of glass composites prepared using milling technique. Bulletin of Materials Science, 2015, 38, 1003-1008.	1.7	14
84	Effect of Processing Methods and Die Design Parameters on Green Properties of WC–Co Nanopowder Pellets. Materials and Manufacturing Processes, 2015, 30, 1329-1341.	4.7	4
85	Crystallization and Glass Transition Kinetics of Na ₂ s-P ₂ s ₅ -Based Super-Ionic Glasses. Particulate Science and Technology, 2015, 33, 166-171.	2.1	4
86	Effect of intermediate oxide (Y2O3) on thermal, structural and optical properties of lithium borosilicate glasses. Journal of Molecular Structure, 2015, 1086, 239-245.	3.6	86
87	Structural and optical properties of 30Li2O–55B2O3–5ZnO–xTiO2–(10â^'x)V2O5, (0â‰xâ‰10) glasses Journal of Non-Crystalline Solids, 2015, 414, 51-58.	^{S,} 3.1	22
88	Structural, Conductivity, and Dielectric Relaxation Studies of La0.9Ba0.1GaO3-Î'System. Particulate Science and Technology, 2015, 33, 113-118.	2.1	1
89	Î ³ -Phase stabilized Bi4BaxV2â^'xO11â^'δ (0.0 ≠x ≠0.20): Structural, thermal and conducting properties. Solic State Ionics, 2015, 278, 233-238.	2.7	7
90	Effect of Processing Variables on WC Nanoparticles Synthesized by Solvothermal Route. Particulate Science and Technology, 2015, 33, 47-52.	2.1	4

#	Article	IF	CITATIONS
91	Structure and crystallization kinetics of Li2O modified sodium-phosphate glasses. Journal of Molecular Structure, 2015, 1094, 174-182.	3.6	12
92	Optical and thermal properties of (70Ââ^'Âx)SiO2â€"xNa2Oâ€"15CaOâ€"10Al2O3â€"5TiO2 (10Ââ‰ÂxÂâ‰Â2 of Thermal Analysis and Calorimetry, 2015, 120, 1163-1171.	5) glasses.	Journal 12
93	Thermal and kinetic parameters of 30Li2O–55B2O3–5ZnO–xTiO2–(10â°'x)V2O5 (0Ââ‰ÂxÂâ‰Â10) g of Thermal Analysis and Calorimetry, 2015, 122, 189-195.	asses. Jou	rnal 11
94	Synthesis of carbon coated tungsten carbide nano powder using hexane as carbon source and its structural, thermal and electrocatalytic properties. International Journal of Hydrogen Energy, 2015, 40, 5628-5637.	7.1	23
95	Effect of dopants ionic radii on dielectric properties of Bi4V2â^'x ME x O11â^'δ (where xÂ=Â0.0 and 0.15;) Tj ETQ	q1_1 _{2:3} 0.784	13
96	Structural and optical study of γ –BIMEVOX; ME: Ba2+ and Sr2+. AIP Conference Proceedings, 2015, , .	0.4	1
97	Synthesis of grape-like carbon nanospheres and their application as photocatalyst and electrocatalyst. Journal of Solid State Chemistry, 2015, 232, 108-117.	2.9	12
98	FTIR spectral analysis and mechanical properties of sodium phosphate glass–ceramics. Journal of Molecular Structure, 2015, 1083, 278-285.	3.6	72
99	Structural, Thermal, and Electrical Study of Bi _{0.5} Sr _{0.5} MnO ₃ . Particulate Science and Technology, 2015, 33, 178-183.	2.1	4
100	Nanocrystalline glass ceramics: Structural, physical and optical properties. Journal of Molecular Structure, 2015, 1081, 211-216.	3.6	35
101	Structural and electrical behavior of Ba-doped LaGaO3 composite electrolyte. Journal of Renewable and Sustainable Energy, 2014, 6, .	2.0	6
102	Photocatalytic degradation of diethyl phthalate using TiO2 nanoparticles. , 2014, , .		0
103	Selfâ€Healing Behavior of Barium–Lanthanum–Borosilicate Glass and Its Reactivity with Different Electrolytes for <scp>SOFC</scp> Applications. International Journal of Applied Ceramic Technology, 2014, 11, 136-145.	2.1	11
104	Influence of Ca2+ substitution on thermal, structural, and conductivity behavior of Bi1â^'xCaxFeO3â^'y (0.40Ââ%ÂxÂâ%Â0.55). Journal of Thermal Analysis and Calorimetry, 2014, 118, 255-262.	3.6	2
105	Optical, mechanical and TEM assessment of titania-doped Bi2V1â^'x Ti x O5â‹5â^'δ bismuth vanadate oxides. Bulletin of Materials Science, 2014, 37, 1647-1656.	1.7	2
106	Effect of Thermal Treatment on Chemical Interaction Between Yttrium Borosilicate Glass Sealants and <scp>YSZ</scp> for Planar Solid Oxide Fuel Cells. International Journal of Applied Glass Science, 2014, 5, 410-420.	2.0	9
107	Structural and thermal analysis of in situ synthesized C–WC nanocomposites. Ceramics International, 2014, 40, 5157-5164.	4.8	26

Structural and optical properties of La and Gd substituted Bi4 â^ x M x V2O11 â^ δ (0.1 â‰â€‰x â6€‰20, 73-81.

#	Article	IF	CITATIONS
109	Photocatalytic degradation of azo dyes using Zn-doped and undoped TiO2 nanoparticles. Applied Physics A: Materials Science and Processing, 2014, 116, 371-378.	2.3	46
110	Effect of Ca substitution on structural, magnetic and dielectric properties of BiFeO3. Phase Transitions, 2014, 87, 527-540.	1.3	15
111	Effect of two different sites substitution on structural and optical properties of Bi4V2O11â^î. Physica B: Condensed Matter, 2014, 440, 78-82.	2.7	10
112	Role of Sr 2+ substitution on structural, thermal and conducting behavior of Bi 1â^'x Sr x FeO 3 (0.40â‰) Tj ETQ	q0,0,0 rgE 4.8	BT /Overlock
113	A comparative structural, thermal and electrical study of Ca2+, Sr2+ substituted BiMnO3. Solid State lonics, 2014, 268, 23-30.	2.7	10
114	Effect of TiO2on the photocatalytic properties of bismuth oxide. Environmental Technology (United) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
115	Interaction Study of Yttriaâ€Based Glasses with Highâ€Temperature Electrolyte forÂSOFC. Fuel Cells, 2014, 14, 635-644.	2.4	7
116	Effect of in-situ reduction of Fe3+ on physical, structural and optical properties of calcium sodium silicate glasses and glass ceramics. Journal of Non-Crystalline Solids, 2014, 386, 100-104.	3.1	37
117	Structural and optical properties of quenched and heat-treated Bi4V2â^'xMgxO11â^'δ (0.0â%xâ%0.20). Ceramics International, 2014, 40, 14801-14808.	4.8	4
118	Structural and optical properties of Bilâ^'xAxFeO3 (A=Sr, Ca; 0.40⩽x⩽0.55). Journal of Molecular Structure, 2014, 1074, 186-192.	3.6	18
119	A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. Journal of Biomedical Materials Research - Part A, 2014, 102, 254-274.	4.0	440
120	Structural and optical properties of Bi4Mg0.05V1.95O11 $\hat{a}^{*}\hat{l}^{*}$ synthesized via melt quench technique. , 2014, , .		1
121	Williamson–Hall study on synthesized nanocrystalline tungsten carbide (WC). Applied Physics A: Materials Science and Processing, 2013, 113, 237-242.	2.3	40
122	Structural and thermal properties of glass composite seals and their chemical compatibility with Crofer 22APU for solid oxide fuel cells applications. Journal of Power Sources, 2013, 240, 458-470.	7.8	24
123	Simulation of thermal stress within diffusion couple of composite seals with Crofer 22APU for solid oxide fuel cells applications. Journal of Power Sources, 2013, 242, 305-313.	7.8	7
124	Study of the Structural and Electrical Behaviour of Ca Doped LaInO ₃ Electrolyte Material. Transactions of the Indian Ceramic Society, 2013, 72, 32-35.	1.0	11
125	Single step synthesis of nano vanadium carbide—V8C7 phase. International Journal of Refractory Metals and Hard Materials, 2013, 36, 106-110.	3.8	33
126	Dielectric properties of Ti substituted Bi2â^'Ti O3+/2 ceramics. Ceramics International, 2013, 39, 1785-1792.	4.8	9

#	Article	IF	CITATIONS
127	Structural and thermal properties of Na2S–P2S5 glass and glass ceramics. Journal of Non-Crystalline Solids, 2013, 379, 89-94.	3.1	15
128	Structural and optical properties of melt quenched barium doped bismuth vanadate. Physica B: Condensed Matter, 2013, 431, 89-93.	2.7	14
129	Structural and dielectric properties of Bi 1â^'x Sr x MnO 3 (0.40≠x â‰0.55). Ceramics International, 2013, 39, 6165-6174.	4.8	23
130	Structural and thermal properties of in-situ reduced WO3 to W powder. Powder Technology, 2013, 237, 9-13.	4.2	24
131	A new cadmium complex material for yellowish-green light electroluminescent devices. , 2013, , .		1
132	Synthesis and characterization of zinc doped nano TiO [sub 2] for efficient photocatalytic degradation of Eriochrome Black T. , 2013, , .		1
133	Synthesis of vanadium carbide nanoparticles by thermal decomposition of the precursor., 2013,,.		2
134	Electric relaxation behavior of Bi[sub 0.5]Sr[sub 0.5]FeO[sub 3] ceramic: An electric modulus approach. , 2013 , , .		0
135	Na ₂ S-P ₂ S ₅ Based Super-Ionic Glasses for Solid Electrolytes. Transactions of the Indian Ceramic Society, 2013, 72, 5-9.	1.0	6
136	Glass Stability and Effect of Heat-Treatment Duration on Chemical Interaction between Calcium Lanthanum Borosilicate Glass Sealant and Electrolytes. Journal of the Electrochemical Society, 2012, 159, F717-F724.	2.9	17
137	Glass Sealants and Their Interaction Study with Interconnect Materials. Transactions of the Indian Ceramic Society, 2012, 71, 203-206.	1.0	5
138	Thermodynamic Stability of Yttrium Alkaline Earth Borosilicate Glasses and Their Compatibility with Crofer for SOFC. Journal of the Electrochemical Society, 2012, 159, B277-B284.	2.9	22
139	Structural, thermal, and electrical properties of (100â°'x) ZrO2 (x) Bi2O3 compound. Ionics, 2012, 18, 759-767.	2.4	2
140	Assessment of in vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: An optico-analytical approach. Materials Science and Engineering C, 2012, 32, 1941-1947.	7.3	47
141	Microstructural Analysis of Interfaces between Lanthanum Contained Glass and Two Different Electrolytes for SOFC Applications. Fuel Cells, 2012, 12, 739-748.	2.4	15
142	Chemical compatibility between MgO–SiO2–B2O3–La2O3 glass sealant and low, high temperature electrolytes for solid oxide fuel cell applications. International Journal of Hydrogen Energy, 2012, 37, 17235-17244.	7.1	15
143	Effect of modifiers field strength on optical, structural and mechanical properties of lanthanum borosilicate glasses. Journal of Non-Crystalline Solids, 2012, 358, 2589-2596.	3.1	87
144	Optical, structural, and mechanical properties of different valenceâ€cationâ€doped bismuth vanadate oxides. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1231-1238.	1.8	18

#	Article	IF	CITATIONS
145	Preparation of Y2Ti2O7 pyrochlore using high-energy ball milling and their structural, thermal and conducting properties. Ionics, 2012, 18, 479-486.	2.4	11
146	Structural, thermal and electrical properties of Ti4+ substituted Bi2O3 solid systems. Ceramics International, 2012, 38, 2065-2070.	4.8	13
147	Chemical interaction study between lanthanum based different alkaline earth glass sealants with Crofer 22 APU for solid oxide fuel cell applications. International Journal of Hydrogen Energy, 2012, 37, 3883-3889.	7.1	27
148	Microstructural study of Crofer 22 APU-glass interface for SOFC application. International Journal of Hydrogen Energy, 2012, 37, 3839-3847.	7.1	17
149	lonic conductivity, structural and thermal properties of Ca2+ doped Y2Ti2O7 pyrochlores for SOFC. International Journal of Hydrogen Energy, 2012, 37, 3857-3864.	7.1	35
150	Interfacial study between high temperature SiO2–B2O3–AO–La2O3 (AÂ=ÂSr, Ba) glass seals and Crofer 22APU for solid oxide fuel cell applications. International Journal of Hydrogen Energy, 2012, 37, 6862-6874.	7.1	36
151	Studies on Sr substituted lanthanum indate as mixed ionic conductor. Journal of Materials Science, 2012, 47, 4520-4529.	3.7	10
152	Effect of mercaptopropionic acid as linker on structural, thermal, and optical properties of TiO2–CdSe nanocomposites. Journal of Thermal Analysis and Calorimetry, 2012, 107, 555-560.	3.6	3
153	Study on the Formation of Crystalline Phases in Lanthanum Borosilicate Glass. Transactions of the Indian Ceramic Society, 2011, 70, 17-22.	1.0	3
154	Influence of Y2O3 on structural and optical properties of SiO2–BaO–ZnO–xB2O3–(10â^'x) Y2O3 glasses and glass ceramics. Journal of Non-Crystalline Solids, 2011, 357, 858-863.	3.1	113
155	lonic conductivity, structural and thermal properties of pure and Sr2+ doped Y2Ti2O7 pyrochlores for SOFC. Solid State Sciences, 2011, 13, 1960-1966.	3.2	35
156	Crystal structure and magnetic property of Nd doped BiFeO3 nanocrytallites. Materials Letters, 2011, 65, 591-594.	2.6	68
157	Thermal, structural and crystallization kinetics of SiO2–BaO–ZnO–B2O3–Al2O3 glass samples as a sealant for SOFC. International Journal of Hydrogen Energy, 2011, 36, 14948-14955.	7.1	34
158	Thermal and crystallization kinetics of yttrium and lanthanum calcium silicate glass sealants for solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 14971-14976.	7.1	30
159	Dielectric behaviour of emeraldine base polymer–ZnO nanocomposite film in the low to medium frequency. Journal of Nanoparticle Research, 2011, 13, 2109-2116.	1.9	38
160	Sintering behavior of nanostructured WC–Co composite. Ceramics International, 2011, 37, 1415-1422.	4.8	33
161	Structural, thermal and crystallization kinetics of ZnO–BaO–SiO2–B2O3–Mn2O3 based glass sealants for solid oxide fuel cells. Ceramics International, 2011, 37, 2101-2107.	4.8	18
162	Influence of Processing Conditions on the Formation of Y ₂ Ti ₂ O ₇ and YTiO ₃ Phases. Transactions of the Indian Ceramic Society, 2011, 70, 221-226.	1.0	3

#	Article	IF	Citations
163	Effect of A2O3 (A=La, Y, Cr, Al) on thermal and crystallization kinetics of borosilicate glass sealants for solid oxide fuel cells. Ceramics International, 2010, 36, 1621-1628.	4.8	35
164	Structural, thermal and transport properties of \$\$ {ext{B}}{{ext{i}}_4}{{ext{V}}_{2} - {ext{x}}}}{ext{x}}{ext{x}}{ext{x}}}{ext{x}}}{ext{x}}}{ext{x}}{ext{x}}{ext{x}}}{ext{x}}{ext{x}}}{ext{x}}{ext{x}}}{ext{x}}{ext{x}}}{ext{x}}{ext{x}}{ext{x}}}{ext{x}}{ext{x}}}{ext{x}}{ex) ½0 4 16,	14
165	Synthesis and characterization of Bi-doped zirconia for solid electrolyte. Ionics, 2010, 16, 549-554.	2.4	9
166	Optimization of processing parameters for the synthesis of tungsten carbide (WC) nanoparticles through solvo thermal route. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2477-2483.	2.7	30
167	Structural and optical properties of barium borosilicate glasses. Physica B: Condensed Matter, 2010, 405, 204-207.	2.7	37
168	Thermal and physical properties of 30SrO â \in "40SiO2â \in "20B2O3â \in "10A2O3 (A = La, Y, Al) glasses and their chemical reaction with bismuth vanadate for SOFC. Solid State lonics, 2010, 181, 79-85.	2.7	49
169	Microstructural, thermal, and conducting properties of Bi _{4â^'<i>x</i>y} Pb _{<i>x</i>} V ₂ O _{11â^'<i>Î</i>} (0 â‰â€‰ <i (a)="" 2010,="" 207,="" 321-326.<="" and="" applications="" as="" compound="" electrolyte.="" materials="" physica="" science,="" solid="" solidi="" status="" th=""><th>>x</th></i> â€% 1.8	>x	‰ậ‰â€‰0 2
170	Compositional dependence of in-vitro bioactivity in sodium calcium borate glasses. Journal of Physics and Chemistry of Solids, 2009, 70, 1137-1141.	4.0	44
171	Ionic conductivity and structural properties of MnO-doped Bi4V2O11 system. Ionics, 2009, 15, 567-570.	2.4	12
172	Influence of addition of Al ₂ O ₃ on physical, structural, acoustical and inâ€vitro bioactive properties of phosphate glasses. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1447-1455.	1.8	16
173	Structural and ionic conductive properties of Bi4V2â^'xTixO11â^'Î' (0â%xâ%0.4) compound. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 158, 63-68.	3.5	24
174	Microstructural and electrical behavior of Bi4V2â^'xCuxO11â^'Î' (0â‰xâ‰0.4). Ceramics International, 2009, 35, 221-227.	4.8	14
175	Structural, optical and bioactive properties of calcium borosilicate glasses. Ceramics International, 2009, 35, 3401-3406.	4.8	80
176	Structural, thermal and conductive properties of Bi4â^'xMxV2O11 (M=La, Gd; Oâ@½xâ@½0.4) compounds. Current Applied Physics, 2009, 9, 1467-1473.	2.4	7
177	Crystallization kinetics of BaO–ZnO–Al2O3–B2O3–SiO2 glass. Physica B: Condensed Matter, 2008, 403, 1738-1746.	2.7	30
178	Synthesis and characterization of bismuth vanadate electrolyte material with aluminium doping for SOFC application. International Journal of Hydrogen Energy, 2008, 33, 455-462.	7.1	54
179	Studies on thermal and structural properties of glasses as sealants for solid oxide fuel cells. International Journal of Hydrogen Energy, 2008, 33, 434-438.	7.1	67
180	Non-isothermal crystallization kinetics of ZnO–BaO–B2O3–SiO2 glass. Journal of Non-Crystalline Solids, 2008, 354, 3944-3951.	3.1	57

#	Article	IF	Citations
181	Optical and structural properties of Li2O–Al2O3–B2O3 glasses before and after γ-irradiation effects. Journal of Applied Physics, 2008, 104, .	2.5	36
182	Soluble Borate Glasses: In Vitro Analysis. Journal of the American Ceramic Society, 2007, 90, 467-471.	3.8	27
183	Effect of Y2O3 on the crystallization behavior of SiO2–MgO–B2O3–Al2O3 glasses. Journal of Materials Science, 2007, 42, 6426-6432.	3.7	60
184	Structural and acoustic investigations of calcium borate glasses. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2356-2364.	1.8	46
185	\hat{I}^3 -Irradiation effect on the acoustical properties of zinc lead borate glasses. Physica Status Solidi A, 2005, 202, 2720-2730.	1.7	12
186	Influence of Nucleating Agents on the Chemical Interaction of MgO-Al[sub 2]O[sub 3]-SiO[sub 2]-B[sub 2]O[sub 3] Glass Sealants with Components of SOFCs. Journal of the Electrochemical Society, 2004, 151, A558.	2.9	48
187	Chemical Interactions Between Aluminosilicate Base Sealants and the Components on the Anode Side of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2002, 149, A607.	2.9	95
188	Molar extinction coefficients of some carbohydrates in aqueous solutions. Pramana - Journal of Physics, 2002, 58, 521-528.	1.8	16
189	Study of nuclear quadrupole interactions in different environments of decaying atoms of 75Se by sum peak method. Applied Radiation and Isotopes, 2001, 54, 261-267.	1.5	4
190	Crystallisation kinetics in AO-Al2O3-SiO2-B2O3 glasses (A = Ba, Ca, Mg). Journal of Materials Science, 2000, 35, 3089-3096.	3.7	163
191	Characterization of SiO2-Na2O-Fe2O3-CaO-P2O5-B2O3 glass ceramics. Journal of Materials Science: Materials in Medicine, 1999, 10, 481-484.	3.6	28
192	Interaction of 662-keV Photons with Some Solutions of Urea. Nuclear Science and Engineering, 1999, 132, 58-64.	1.1	4
193	Electrical conductivity of Li2O-B2O3-Bi2O3: a mixed conductor. Solid State Ionics, 1996, 93, 147-158.	2.7	43
194	Study of Photon Attenuation Coefficients of Some Multielement Materials. Nuclear Science and Engineering, 1994, 116, 218-222.	1.1	4
195	K-Capture Probabilities to the Excited States of 152Sm in the Decay of 152Eu. Journal of the Physical Society of Japan, 1993, 62, 901-910.	1.6	2
196	Formation of metastable aluminium-based alloys by mechanical alloying. Journal of Materials Science Letters, 1992, 11, 858-861.	0.5	15
197	Ferromagnetic icosahedral Alî—¸Cuî—¸Mnî—¸Ge alloy by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 154, 79-84.	5.6	16
198	K-Capture Probabilities in the Decay of 175Hf. Journal of the Physical Society of Japan, 1988, 57, 3762-3765.	1.6	4