Craig W Berridge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5586197/publications.pdf

Version: 2024-02-01

25 papers 2,498 citations

394421 19 h-index 610901 24 g-index

25 all docs

25 docs citations

25 times ranked

3161 citing authors

#	Article	IF	CITATIONS
1	Methylphenidate Preferentially Increases Catecholamine Neurotransmission within the Prefrontal Cortex at Low Doses that Enhance Cognitive Function. Biological Psychiatry, 2006, 60, 1111-1120.	1.3	544
2	Noradrenergic modulation of arousal. Brain Research Reviews, 2008, 58, 1-17.	9.0	297
3	Noradrenergic modulation of wakefulness/arousal. Sleep Medicine Reviews, 2012, 16, 187-197.	8.5	276
4	Distribution of dopamine ?-hydroxylase-like immunoreactive fibers within the shell subregion of the nucleus accumbens., 1997, 27, 230-241.		163
5	Hypocretin/orexin in arousal and stress. Brain Research, 2010, 1314, 91-102.	2.2	150
6	The Cognition-Enhancing Effects of Psychostimulants Involve Direct Action in the Prefrontal Cortex. Biological Psychiatry, 2015, 77, 940-950.	1.3	146
7	Psychostimulants as Cognitive Enhancers: The Prefrontal Cortex, Catecholamines, and Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2011, 69, e101-e111.	1.3	118
8	Engagement in a non-escape (displacement) behavior elicits a selective and lateralized suppression of frontal cortical dopaminergic utilization in stress. Synapse, 1999, 32, 187-197.	1.2	104
9	Differential Sensitivity to Psychostimulants Across Prefrontal Cognitive Tasks: Differential Involvement of Noradrenergic $\hat{l}\pm 1$ - and $\hat{l}\pm 2$ -Receptors. Biological Psychiatry, 2012, 71, 467-473.	1.3	83
10	Neural Substrates of Psychostimulant-Induced Arousal. Neuropsychopharmacology, 2006, 31, 2332-2340.	5.4	82
11	Differential cognitive actions of norepinephrine a2 and a1 receptor signaling in the prefrontal cortex. Brain Research, 2016, 1641, 189-196.	2.2	79
12	Psychostimulants and motivated behavior: Arousal and cognition. Neuroscience and Biobehavioral Reviews, 2013, 37, 1976-1984.	6.1	78
13	Engagement in a nonâ€escape (displacement) behavior elicits a selective and lateralized suppression of frontal cortical dopaminergic utilization in stress. Synapse, 1999, 32, 187-197.	1.2	72
14	Norepinephrine at the nexus of arousal, motivation and relapse. Brain Research, 2016, 1641, 207-216.	2.2	52
15	Corticotropin-Releasing Factor (CRF) circuit modulation of cognition and motivation. Neuroscience and Biobehavioral Reviews, 2019, 103, 50-59.	6.1	48
16	Working Memory Impairing Actions of Corticotropin-Releasing Factor (CRF) Neurotransmission in the Prefrontal Cortex. Neuropsychopharmacology, 2016, 41, 2733-2740.	5.4	42
17	A selective dopamine reuptake inhibitor improves prefrontal cortex-dependent cognitive function: Potential relevance to attention deficit hyperactivity disorder. Neuropharmacology, 2013, 64, 321-328.	4.1	36
18	Prefrontal Corticotropin-Releasing Factor (CRF) Neurons Act Locally to Modulate Frontostriatal Cognition and Circuit Function. Journal of Neuroscience, 2019, 39, 2080-2090.	3.6	31

#	ARTICLE	IF	CITATION
19	Hypocretins: Waking, Arousal, or Action?. Neuron, 2005, 46, 696-698.	8.1	25
20	The effects of clinically relevant doses of amphetamine and methylphenidate on signal detection and DRL in rats. Neuropharmacology, 2014, 79, 634-641.	4.1	24
21	Receptor and circuit mechanisms underlying differential procognitive actions of psychostimulants. Neuropsychopharmacology, 2019, 44, 1820-1827.	5 . 4	20
22	Stress Degrades Prefrontal Cortex Neuronal Coding of Goal-Directed Behavior. Cerebral Cortex, 2017, 27, bhw140.	2.9	17
23	New developments and future directions in understanding locus coeruleus – Norepinephrine (LC-NE) function. Brain Research, 2019, 1709, 81-84.	2.2	7
24	Prefrontal corticotropinâ€releasing factor neurons impair sustained attention via distal transmitter release. European Journal of Neuroscience, 2021, 54, 4182-4196.	2.6	3
25	Estrus cycle-dependent working memory effects of prefrontal cortex corticotropin-releasing factor neurotransmission. Neuropsychopharmacology, 2022, 47, 2016-2023.	5 . 4	1