Takayuki Harada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/558581/publications.pdf

Version: 2024-02-01

79 papers 4,493 citations

35 h-index 110387 64 g-index

81 all docs

81 docs citations

81 times ranked

4552 citing authors

#	Article	IF	CITATIONS
1	Intragenic deletion in the gene encoding ubiquitin carboxy-terminal hydrolase in gad mice. Nature Genetics, 1999, 23, 47-51.	21.4	467
2	Microglia–Müller Glia Cell Interactions Control Neurotrophic Factor Production during Light-Induced Retinal Degeneration. Journal of Neuroscience, 2002, 22, 9228-9236.	3.6	362
3	The potential role of glutamate transporters in the pathogenesis of normal tension glaucoma. Journal of Clinical Investigation, 2007, 117, 1763-1770.	8.2	285
4	Functions of the two glutamate transporters GLAST and GLT-1 in the retina. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4663-4666.	7.1	222
5	Modification of Glial–Neuronal Cell Interactions Prevents Photoreceptor Apoptosis during Light-Induced Retinal Degeneration. Neuron, 2000, 26, 533-541.	8.1	212
6	Neuroprotection, Growth Factors and BDNF-TrkB Signalling in Retinal Degeneration. International Journal of Molecular Sciences, 2016, 17, 1584.	4.1	157
7	Targeting Oxidative Stress for Treatment of Glaucoma and Optic Neuritis. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-8.	4.0	125
8	Regulation of the severity of neuroinflammation and demyelination by TLRâ€ASK1â€p38 pathway. EMBO Molecular Medicine, 2010, 2, 504-515.	6.9	123
9	Molecular regulation of visual system development: more than meets the eye. Genes and Development, 2007, 21, 367-378.	5.9	114
10	Potential role of glial cell line-derived neurotrophic factor receptors in Mýller glial cells during light-induced retinal degeneration. Neuroscience, 2003, 122, 229-235.	2.3	105
11	Role of Apoptosis Signal-Regulating Kinase 1 in Stress-Induced Neural Cell Apoptosis in Vivo. American Journal of Pathology, 2006, 168, 261-269.	3 . 8	104
12	Glia- and neuron-specific functions of TrkB signalling during retinal degeneration and regeneration. Nature Communications, 2011 , 2 , 189 .	12.8	90
13	ASK1 deficiency attenuates neural cell death in GLAST-deficient mice, a model of normal tension glaucoma. Cell Death and Differentiation, 2010, 17, 1751-1759.	11.2	83
14	Dock3 induces axonal outgrowth by stimulating membrane recruitment of the WAVE complex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7586-7591.	7.1	77
15	Inhibition of ASK1-p38 pathway prevents neural cell death following optic nerve injury. Cell Death and Differentiation, 2013, 20, 270-280.	11.2	74
16	Spermidine promotes retinal ganglion cell survival and optic nerve regeneration in adult mice following optic nerve injury. Cell Death and Disease, 2015, 6, e1720-e1720.	6.3	72
17	Neurotrophin-3 Is Required for Appropriate Establishment of Thalamocortical Connections. Neuron, 2002, 36, 623-634.	8.1	71
18	Dock3 Stimulates Axonal Outgrowth via GSK-3β-Mediated Microtubule Assembly. Journal of Neuroscience, 2012, 32, 264-274.	3.6	71

#	Article	IF	CITATIONS
19	Glutamate transport by retinal Mþller cells in glutamate/aspartate transporterâ€knockout mice. Glia, 2005, 49, 184-196.	4.9	69
20	Role of Ubiquitin Carboxy Terminal Hydrolase-L1 in Neural Cell Apoptosis Induced by Ischemic Retinal Injury in Vivo. American Journal of Pathology, 2004, 164, 59-64.	3.8	68
21	Spermidine Alleviates Severity of Murine Experimental Autoimmune Encephalomyelitis., 2011, 52, 2696.		62
22	Effect of electrical stimulation on IGF-1 transcription by L-type calcium channels in cultured retinal MÃ $\frac{1}{4}$ ller cells. Japanese Journal of Ophthalmology, 2008, 52, 217-223.	1.9	60
23	Dock3 attenuates neural cell death due to NMDA neurotoxicity and oxidative stress in a mouse model of normal tension glaucoma. Cell Death and Differentiation, 2013, 20, 1250-1256.	11.2	60
24	Inhibition of glial cell activation ameliorates the severity of experimental autoimmune encephalomyelitis. Neuroscience Research, 2007, 59, 457-466.	1.9	56
25	Pim-2 kinase is an important target of treatment for tumor progression and bone loss in myeloma. Leukemia, 2015, 29, 207-217.	7.2	55
26	Valproic acid prevents retinal degeneration in a murine model of normal tension glaucoma. Neuroscience Letters, 2015, 588, 108-113.	2.1	55
27	Effect of p75NTR on the regulation of naturally occurring cell death and retinal ganglion cell number in the mouse eye. Developmental Biology, 2006, 290, 57-65.	2.0	50
28	Dock GEFs and their therapeutic potential: Neuroprotection and axon regeneration. Progress in Retinal and Eye Research, 2014, 43, 1-16.	15.5	49
29	Dock3 interaction with a glutamate-receptor NR2D subunit protects neurons from excitotoxicity. Molecular Brain, 2013, 6, 22.	2.6	45
30	Renin–angiotensin system regulates neurodegeneration in a mouse model of normal tension glaucoma. Cell Death and Disease, 2014, 5, e1333-e1333.	6.3	44
31	Spermidine Ameliorates Neurodegeneration in a Mouse Model of Normal Tension Glaucoma., 2015, 56, 5012.		44
32	Valproic Acid Prevents NMDA-Induced Retinal Ganglion Cell Death via Stimulation of Neuronal TrkB Receptor Signaling. American Journal of Pathology, 2015, 185, 756-764.	3.8	44
33	Neurotrophic Factor Receptors in Epiretinal Membranes After Human Diabetic Retinopathy. Diabetes Care, 2002, 25, 1060-1065.	8.6	43
34	Recent advances in genetically modified animal models of glaucoma and their roles in drug repositioning. British Journal of Ophthalmology, 2019, 103, 161-166.	3.9	41
35	Brimonidine prevents neurodegeneration in a mouse model of normal tension glaucoma. Cell Death and Disease, 2014, 5, e1341-e1341.	6.3	40
36	ASK1 in neurodegeneration. Advances in Biological Regulation, 2017, 66, 63-71.	2.3	40

3

#	Article	IF	CITATIONS
37	Interleukin-1 Stimulates Glutamate Uptake in Glial Cells by Accelerating Membrane Trafficking of Na ⁺ /K ⁺ -ATPase via Actin Depolymerization. Molecular and Cellular Biology, 2008, 28, 3273-3280.	2.3	39
38	Intracellular sortilin expression pattern regulates proNGF-induced naturally occurring cell death during development. Cell Death and Differentiation, 2007, 14, 1552-1554.	11.2	38
39	Pharmacological detection of AMPA receptor heterogeneity by use of two allosteric potentiators in rat hippocampal cultures. British Journal of Pharmacology, 1998, 123, 1294-1303.	5.4	36
40	Survival of Alpha and Intrinsically Photosensitive Retinal Ganglion Cells in NMDA-Induced Neurotoxicity and a Mouse Model of Normal Tension Glaucoma., 2019, 60, 3696.		35
41	Differential effects of N-acetylcysteine on retinal degeneration in two mouse models of normal tension glaucoma. Cell Death and Disease, 2019, 10, 75.	6.3	33
42	Role of Neurotrophin-4/5 in Neural Cell Death during Retinal Development and Ischemic Retinal Injury In Vivo., 2005, 46, 669.		29
43	Interleukin-1 attenuates normal tension glaucoma-like retinal degeneration in EAAC1-deficient mice. Neuroscience Letters, 2009, 465, 160-164.	2.1	29
44	Caloric restriction promotes cell survival in a mouse model of normal tension glaucoma. Scientific Reports, 2016, 6, 33950.	3.3	27
45	Dock3 regulates <scp>BDNF</scp> â€ <scp>T</scp> rk <scp>B</scp> signaling for neurite outgrowth by forming a ternary complex with <scp>E</scp> lmo and <scp>R</scp> ho <scp>G</scp> . Genes To Cells, 2012, 17, 688-697.	1.2	26
46	Expression of intraocular peroxisome proliferator-activated receptor gamma in patients with proliferative diabetic retinopathy. Journal of Diabetes and Its Complications, 2015, 29, 275-281.	2.3	26
47	Edaravone suppresses retinal ganglion cell death in a mouse model of normal tension glaucoma. Cell Death and Disease, 2017, 8, e2934-e2934.	6.3	23
48	Dock3 protects myelin in the cuprizone model for demyelination. Cell Death and Disease, 2014, 5, e1395-e1395.	6.3	22
49	Brimonidine suppresses loss of retinal neurons and visual function in a murine model of optic neuritis. Neuroscience Letters, 2015, 592, 27-31.	2.1	22
50	Arundic acid attenuates retinal ganglion cell death by increasing glutamate/aspartate transporter expression in a model of normal tension glaucoma. Cell Death and Disease, 2015, 6, e1693-e1693.	6.3	21
51	Effect of geranylgeranylacetone on the protection of retinal ganglion cells in a mouse model of normal tension glaucoma. Heliyon, 2016, 2, e00191.	3.2	21
52	DOCK8 is expressed in microglia, and it regulates microglial activity during neurodegeneration in murine disease models. Journal of Biological Chemistry, 2019, 294, 13421-13433.	3.4	21
53	TrkB Signaling in Retinal Glia Stimulates Neuroprotection after Optic Nerve Injury. American Journal of Pathology, 2015, 185, 3238-3247.	3.8	20
54	Valproic acid and ASK1 deficiency ameliorate optic neuritis and neurodegeneration in an animal model of multiple sclerosis. Neuroscience Letters, 2017, 639, 82-87.	2.1	20

#	Article	IF	Citations
55	Purinergic dysregulation causes hypertensive glaucoma–like optic neuropathy. JCI Insight, 2017, 2, .	5.0	20
56	Normal tension glaucoma-like degeneration of the visual system in aged marmosets. Scientific Reports, 2019, 9, 14852.	3.3	20
57	The Renin-Angiotensin System Regulates Neurodegeneration in a Mouse Model of Optic Neuritis. American Journal of Pathology, 2017, 187, 2876-2885.	3 . 8	19
58	Suppression of Oxidative Stress as Potential Therapeutic Approach for Normal Tension Glaucoma. Antioxidants, 2020, 9, 874.	5.1	19
59	Topical Ripasudil Suppresses Retinal Ganglion Cell Death in a Mouse Model of Normal Tension Glaucoma. , 2018, 59, 2080.		18
60	The existence of protein kinase C in cone photoreceptors in the rat retina. Current Eye Research, 1994, 13, 547-550.	1.5	15
61	Variants in DOCK3 cause developmental delay and hypotonia. European Journal of Human Genetics, 2019, 27, 1225-1234.	2.8	15
62	Effect of geranylgeranylacetone on optic neuritis in experimental autoimmune encephalomyelitis. Neuroscience Letters, 2009, 462, 281-285.	2.1	13
63	Delayed Onset of Experimental Autoimmune Encephalomyelitis in Olig1 Deficient Mice. PLoS ONE, 2010, 5, e13083.	2.5	13
64	Role of neuritin in retinal ganglion cell death in adult mice following optic nerve injury. Scientific Reports, 2018, 8, 10132.	3.3	12
65	Roles of the DOCK-D family proteins in a mouse model of neuroinflammation. Journal of Biological Chemistry, 2020, 295, 6710-6720.	3.4	12
66	EAAT1 variants associated with glaucoma. Biochemical and Biophysical Research Communications, 2020, 529, 943-949.	2.1	11
67	Dock3 overexpression and p38 MAPK inhibition synergistically stimulate neuroprotection and axon regeneration after optic nerve injury. Neuroscience Letters, 2014, 581, 89-93.	2.1	10
68	Edaravone Prevents Retinal Degeneration in Adult Mice Following Optic Nerve Injury., 2017, 58, 4908.		9
69	Cytoprotective Effect of Astaxanthin in a Model of Normal Intraocular Pressure Glaucoma. Journal of Ophthalmology, 2020, 2020, 1-6.	1.3	9
70	Visual function in patients with optic neuritis associated with acute transverse myelopathy in multiple sclerosis. Japanese Journal of Ophthalmology, 1995, 39, 290-4.	1.9	9
71	Dock3-NMDA receptor interaction as a target for glaucoma therapy. Histology and Histopathology, 2017, 32, 215-221.	0.7	9
72	Role of animal models in glaucoma research. Neural Regeneration Research, 2020, 15, 1257.	3.0	8

#	Article	IF	CITATIONS
73	Neuroprotective effect of geranylgeranylacetone against ischemia-induced retinal injury. Molecular Vision, 2007, 13, 1601-7.	1.1	8
74	Topical ripasudil stimulates neuroprotection and axon regeneration in adult mice following optic nerve injury. Scientific Reports, 2020, 10, 15709.	3.3	6
75	ASK1 signaling regulates phase-specific glial interactions during neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	6
76	Expression of Epiplakin1 in the developing and adult mouse retina. Japanese Journal of Ophthalmology, 2010, 54, 85-88.	1.9	3
77	Expression of NG2-positive cells during optic neuritis. Japanese Journal of Ophthalmology, 2010, 54, 100-102.	1.9	1
78	Genetic inhibition of collapsin response mediator proteinâ€2 phosphorylation ameliorates retinal ganglion cell death in normalâ€ŧension glaucoma models. Genes To Cells, 0, , .	1.2	1
79	Effects of lighting environment on the degeneration of retinal ganglion cells in glutamate/aspartate transporter deficient mice, a mouse model of normal tension glaucoma. Biochemistry and Biophysics Reports, 2022, 29, 101197.	1.3	0