Kulvir Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5588464/publications.pdf

Version: 2024-02-01

		109321		110387	
198	5,540	35		64	
papers	citations	h-index		g-index	
					1
198	198	198		4576	
all docs	docs citations	times ranked			
an does	does citations	tilles ranked		citing authors	
			4		4

#	Article	IF	CITATIONS
1	Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Materials Science and Engineering C, 2019, 102, 844-862.	7.3	883
2	A review of bioactive glasses: Their structure, properties, fabrication and apatite formation. Journal of Biomedical Materials Research - Part A, 2014, 102, 254-274.	4.0	440
3	Crystallisation kinetics in AO-Al2O3-SiO2-B2O3 glasses (A = Ba, Ca, Mg). Journal of Materials Science, 2000, 35, 3089-3096.	3.7	163
4	Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceramics International, 2020, 46, 5521-5535.	4.8	141
5	Influence of Y2O3 on structural and optical properties of SiO2–BaO–ZnO–xB2O3–(10â^'x) Y2O3 glasses and glass ceramics. Journal of Non-Crystalline Solids, 2011, 357, 858-863.	3.1	113
6	Chemical Interactions Between Aluminosilicate Base Sealants and the Components on the Anode Side of Solid Oxide Fuel Cells. Journal of the Electrochemical Society, 2002, 149, A607.	2.9	95
7	Effect of modifiers field strength on optical, structural and mechanical properties of lanthanum borosilicate glasses. Journal of Non-Crystalline Solids, 2012, 358, 2589-2596.	3.1	87
8	Effect of intermediate oxide (Y2O3) on thermal, structural and optical properties of lithium borosilicate glasses. Journal of Molecular Structure, 2015, 1086, 239-245.	3.6	86
9	Structural, optical and bioactive properties of calcium borosilicate glasses. Ceramics International, 2009, 35, 3401-3406.	4.8	80
10	Effect of ZrO2 on dielectric, optical and structural properties of yttrium calcium borosilicate glasses. Ceramics International, 2017, 43, 722-727.	4.8	74
11	FTIR spectral analysis and mechanical properties of sodium phosphate glass–ceramics. Journal of Molecular Structure, 2015, 1083, 278-285.	3.6	72
12	Crystal structure and magnetic property of Nd doped BiFeO3 nanocrytallites. Materials Letters, 2011, 65, 591-594.	2.6	68
13	Studies on thermal and structural properties of glasses as sealants for solid oxide fuel cells. International Journal of Hydrogen Energy, 2008, 33, 434-438.	7.1	67
14	Ceramic biomaterials: Properties, state of the art and future prospectives. Ceramics International, 2021, 47, 28059-28074.	4.8	67
15	Agricultural wastes as a resource of raw materials for developing low-dielectric glass-ceramics. Scientific Reports, 2016, 6, 24617.	3.3	62
16	Effect of Y2O3 on the crystallization behavior of SiO2–MgO–B2O3–Al2O3 glasses. Journal of Materials Science, 2007, 42, 6426-6432.	3.7	60
17	Non-isothermal crystallization kinetics of ZnO–BaO–B2O3–SiO2 glass. Journal of Non-Crystalline Solids, 2008, 354, 3944-3951.	3.1	57
18	Synthesis and characterization of bismuth vanadate electrolyte material with aluminium doping for SOFC application. International Journal of Hydrogen Energy, 2008, 33, 455-462.	7.1	54

#	Article	IF	CITATIONS
19	Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles. International Journal of Environmental Science and Technology, 2016, 13, 849-856.	3.5	52
20	Biomass as a sustainable resource for valueâ€added modern materials: a review. Biofuels, Bioproducts and Biorefining, 2020, 14, 673-695.	3.7	51
21	Thermal and physical properties of 30SrO–40SiO2–20B2O3–10A2O3 (A = La, Y, Al) glasses and their chemical reaction with bismuth vanadate for SOFC. Solid State Ionics, 2010, 181, 79-85.	2.7	49
22	Influence of Nucleating Agents on the Chemical Interaction of MgO-Al[sub 2]O[sub 3]-SiO[sub 2]-B[sub 2]O[sub 3] Glass Sealants with Components of SOFCs. Journal of the Electrochemical Society, 2004, 151, A558.	2.9	48
23	Assessment of in vitro bioactivity of SiO2-BaO-ZnO-B2O3-Al2O3 glasses: An optico-analytical approach. Materials Science and Engineering C, 2012, 32, 1941-1947.	7.3	47
24	Structural and acoustic investigations of calcium borate glasses. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 2356-2364.	1.8	46
25	Photocatalytic degradation of azo dyes using Zn-doped and undoped TiO2 nanoparticles. Applied Physics A: Materials Science and Processing, 2014, 116, 371-378.	2.3	46
26	Compositional dependence of in-vitro bioactivity in sodium calcium borate glasses. Journal of Physics and Chemistry of Solids, 2009, 70, 1137-1141.	4.0	44
27	Electrical conductivity of Li2O-B2O3-Bi2O3: a mixed conductor. Solid State Ionics, 1996, 93, 147-158.	2.7	43
28	Effect of Variable Oxidation States of Vanadium on the Structural, Optical, and Dielectric Properties of B ₂ O ₃ –Li ₂ O–ZnO–V ₂ O ₅ Glasses. Journal of Physical Chemistry B, 2016, 120, 12168-12176.	2.6	41
29	Williamson–Hall study on synthesized nanocrystalline tungsten carbide (WC). Applied Physics A: Materials Science and Processing, 2013, 113, 237-242.	2.3	40
30	Bioactive glasses and glass–ceramics for hyperthermia treatment of cancer: state-of-art, challenges, and future perspectives. Materials Today Bio, 2021, 10, 100100.	5.5	40
31	Effect of MgO on bioactivity, hardness, structural and optical properties of SiO2–K2O–CaO–MgO glasses. Ceramics International, 2016, 42, 436-444.	4.8	39
32	Dielectric behaviour of emeraldine base polymer–ZnO nanocomposite film in the low to medium frequency. Journal of Nanoparticle Research, 2011, 13, 2109-2116.	1.9	38
33	Optical and thermal properties of glasses and glass-ceramics derived from agricultural wastes. Ceramics International, 2018, 44, 947-952.	4.8	38
34	Structural and optical properties of barium borosilicate glasses. Physica B: Condensed Matter, 2010, 405, 204-207.	2.7	37
35	Effect of in-situ reduction of Fe3+ on physical, structural and optical properties of calcium sodium silicate glasses and glass ceramics. Journal of Non-Crystalline Solids, 2014, 386, 100-104.	3.1	37
36	Optical and structural properties of Li2O–Al2O3–B2O3 glasses before and after γ-irradiation effects. Journal of Applied Physics, 2008, 104, .	2.5	36

#	Article	IF	Citations
37	Interfacial study between high temperature SiO2–B2O3–AO–La2O3 (AÂ=ÂSr, Ba) glass seals and Crofer 22APU for solid oxide fuel cell applications. International Journal of Hydrogen Energy, 2012, 37, 6862-6874.	7.1	36
38	Holey engineered 2D ZnO-nanosheets architecture for supersensitive ppm level H2 gas detection at room temperature. Sensors and Actuators B: Chemical, 2021, 326, 128839.	7.8	36
39	Effect of A2O3 (A=La, Y, Cr, Al) on thermal and crystallization kinetics of borosilicate glass sealants for solid oxide fuel cells. Ceramics International, 2010, 36, 1621-1628.	4.8	35
40	Ionic conductivity, structural and thermal properties of pure and Sr2+ doped Y2Ti2O7 pyrochlores for SOFC. Solid State Sciences, 2011, 13, 1960-1966.	3.2	35
41	Ionic conductivity, structural and thermal properties of Ca2+ doped Y2Ti2O7 pyrochlores for SOFC. International Journal of Hydrogen Energy, 2012, 37, 3857-3864.	7.1	35
42	Nanocrystalline glass ceramics: Structural, physical and optical properties. Journal of Molecular Structure, 2015, 1081, 211-216.	3.6	35
43	Thermal, structural and crystallization kinetics of SiO2–BaO–ZnO–B2O3–Al2O3 glass samples as a sealant for SOFC. International Journal of Hydrogen Energy, 2011, 36, 14948-14955.	7.1	34
44	Sintering behavior of nanostructured WC–Co composite. Ceramics International, 2011, 37, 1415-1422.	4.8	33
45	Single step synthesis of nano vanadium carbide—V8C7 phase. International Journal of Refractory Metals and Hard Materials, 2013, 36, 106-110.	3.8	33
46	Frequency independent low-k lithium borate nanocrystalline glass ceramic and glasses for microelectronic applications. Journal of Materials Chemistry C, 2016, 4, 3328-3336.	5.5	32
47	Review on silicate and borosilicateâ€based glass sealants and their interaction with components of solid oxide fuel cell. International Journal of Energy Research, 2021, 45, 20559-20582.	4.5	31
48	Crystallization kinetics of BaO–ZnO–Al2O3–B2O3–SiO2 glass. Physica B: Condensed Matter, 2008, 403, 1738-1746.	2.7	30
49	Optimization of processing parameters for the synthesis of tungsten carbide (WC) nanoparticles through solvo thermal route. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2477-2483.	2.7	30
50	Thermal and crystallization kinetics of yttrium and lanthanum calcium silicate glass sealants for solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 14971-14976.	7.1	30
51	Combined and individual doxorubicin/vancomycin drug loading, release kinetics and apatite formation for the CaO–CuO–P ₂ O ₅ –SiO ₂ –B ₂ O ₃ mesoporous glasses. RSC Advances, 2016, 6, 51046-51056.	3.6	29
52	Effect of Mn 2+ and Cu 2+ co-doping on structural and luminescent properties of ZnS nanoparticles. Ceramics International, 2017, 43, 7193-7201.	4.8	29
53	Recycling and utilization of agro-food waste ashes: syntheses of the glasses for wide-band gap semiconductor applications. Journal of Material Cycles and Waste Management, 2019, 21, 801-809.	3.0	29
54	Characterization of SiO2-Na2O-Fe2O3-CaO-P2O5-B2O3 glass ceramics. Journal of Materials Science: Materials in Medicine, 1999, 10, 481-484.	3.6	28

#	Article	IF	CITATIONS
55	Magnetic and bioactive properties of MnO2/Fe2O3 modified Na2O-CaO-P2O5-SiO2 glasses and nanocrystalline glass-ceramics. Ceramics International, 2016, 42, 11858-11865.	4.8	28
56	Antimicrobial and bioactive phosphate-free glass–ceramics for bone tissue engineering applications. Materials Science and Engineering C, 2018, 86, 9-17.	7.3	28
57	Soluble Borate Glasses: In Vitro Analysis. Journal of the American Ceramic Society, 2007, 90, 467-471.	3.8	27
58	Chemical interaction study between lanthanum based different alkaline earth glass sealants with Crofer 22 APU for solid oxide fuel cell applications. International Journal of Hydrogen Energy, 2012, 37, 3883-3889.	7.1	27
59	Effect of vanadium on the optical and physical properties of lithium borate glasses. Journal of Non-Crystalline Solids, 2016, 432, 393-398.	3.1	27
60	Structural and thermal analysis of in situ synthesized Câ€"WC nanocomposites. Ceramics International, 2014, 40, 5157-5164.	4.8	26
61	Na2O doped CeO2 and their structural, optical, conducting and dielectric properties. Physica B: Condensed Matter, 2018, 550, 189-198.	2.7	26
62	Effect of MgO on structural, thermal and conducting properties of V2-Mg O5- (x = 0.05–0.30) systems. Ceramics International, 2019, 45, 695-701.	4.8	25
63	Structural and ionic conductive properties of Bi4V2â^'xTixO11â^'Î^ (0â‰xâ‰0.4) compound. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2009, 158, 63-68.	3.5	24
64	Structural and thermal properties of glass composite seals and their chemical compatibility with Crofer 22APU for solid oxide fuel cells applications. Journal of Power Sources, 2013, 240, 458-470.	7.8	24
65	Structural and thermal properties of in-situ reduced WO3 to W powder. Powder Technology, 2013, 237, 9-13.	4.2	24
66	Growth control of molybdenum thin films with simultaneously improved adhesion and conductivity via sputtering for thin film solar cell application. Vacuum, 2019, 161, 347-352.	3.5	24
67	Structural and dielectric properties of Bi 1â^'x Sr x MnO 3 (0.40â% x â%0.55). Ceramics International, 2013, 39, 6165-6174.	4.8	23
68	Synthesis of carbon coated tungsten carbide nano powder using hexane as carbon source and its structural, thermal and electrocatalytic properties. International Journal of Hydrogen Energy, 2015, 40, 5628-5637.	7.1	23
69	Non-isothermal crystallization kinetics of K 2 O modified sodium-phosphate glasses. Journal of Non-Crystalline Solids, 2016, 440, 76-84.	3.1	23
70	Thermodynamic Stability of Yttrium Alkaline Earth Borosilicate Glasses and Their Compatibility with Crofer for SOFC. Journal of the Electrochemical Society, 2012, 159, B277-B284.	2.9	22
71	Structural and optical properties of 30Li2O–55B2O3–5ZnO–xTiO2–(10â^'x)V2O5, (0â‰xâ‰10) glasse Journal of Non-Crystalline Solids, 2015, 414, 51-58.	s. _{3.1}	22
72	Mixed alkaline earth modifiers effect on thermal, optical and structural properties of SrO-BaO-SiO2-B2O3-ZrO2 glass sealants. Journal of Non-Crystalline Solids, 2021, 564, 120812.	3.1	22

#	Article	IF	CITATIONS
7 3	Influence of vanadium oxide on non-isothermal crystallization kinetics of zinc lithium borate glasses. Journal of Non-Crystalline Solids, 2021, 553, 120471.	3.1	21
74	Effect of Field Strength and Electronegativity of CaO and MgO on Structural and Optical Properties of SiO2–K2O-CaO-MgO Glasses. Silicon, 2016, 8, 437-442.	3.3	20
7 5	Influence of CaO/MgO ratio on the crystallization kinetics and interfacial compatibility with crofer 22APU and YSZ of strontium based alumino-borosilicate glasses for SOFC applications. International Journal of Hydrogen Energy, 2017, 42, 16244-16257.	7.1	20
76	Effect of MnO on structural, optical and thermoluminescence properties of lithium borosilicate glasses. Journal of Luminescence, 2020, 219, 116872.	3.1	20
77	Structural, thermal and crystallization kinetics of ZnO–BaO–SiO2–B2O3–Mn2O3 based glass sealants for solid oxide fuel cells. Ceramics International, 2011, 37, 2101-2107.	4.8	18
78	Optical, structural, and mechanical properties of different valenceâ€cationâ€doped bismuth vanadate oxides. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1231-1238.	1.8	18
79	Structural and optical properties of Bilâ^'xAxFeO3 (A=Sr, Ca; 0.40â@½2xâ@½0.55). Journal of Molecular Structure, 2014, 1074, 186-192.	3.6	18
80	Glass Stability and Effect of Heat-Treatment Duration on Chemical Interaction between Calcium Lanthanum Borosilicate Glass Sealant and Electrolytes. Journal of the Electrochemical Society, 2012, 159, F717-F724.	2.9	17
81	Microstructural study of Crofer 22 APU-glass interface for SOFC application. International Journal of Hydrogen Energy, 2012, 37, 3839-3847.	7.1	17
82	Blue-green light emitting inherent luminescent glasses synthesized from agro-food wastes. Journal of Materials Science: Materials in Electronics, 2019, 30, 3871-3881.	2.2	17
83	Ferromagnetic icosahedral Alî—¸Cuî—¸Mnî—¸Ge alloy by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 154, 79-84.	5.6	16
84	Molar extinction coefficients of some carbohydrates in aqueous solutions. Pramana - Journal of Physics, 2002, 58, 521-528.	1.8	16
85	Influence of addition of Al ₂ O ₃ on physical, structural, acoustical and inâ€vitro bioactive properties of phosphate glasses. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1447-1455.	1.8	16
86	Study on single step solid state synthesis of WC@C nanocomposite and electrochemical stability of synthesized WC@C & Description (methanol/ethanol). Journal of Alloys and Compounds, 2016, 665, 186-196.	5.5	16
87	Intriguing role of TiO ₂ in glassâ€ceramics: Bioactive and magnetoâ€structural properties. Journal of the American Ceramic Society, 2018, 101, 2819-2830.	3.8	16
88	Mechanical and thermal properties of SrO/BaO modified Y2O3-Al2O3-B2O3-SiO2 glasses and their compatibility with solid oxide fuel cell components. Journal of Physics and Chemistry of Solids, 2018, 118, 248-254.	4.0	16
89	Synthesis of silica and carbon-based nanomaterials from rice husk ash by ambient fiery and furnace sweltering using a chemical method. Applied Surface Science Advances, 2022, 8, 100225.	6.8	16
90	Formation of metastable aluminium-based alloys by mechanical alloying. Journal of Materials Science Letters, 1992, 11, 858-861.	0.5	15

#	Article	IF	CITATIONS
91	Microstructural Analysis of Interfaces between Lanthanum Contained Glass and Two Different Electrolytes for SOFC Applications. Fuel Cells, 2012, 12, 739-748.	2.4	15
92	Chemical compatibility between MgO–SiO2–B2O3–La2O3 glass sealant and low, high temperature electrolytes for solid oxide fuel cell applications. International Journal of Hydrogen Energy, 2012, 37, 17235-17244.	7.1	15
93	Structural and thermal properties of Na2S–P2S5 glass and glass ceramics. Journal of Non-Crystalline Solids, 2013, 379, 89-94.	3.1	15
94	Effect of Ca substitution on structural, magnetic and dielectric properties of BiFeO3. Phase Transitions, 2014, 87, 527-540.	1.3	15
95	High hardness-high toughness WC-20Co nanocomposites: Effect of VC variation and sintering temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 663, 21-28.	5.6	15
96	Sr doped BiMO 3 (MÂ=ÂMn, Fe, Y) perovskites: Structure correlated thermal and electrical properties. Materials Chemistry and Physics, 2017, 187, 96-103.	4.0	15
97	Structural, optical, thermal and conducting properties of V2â^'xLixO5â^'δ (0.15 â‰â€‰x â‰â€‱0.30) Reports, 2020, 10, 1089.	systems.	Scientific 15
98	Microstructural and electrical behavior of Bi4V2â°'xCuxO11â^'Î' (0â‰xâ‰0.4). Ceramics International, 2009, 35, 221-227.	4.8	14
99	Structural, thermal and transport properties of \$\$ {ext{B}}{{ext{i}}_4}{{ext{V}}_{2} - {ext{x}}}}{{ext{G}}}{{ext{a}}_{ext{x}}}}{{ext{A}}}}{{ext{O}}_{1} - delta}\$\$\$ (0 â‰â€‰x x 0.4). lonics, 20 277-282.	D ½0 4 16,	14
100	Structural and optical properties of melt quenched barium doped bismuth vanadate. Physica B: Condensed Matter, 2013, 431, 89-93.	2.7	14
101	Mechanical, dielectric and optical assessment of glass composites prepared using milling technique. Bulletin of Materials Science, 2015, 38, 1003-1008.	1.7	14
102	Agro-waste ash and mineral oxides derived glass-ceramics and their interconnect study with Crofer 22 APU for SOFC application. Ceramics International, 2019, 45, 20501-20508.	4.8	14
103	Influence of TiO2 and thermal processing on morphological, structural and magnetic properties of Fe2O3/MnO2 modified glass-ceramics. Journal of Non-Crystalline Solids, 2019, 513, 64-69.	3.1	14
104	Structural, thermal and electrical properties of Ti4+ substituted Bi2O3 solid systems. Ceramics International, 2012, 38, 2065-2070.	4.8	13
105	Preferential occupancy of Ca2+ dopant in La1-x Ca x InO3-Î′ (xÂ=Â0–0.20) perovskite: structural and electrical properties. Ionics, 2015, 21, 2839-2850.	2.4	13
106	Optimization of High Conducting Na3Zr2Si2PO12 Phase by new Phosphate Salt for Solid Electrolyte. Silicon, 2017, 9, 411-419.	3.3	13
107	Transition metals (Mn, Ni, Co) doping in TiO2 nanoparticles and their effect on degradation of diethyl phthalate. International Journal of Environmental Science and Technology, 2018, 15, 2359-2368.	3. 5	13
108	Designing composition tuned glasses with enhanced properties for use as substrate in Cu2ZnSnS4 based thin film solar cells. Journal of Alloys and Compounds, 2020, 819, 152984.	5.5	13

#	ARTICLE <mml:math <="" th="" xmlns:mml="http://www.w3.org/1998/iviath/iviathiviL"><th>IF</th><th>Citations</th></mml:math>	IF	Citations
109	altimg="si1.svg"> <mml:mrow><mml:mi>D</mml:mi>>mml:msup><mml:mrow><mml:mi>y</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< th=""><th>4.8</th><th>13</th></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow>	4.8	13
110	Structural, thermal and electrical study of copper-doped strontium zirconate. Ionics, 2020, 26, 6233-6244.	2.4	13
111	^{ĵ3} -Irradiation effect on the acoustical properties of zinc lead borate glasses. Physica Status Solidi A, 2005, 202, 2720-2730.	1.7	12
112	Ionic conductivity and structural properties of MnO-doped Bi4V2O11 system. Ionics, 2009, 15, 567-570.	2.4	12
113	Structure and crystallization kinetics of Li2O modified sodium-phosphate glasses. Journal of Molecular Structure, 2015, 1094, 174-182.	3.6	12
114	Optical and thermal properties of (70Ââ [^] Âx)SiO2–xNa2O–15CaO–10Al2O3–5TiO2 (10Ââ‰ÂxÂâ‰Â25 of Thermal Analysis and Calorimetry, 2015, 120, 1163-1171.) glasses. J	ournal 12
115	Synthesis of grape-like carbon nanospheres and their application as photocatalyst and electrocatalyst. Journal of Solid State Chemistry, 2015, 232, 108-117.	2.9	12
116	Conductivity, dielectric, and structural studies of (30-x) SrO-xBaO-10Al2O3-45SiO2-5B2O3-10Y2O3 (5 â‰â€‰x â% 25) glasses. lonics, 2018, 24, 2343-2353.	2.4	12
117	Effect of transition metals (MO-TiO2, MnO2, Fe2O3, and ZnO) on crystallization and electrical conductivity of SiO2–CaO–Na2O–P2O5-based glass-ceramics. lonics, 2020, 26, 2959-2967.	2.4	12
118	Preparation of Y2Ti2O7 pyrochlore using high-energy ball milling and their structural, thermal and conducting properties. Ionics, 2012, 18, 479-486.	2.4	11
119	Study of the Structural and Electrical Behaviour of Ca Doped LalnO ₃ Electrolyte Material. Transactions of the Indian Ceramic Society, 2013, 72, 32-35.	1.0	11
120	Selfâ€Healing Behavior of Barium–Lanthanum–Borosilicate Glass and Its Reactivity with Different Electrolytes for <scp>SOFC</scp> Applications. International Journal of Applied Ceramic Technology, 2014, 11, 136-145.	2.1	11
121	Role of Sr 2+ substitution on structural, thermal and conducting behavior of Bi 1â^'x Sr x FeO 3 (0.40â‰) Tj ETQq	1 1 0.7843 4.8	314 rgBT (C
122	Thermal and kinetic parameters of 30Li2O–55B2O3–5ZnO–xTiO2–(10â^'x)V2O5 (0Ââ‰ÂxÂâ‰Â10) gla of Thermal Analysis and Calorimetry, 2015, 122, 189-195.	sses. Jourr	nal 11
123	Effect of Ni substitution on the structural and optical properties of SrZr1-xNixO3 (0.05â‰xâ‰0.20) perovskites. Journal of Molecular Structure, 2019, 1180, 659-664.	3.6	11
124	Studies on Sr substituted lanthanum indate as mixed ionic conductor. Journal of Materials Science, 2012, 47, 4520-4529.	3.7	10
125	Structural and optical properties of La and Gd substituted Bi4 â^' x M x V2O11 â^' δ (0.1 â%20, 73-81.	‰â€‰xâ€ 2.4	%â‰â€% 10
126	Effect of two different sites substitution on structural and optical properties of Bi4V2O11â^'Î'. Physica B: Condensed Matter, 2014, 440, 78-82.	2.7	10

#	Article	IF	CITATIONS
127	A comparative structural, thermal and electrical study of Ca2+, Sr2+ substituted BiMnO3. Solid State lonics, 2014, 268, 23-30.	2.7	10
128	Optical, thermal, electrical and morphological study of La 1-x Ca x GaO $3-\hat{l}'$ (x=0, 0.05, 0.10, 0.15 and 0.20) electrolyte. Journal of the European Ceramic Society, 2016, 36, 3165-3171.	5.7	10
129	Structural Investigation of Catalytically Grown Carbon Nanotubes. Materials and Manufacturing Processes, 2016, 31, 989-994.	4.7	10
130	Catalytic activity of tungsten carbide-carbon (WC@C) core-shell structured for ethanol electro-oxidation. Materials Chemistry and Physics, 2017, 186, 19-28.	4.0	10
131	Dielectric and optical properties of glasses and glass-ceramics synthesized from agro-food wastes. Materials Chemistry and Physics, 2020, 246, 122754.	4.0	10
132	Synthesis and characterization of Bi-doped zirconia for solid electrolyte. Ionics, 2010, 16, 549-554.	2.4	9
133	Dielectric properties of Ti substituted Bi2â^'Ti O3+/2 ceramics. Ceramics International, 2013, 39, 1785-1792.	4.8	9
134	Effect of Thermal Treatment on Chemical Interaction Between Yttrium Borosilicate Glass Sealants and <scp>YSZ</scp> for Planar Solid Oxide Fuel Cells. International Journal of Applied Glass Science, 2014, 5, 410-420.	2.0	9
135	Influence of thermal stability on dielectric properties of SiO2–K2O–CaO–MgO glasses. Journal of Thermal Analysis and Calorimetry, 2017, 128, 745-754.	3.6	9
136	Braunite phase embedded Y2O3/MnO2-Al2O3-CaO-SiO2 glass ceramics and their properties. Materials Research Bulletin, 2018, 98, 34-40.	5.2	9
137	Influence of anatase-brookite composition on photocatalytic degradation of diethyl phthalate. Ceramics International, 2021, 47, 30702-30710.	4.8	8
138	Structural, thermal and conductive properties of Bi4â^'xMxV2O11 (M=La, Gd; O⩽x⩽0.4) compounds. Current Applied Physics, 2009, 9, 1467-1473.	2.4	7
139	Simulation of thermal stress within diffusion couple of composite seals with Crofer 22APU for solid oxide fuel cells applications. Journal of Power Sources, 2013, 242, 305-313.	7.8	7
140	Interaction Study of Yttriaâ€Based Glasses with Highâ€Temperature Electrolyte forÂSOFC. Fuel Cells, 2014, 14, 635-644.	2.4	7
141	\hat{I}^3 -Phase stabilized Bi4BaxV2 \hat{I}^* xO11 \hat{I}^* 1 (0.0 \hat{I}^* 0 (0.0 I	2.7	7
142	Growth of different nanocrystalline phases in ZnO–Li2O–B2O3–TiO2–V2O5 glass and their effect on photoluminescence and photocatalytic activity. Ceramics International, 2022, 48, 20619-20626.	4.8	7
143	Na ₂ S-P ₂ S ₅ Based Super-Ionic Glasses for Solid Electrolytes. Transactions of the Indian Ceramic Society, 2013, 72, 5-9.	1.0	6
144	Structural and electrical behavior of Ba-doped LaGaO3 composite electrolyte. Journal of Renewable and Sustainable Energy, 2014, 6, .	2.0	6

#	Article	IF	CITATIONS
145	Influence of modifier on dielectric and ferroelectric properties of aluminosilicate glasses. Journal of Non-Crystalline Solids, 2017, 465, 26-30.	3.1	6
146	Effect of minor phase (CuO) on sinterability, grain size, and dielectric properties of CaCu3Ti4O12 ceramics. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	6
147	Glass Sealants and Their Interaction Study with Interconnect Materials. Transactions of the Indian Ceramic Society, 2012, 71, 203-206.	1.0	5
148	Effect of dopants ionic radii on dielectric properties of Bi4V2â^'x ME x O11â^'δ (where xÂ=Â0.0 and 0.15;) Tj ET	Qq0 <u>0</u> 00 rgl	BT <u> </u> Overlock
149	Effect of mixed oxide/fluoride bonding on the dielectric properties of oxyfluoride glasses. Journal of Materials Science: Materials in Electronics, 2017, 28, 18986-18993.	2.2	5
150	Bioactive calcium silicate glass synthesized from sustainable biomass wastes. Biofuels, Bioproducts and Biorefining, 2020, 14, 1141-1151.	3.7	5
151	Dysprosium doped and titanium activated calcium silicates for cool white light emitting diode derived from natural resources. Journal of Molecular Structure, 2021, 1227, 129665.	3.6	5
152	Influence of Al3+ doping for V5+ on the structural, optical, thermal and electrical properties of V2-Al O5- (x=0–0.20) ceramics. Ceramics International, 2021, 47, 10724-10732.	4.8	5
153	Samarium doped calcium silicate derived from agro-food wastes and their structural, optical and luminescent properties. Ceramics International, 2021, 47, 21588-21598. SrO effect on the structure, phase separation and crystallization kinetics of < mml:math	4.8	5
154	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si30.svg"> <mml:mi>o</mml:mi> C <mml:mi>a</mml:mi> <mml:mi>O</mml:mi> oOOOoo <td>ml:mi><mn <mml:msu< td=""><td>nl:mn>2</td></mml:msu<></mn b><mml:mi></mml:mi></td>	ml:mi> <mn <mml:msu< td=""><td>nl:mn>2</td></mml:msu<></mn b> <mml:mi></mml:mi>	nl:mn>2
155	Journal of Non-Crystalline Solids, 2022, 576, 121301. K-Capture Probabilities in the Decay of 175Hf. Journal of the Physical Society of Japan, 1988, 57, 3762-3765.	1.6	4
156	Study of Photon Attenuation Coefficients of Some Multielement Materials. Nuclear Science and Engineering, 1994, 116, 218-222.	1.1	4
157	Interaction of 662-keV Photons with Some Solutions of Urea. Nuclear Science and Engineering, 1999, 132, 58-64.	1.1	4
158	Study of nuclear quadrupole interactions in different environments of decaying atoms of 75Se by sum peak method. Applied Radiation and Isotopes, 2001, 54, 261-267.	1.5	4
159	Structural and optical properties of quenched and heat-treated Bi4V2â^'xMgxO11â^'Î^ (0.0â‰xâ‰0.20). Ceramics International, 2014, 40, 14801-14808.	4.8	4
160	Dielectric, optical and structural properties of Bi4V2â^'Sr O11â^' (0.05â‰xâ‰0.20). Journal of Physics and Chemistry of Solids, 2015, 85, 18-25.	4.0	4
161	Effect of Processing Methods and Die Design Parameters on Green Properties of WC–Co Nanopowder Pellets. Materials and Manufacturing Processes, 2015, 30, 1329-1341.	4.7	4
162	Crystallization and Glass Transition Kinetics of Na ₂ s-P ₂ s ₅ -Based Super-Ionic Glasses. Particulate Science and Technology, 2015, 33, 166-171.	2.1	4

#	Article	IF	CITATIONS
163	Effect of Processing Variables on WC Nanoparticles Synthesized by Solvothermal Route. Particulate Science and Technology, 2015, 33, 47-52.	2.1	4
164	Structural, Thermal, and Electrical Study of Bi _{0.5} Sr _{0.5} MnO ₃ . Particulate Science and Technology, 2015, 33, 178-183.	2.1	4
165	Synthesis, Characterization and Bioactivity of Fluoride Containing Borosilicate Glass Matrix Composite. Silicon, 2021, 13, 1723-1730.	3.3	4
166	Evaluating the role of composition and local structure on alkali outâ€diffusion in glasses for thinâ€film solar cells. Journal of the American Ceramic Society, 2021, 104, 851-859.	3.8	4
167	Dielectric Properties of the Calcium Silicate Glass-Ceramics Prepared from Agro-Food Wastes. Silicon, 2022, 14, 1489-1496.	3.3	4
168	In-vitro Biological Evaluation of Diopside Bio-ceramic Synthesized From Sustainable Agro-food Waste Ashes. Silicon, 2022, 14, 7423-7433.	3.3	4
169	Study on the Formation of Crystalline Phases in Lanthanum Borosilicate Glass. Transactions of the Indian Ceramic Society, 2011, 70, 17-22.	1.0	3
170	Influence of Processing Conditions on the Formation of Y ₂ Ti ₂ O ₇ and YTiO ₃ Phases. Transactions of the Indian Ceramic Society, 2011, 70, 221-226.	1.0	3
171	Effect of mercaptopropionic acid as linker on structural, thermal, and optical properties of TiO2–CdSe nanocomposites. Journal of Thermal Analysis and Calorimetry, 2012, 107, 555-560.	3.6	3
172	Effect of TiO2on the photocatalytic properties of bismuth oxide. Environmental Technology (United) Tj ETQq0 0	0 rgBT /O	verjock 10 Tf
173	Effect of two different dopants (Mg2+ and Ca2+) and processing parameters on \hat{I}^3 -phase stabilization and conductivity of Bi4V2O11 $\hat{a}^*\hat{I}$. Ceramics International, 2015, 41, 9496-9504.	4.8	3
174	Evolution of Ca2SiO4 and Ca3Si2O7 crystalline phases synthesized from agro-food waste ashes. AIP Conference Proceedings, 2019, , .	0.4	3
175	Diffusional investigation of alkali ions from composition tuned glass substrates to Mo-thin film for solar cell application. Surfaces and Interfaces, 2021, 24, 101060.	3.0	3
176	K-Capture Probabilities to the Excited States of 152Sm in the Decay of 152Eu. Journal of the Physical Society of Japan, 1993, 62, 901-910.	1.6	2
177	Microstructural, thermal, and conducting properties of Bi _{4â^'<i>x</i>} Pb _{<i>x</i>} V ₂ O _{11â^'<i>î'</i>} (0 â‰â€‰ compound as solid electrolyte. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 321-326.	<i>x,</i> â€	E‰ĝ‰â€‰ <mark>0</mark>
178	Structural, thermal, and electrical properties of (100â^'x) ZrO2 (x) Bi2O3 compound. Ionics, 2012, 18, 759-767.	2.4	2
179	Synthesis of vanadium carbide nanoparticles by thermal decomposition of the precursor., 2013,,.		2
180	Influence of Ca2+ substitution on thermal, structural, and conductivity behavior of Bilâ^'xCaxFeO3â^'y (0.40Ââ‰ÂxÂâ‰Â0.55). Journal of Thermal Analysis and Calorimetry, 2014, 118, 255-262.	3 . 6	2

#	Article	IF	Citations
181	Optical, mechanical and TEM assessment of titania-doped Bi2V1â^'x Ti x O5â<5â^'δ bismuth vanadate oxides. Bulletin of Materials Science, 2014, 37, 1647-1656.	1.7	2
182	Perovskite-structured cobalt-free cathode materials for solid oxide fuel cells., 2022,, 357-373.		2
183	A new cadmium complex material for yellowish-green light electroluminescent devices. , 2013, , .		1
184	Synthesis and characterization of zinc doped nano TiO[sub 2] for efficient photocatalytic degradation of Eriochrome Black T. , 2013, , .		1
185	Structural and optical properties of Bi4Mg0.05V1.95O11â^δ synthesized via melt quench technique. , 2014, , .		1
186	Structural, Conductivity, and Dielectric Relaxation Studies of La0.9Ba0.1GaO3-Î'System. Particulate Science and Technology, 2015, 33, 113-118.	2.1	1
187	Structural and optical study of γ –BIMEVOX; ME: Ba2+ and Sr2+. AIP Conference Proceedings, 2015, , .	0.4	1
188	Mechanical and physical properties of SrO-ZrO2 modified SODA lime borosilicate glasses. AIP Conference Proceedings, 2021, , .	0.4	1
189	Effect of TiO2 doping on structural and electrical properties of melt-quench V2â^'xTixO5â^'Î', 0.15 â‰â€‰x systems. Journal of Materials Science: Materials in Electronics, 2021, 32, 12594-12607.	:â€ <u>%</u> ,â‰â	쀉0.30
190	Photoluminescence and structural properties of airâ€reduced rareâ€earth (<scp>Eu</scp>) doped calcium silicates derived using biomass wastes. Biofuels, Bioproducts and Biorefining, 2022, 16, 562-575.	3.7	1
191	Electric relaxation behavior of Bi[sub 0.5]Sr[sub 0.5]FeO[sub 3] ceramic: An electric modulus approach., 2013,,.		0
192	Photocatalytic degradation of diethyl phthalate using TiO2 nanoparticles. , 2014, , .		0
193	Optical and photoluminescence properties of CaV2O6 functionalized by sodium doping. Materials Today Communications, 2021, 27, 102354.	1.9	0
194	Influence of samarium doping on the phase stability and optical properties of calcium silicates derived from agro-food wastes. Journal of Materials Science: Materials in Electronics, 2021, 32, 26397-26411.	2.2	0
195	Structural and optical properties of agro-food wastes derived glasses synthesized in two different crucibles. Materials Today: Proceedings, 2022, , .	1.8	0
196	Photoluminescent properties of rare-earth doped perovskite calcium silicates and related systems. , 2022, , 89-113.		0
197	X-Ray Photoelectron spectroscopy and high resolution TEM studies of glass composites. Journal of Physics: Conference Series, 2022, 2267, 012127.	0.4	0
198	An interfacial study between SrZr0.85Cu0.15O3- and barium oxide-containing borosilicate glass sealant for solid oxide fuel cell application. Materials Chemistry and Physics, 2022, , 126441.	4.0	0