List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5584035/publications.pdf Version: 2024-02-01

ΔΝΝΑ DE ΙΠΑΝ

#	Article	IF	CITATIONS
1	A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in MATLAB. Chemometrics and Intelligent Laboratory Systems, 2005, 76, 101-110.	1.8	964
2	MCR-ALS GUI 2.0: New features and applications. Chemometrics and Intelligent Laboratory Systems, 2015, 140, 1-12.	1.8	611
3	Multivariate Curve Resolution (MCR) from 2000: Progress in Concepts and Applications. Critical Reviews in Analytical Chemistry, 2006, 36, 163-176.	1.8	573
4	Chemometrics applied to unravel multicomponent processes and mixtures. Analytica Chimica Acta, 2003, 500, 195-210.	2.6	484
5	Multivariate Curve Resolution (MCR). Solving the mixture analysis problem. Analytical Methods, 2014, 6, 4964-4976.	1.3	469
6	Combining hard- and soft-modelling to solve kinetic problems. Chemometrics and Intelligent Laboratory Systems, 2000, 54, 123-141.	1.8	287
7	Comprehensive data analysis of femtosecond transient absorption spectra: A review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13, 1-27.	5.6	268
8	Multivariate image analysis: A review with applications. Chemometrics and Intelligent Laboratory Systems, 2011, 107, 1-23.	1.8	250
9	Vibrational spectroscopic image analysis of biological material using multivariate curve resolution–alternating least squares (MCR-ALS). Nature Protocols, 2015, 10, 217-240.	5.5	248
10	Assessment of new constraints applied to the alternating least squares method. Analytica Chimica Acta, 1997, 346, 307-318.	2.6	184
11	Spectroscopic imaging and chemometrics: a powerful combination for global and local sample analysis. TrAC - Trends in Analytical Chemistry, 2004, 23, 70-79.	5.8	171
12	Comparison of three-way resolution methods for non-trilinear chemical data sets. Journal of Chemometrics, 2001, 15, 749-771.	0.7	167
13	Application of chemometric methods to environmental analysis of organic pollutants: A review. Talanta, 2010, 80, 1052-1067.	2.9	119
14	Multivariate Curve Resolution: 50 years addressing the mixture analysis problem – A review. Analytica Chimica Acta, 2021, 1145, 59-78.	2.6	116
15	Resolution and segmentation of hyperspectral biomedical images by Multivariate Curve Resolution-Alternating Least Squares. Analytica Chimica Acta, 2011, 705, 182-192.	2.6	100
16	Modeling Temperature-Dependent Protein Structural Transitions by Combined Near-IR and Mid-IR Spectroscopies and Multivariate Curve Resolution. Analytical Chemistry, 2003, 75, 5592-5601.	3.2	94
17	Application of a Combination of Hard and Soft Modeling for Equilibrium Systems to the Quantitative Analysis of pH-Modulated Mixture Samples. Analytical Chemistry, 2003, 75, 641-647.	3.2	90
18	Application of a novel resolution approach combining soft- and hard-modelling features to investigate temperature-dependent kinetic processes. Analytica Chimica Acta, 2001, 442, 337-350.	2.6	86

#	Article	IF	CITATIONS
19	Factor analysis of hyphenated chromatographic data. Journal of Chromatography A, 2007, 1158, 184-195.	1.8	85
20	Comparison between the direct trilinear decomposition and the multivariate curve resolution-alternating least squares methods for the resolution of three-way data sets. Chemometrics and Intelligent Laboratory Systems, 1998, 40, 19-32.	1.8	82
21	Use of local rankâ€based spatial information for resolution of spectroscopic images. Journal of Chemometrics, 2008, 22, 291-298.	0.7	81
22	Detection and Resolution of Intermediate Species in Protein Folding Processes Using Fluorescence and Circular Dichroism Spectroscopies and Multivariate Curve Resolution. Analytical Chemistry, 2002, 74, 6031-6039.	3.2	73
23	Relevant aspects of quantification and sample heterogeneity in hyperspectral image resolution. Chemometrics and Intelligent Laboratory Systems, 2012, 117, 169-182.	1.8	70
24	Photodegradation study of decabromodiphenyl ether by UV spectrophotometry and a hybrid hard- and soft-modelling approach. Analytica Chimica Acta, 2008, 618, 18-28.	2.6	69
25	Local rank analysis for exploratory spectroscopic image analysis. Fixed Size Image Window-Evolving Factor Analysis. Chemometrics and Intelligent Laboratory Systems, 2005, 77, 64-74.	1.8	64
26	Multiset Data Analysis: Extended Multivariate Curve Resolution. , 2009, , 473-505.		64
27	Monitoring polymorphic transformations by using in situ Raman hyperspectral imaging and image multiset analysis. Analytica Chimica Acta, 2014, 819, 15-25.	2.6	63
28	Application of correlation constrained multivariate curve resolution alternating least-squares methods for determination of compounds of interest in biodiesel blends using NIR and UV–visible spectroscopic data. Talanta, 2014, 125, 233-241.	2.9	58
29	A mixed hard- and soft-modelling approach to study and monitor enzymatic systems in biological fluids. Analytica Chimica Acta, 2006, 567, 245-254.	2.6	55
30	Purity assessment and resolution of tetracycline hydrochloride samples analysed using high-performance liquid chromatography with diode array detection. Journal of Chromatography A, 1999, 832, 67-86.	1.8	54
31	Three-way data analysis applied to multispectroscopic monitoring of protein folding. Analytica Chimica Acta, 2001, 446, 185-195.	2.6	54
32	Use of Raman spectroscopy and chemometrics to distinguish blue ballpoint pen inks. Forensic Science International, 2015, 249, 73-82.	1.3	53
33	Chemometric tools for classification and elucidation of protein secondary structure from infrared and circular dichroism spectroscopic measurements. Proteins: Structure, Function and Bioinformatics, 2006, 63, 527-541.	1.5	52
34	Solvatochromic parameters for binary mixtures and a correlation with equilibrium constants. Part I. Dioxane-water mixtures. Journal of Solution Chemistry, 1992, 21, 147-162.	0.6	51
35	Hybrid hard- and soft-modeling applied to difference spectra. Chemometrics and Intelligent Laboratory Systems, 2007, 89, 26-35.	1.8	51
36	Solvent classification based on solvatochromic parameters: a comparison with the Snyder approach. TrAC - Trends in Analytical Chemistry, 1997, 16, 52-62.	5.8	50

#	Article	IF	CITATIONS
37	Local rank exploratory analysis of evolving rank-deficient systems. Chemometrics and Intelligent Laboratory Systems, 2004, 70, 11-21.	1.8	50
38	Quantification of paracetamol through tablet blister packages by Raman spectroscopy and multivariate curve resolution-alternating least squares. Chemometrics and Intelligent Laboratory Systems, 2013, 125, 58-66.	1.8	50
39	A mixed hard- and soft-modelling approach for the quantitative determination of oxipurines and uric acid in human urine. Analytica Chimica Acta, 2006, 567, 236-244.	2.6	49
40	Comprehensive liquid chromatography–ion-spray tandem mass spectrometry method for the identification and quantification of eight hydroxylated brominated diphenyl ethers in environmental matrices. Journal of Mass Spectrometry, 2007, 42, 890-899.	0.7	49
41	Application of the local regression method interval partial least-squares to the elucidation of protein secondary structure. Analytical Biochemistry, 2005, 336, 231-242.	1.1	48
42	Characterization of Methanolâ^'Water and Acetonitrileâ^'Water Association Using Multivariate Curve Resolution Methods. Analytical Chemistry, 2000, 72, 1956-1963.	3.2	46
43	Application of the needle algorithm for exploratory analysis and resolution of HPLC-DAD data. Chemometrics and Intelligent Laboratory Systems, 1996, 33, 133-145.	1.8	44
44	pH- and time-dependent hemoglobin transitions: A case study for process modelling. Analytica Chimica Acta, 2007, 595, 198-208.	2.6	44
45	Determination of phenolic compounds and authentication of PDO Lambrusco wines by HPLC-DAD and chemometric techniques. Analytica Chimica Acta, 2013, 761, 34-45.	2.6	44
46	Chemometric Strategies To Unmix Information and Increase the Spatial Description of Hyperspectral Images: A Single-Cell Case Study. Analytical Chemistry, 2013, 85, 6303-6311.	3.2	43
47	Multivariate unmixing approaches on Raman images of plant cell walls: new insights or overinterpretation of results?. Plant Methods, 2018, 14, 52.	1.9	43
48	Chromatographic and spectroscopic data fusion analysis for interpretation of photodegradation processes. Journal of Chromatography A, 2011, 1218, 9260-9268.	1.8	42
49	Monitoring and Modeling of Protein Processes Using Mass Spectrometry, Circular Dichroism, and Multivariate Curve Resolution Methods. Analytical Chemistry, 2006, 78, 4768-4778.	3.2	41
50	Combining multiset resolution and segmentation for hyperspectral image analysis of biological tissues. Analytica Chimica Acta, 2015, 881, 24-36.	2.6	40
51	Comparison of PARAFAC2 and MCR-ALS for resolution of an analytical liquid dilution system. Chemometrics and Intelligent Laboratory Systems, 2006, 83, 13-25.	1.8	38
52	Matrix augmentation for breaking rank-deficiency: A case study. Chemometrics and Intelligent Laboratory Systems, 2006, 80, 209-214.	1.8	37
53	Multivariate Curve Resolution-Alternating Least Squares for Spectroscopic Data. Data Handling in Science and Technology, 2016, 30, 5-51.	3.1	37
54	A soft-modeling approach to interpret thermodynamic and conformational transitions of polynucleotides. Biophysical Journal, 1997, 73, 2937-2948.	0.2	34

#	Article	IF	CITATIONS
55	Blending process modeling and control by multivariate curve resolution. Talanta, 2013, 117, 492-504.	2.9	34
56	Quantitation of Mixtures of Diprotic Organic Acids by FT-IR Flow Titrations and Multivariate Curve Resolution. Applied Spectroscopy, 2002, 56, 40-50.	1.2	33
57	Introduction to Multivariate Curve Resolution. , 2009, , 249-259.		33
58	Comparison of second-order multivariate methods for screening and determination of PAHs by total fluorescence spectroscopy. Chemometrics and Intelligent Laboratory Systems, 2014, 132, 63-74.	1.8	33
59	Two-Way Data Analysis: Multivariate Curve Resolution – Iterative Resolution Methods. , 2009, , 325-344.		32
60	Relevant aspects of unmixing/resolution analysis for the interpretation of biological vibrational hyperspectral images. TrAC - Trends in Analytical Chemistry, 2017, 94, 130-140.	5.8	32
61	Application of a sparseness constraint in multivariate curve resolution– Alternating least squares. Analytica Chimica Acta, 2018, 1000, 100-108.	2.6	32
62	Multivariate curve resolution of rapid-scan FTIR difference spectra of quinone photoreduction in bacterial photosynthetic membranes. Analytical and Bioanalytical Chemistry, 2007, 387, 1863-1873.	1.9	31
63	Modeling strategies for pharmaceutical blend monitoring and end-point determination by near-infrared spectroscopy. International Journal of Pharmaceutics, 2014, 473, 219-231.	2.6	31
64	Distribution of a low dose compound within pharmaceutical tablet by using multivariate curve resolution on Raman hyperspectral images. Journal of Pharmaceutical and Biomedical Analysis, 2015, 103, 35-43.	1.4	31
65	Handling Different Spatial Resolutions in Image Fusion by Multivariate Curve Resolution-Alternating Least Squares for Incomplete Image Multisets. Analytical Chemistry, 2018, 90, 6757-6765.	3.2	31
66	Multivariate Curve Resolution for Quantitative Analysis. Data Handling in Science and Technology, 2015, 29, 247-292.	3.1	30
67	Confocal Raman imaging and chemometrics applied to solve forensic document examination involving crossed lines and obliteration cases by a depth profiling study. Analyst, The, 2017, 142, 1106-1118.	1.7	30
68	Characterization of Reversed-Phase Liquid Chromatographic Stationary Phases Using Solvatochromism and Multivariate Curve Resolution. Analytical Chemistry, 1999, 71, 5225-5234.	3.2	29
69	Monitoring and Interpretation of Photoinduced Biochemical Processes by Rapid-Scan FTIR Difference Spectroscopy and Hybrid Hard and Soft Modeling. Journal of Physical Chemistry B, 2009, 113, 6031-6040.	1.2	27
70	Multivariate Curve Resolution Applied to Hyperspectral Imaging Analysis of Chocolate Samples. Applied Spectroscopy, 2015, 69, 993-1003.	1.2	27
71	Unravelling the Metabolic Progression of Breast Cancer Cells to Bone Metastasis by Coupling Raman Spectroscopy and a Novel Use of Mcr-Als Algorithm. Analytical Chemistry, 2018, 90, 5594-5602.	3.2	27
72	Three-way data analysis of pollutant degradation profiles monitored using liquid chromatography-diode array detection. Journal of Chemometrics, 1999, 13, 331-341.	0.7	26

#	Article	IF	CITATIONS
73	Chemometrics description of measurement error structure: Study of an ultrafast absorption spectroscopy experiment. Analytica Chimica Acta, 2009, 642, 19-26.	2.6	26
74	Understanding the Formation of Heartwood in Larch Using Synchrotron Infrared Imaging Combined With Multivariate Analysis and Atomic Force Microscope Infrared Spectroscopy. Frontiers in Plant Science, 2019, 10, 1701.	1.7	26
75	Factor analysis applied to the study of the effects of solvent composition and nature of the inert electrolyte on the protonation constants in dioxane—water mixtures. Analytica Chimica Acta, 1993, 283, 548-558.	2.6	24
76	Application of multivariate curve resolution to the temperature-induced unfolding of α-chymotrypsin. Analytica Chimica Acta, 2005, 544, 159-166.	2.6	24
77	Hybrid hard- and soft-modeling approach for the resolution of convoluted femtosecond spectrokinetic data. Chemometrics and Intelligent Laboratory Systems, 2011, 105, 74-82.	1.8	23
78	Chemometric strategies for the study of the complexation of Al(III) ions with model molecule of humic substances from UV–vis data sets. Analytica Chimica Acta, 2005, 544, 337-344.	2.6	22
79	Ubiquinol formation in isolated photosynthetic reaction centres monitored by time-resolved differential FTIR in combination with 2D correlation spectroscopy and multivariate curve resolution. Analytical and Bioanalytical Chemistry, 2011, 399, 1999-2014.	1.9	22
80	Chemometric determination of PAHs in aerosol samples by fluorescence spectroscopy and secondâ€order data analysis algorithms. Journal of Chemometrics, 2014, 28, 260-271.	0.7	22
81	A new matching image preprocessing for image data fusion. Chemometrics and Intelligent Laboratory Systems, 2017, 164, 32-42.	1.8	22
82	Data fusion strategies to combine sensor and multivariate model outputs for multivariate statistical process control. Analytical and Bioanalytical Chemistry, 2020, 412, 2151-2163.	1.9	22
83	Assessment of solvent parameters and their correlation with protonation constants in dioxane—water mixtures using factor analysis. Chemometrics and Intelligent Laboratory Systems, 1991, 12, 29-38.	1.8	20
84	Determination of the End Point of a Chemical Synthesis Process Using On-Line Measured Mid-Infrared Spectra. Applied Spectroscopy, 2000, 54, 601-607.	1.2	20
85	Focus on the potential of hybrid hard―and softâ€MCR–ALS in time resolved spectroscopy. Journal of Chemometrics, 2008, 22, 666-673.	0.7	20
86	Study of the photodegradation of 2-bromophenol under UV and sunlight by spectroscopic, chromatographic and chemometric techniques. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 910, 138-148.	1.2	20
87	High-throughput carotenoid profiling using multivariate curve resolution. Analytical and Bioanalytical Chemistry, 2013, 405, 5075-5086.	1.9	20
88	Screening and quantification of proteinaceous binders in medieval paints based on μ-Fourier transform infrared spectroscopy and multivariate curve resolution alternating least squares. Chemometrics and Intelligent Laboratory Systems, 2014, 134, 148-157.	1.8	20
89	Process Monitoring of Moisture Content and Mass Transfer Rate in a Fluidised Bed with a Low Cost Inline MEMS NIR Sensor. Pharmaceutical Research, 2020, 37, 84.	1.7	19
90	Comprehensive description of the photodegradation of bromophenols using chromatographic monitoring and chemometric tools. Talanta, 2011, 83, 1134-1146.	2.9	18

#	Article	IF	CITATIONS
91	Evaluation of the adsorption and rate constants of a photocatalytic degradation by means of HS-MCR-ALS. Study of process variables using experimental design. Chemometrics and Intelligent Laboratory Systems, 2012, 114, 64-71.	1.8	18
92	Study of conformational transitions of i-motif DNA using time-resolved fluorescence and multivariate analysis methods. Nucleic Acids Research, 2019, 47, 6590-6605.	6.5	18
93	Multivariate Curve Resolution. , 2006, , 417-474.		17
94	Multivariate curve resolution – Alternating least squares applied to the investigation of ultrafast competitive photoreactions. Analytica Chimica Acta, 2013, 788, 8-16.	2.6	17
95	Multivariate curve resolution for hyperspectral image analysis. Data Handling in Science and Technology, 2019, 32, 115-150.	3.1	17
96	Experimental monitoring and data analysis tools for protein folding. Analytica Chimica Acta, 2009, 632, 52-62.	2.6	16
97	Process modeling and control applied to real-time monitoring of distillation processes by near-infrared spectroscopy. Analytica Chimica Acta, 2017, 985, 41-53.	2.6	16
98	Multivariate Soft-Modeling To Predict Radiocesium Soil-to-Plant Transfer. Environmental Science & Technology, 2008, 42, 4029-4036.	4.6	15
99	Data fusion of LIBS and PIL hyperspectral imaging: Understanding the luminescence phenomenon of a complex mineral sample. Analytica Chimica Acta, 2022, 1192, 339368.	2.6	15
100	Multivariate Curve Resolution: A Different Way To Examine Chemical Data. ACS Symposium Series, 2015, , 95-128.	0.5	14
101	i-motif structures in long cytosine-rich sequences found upstream of the promoter region of the SMARCA4 gene. Biochimie, 2017, 140, 20-33.	1.3	14
102	MALDI imaging mass spectrometry and chemometric tools to discriminate highly similar colorectal cancer tissues. Talanta, 2020, 208, 120455.	2.9	14
103	Correlation of acid-base properties of solutes with the polarity parameters and other solvatochromic parameters of dioxane-water mixtures. Inorganica Chimica Acta, 1991, 187, 187-195.	1.2	12
104	Two-Way Data Analysis: Evolving Factor Analysis. , 2009, , 261-274.		12
105	Local rank-based spatial information for improvement of remote sensing hyperspectral imaging resolution. Talanta, 2016, 146, 1-9.	2.9	12
106	New chemometric approach MCR-ALS to unmix EPR spectroscopic data from complex mixtures. Journal of Magnetic Resonance, 2014, 248, 27-35.	1.2	11
107	Study of time-dependent structural changes of laponite colloidal system by means of near-infrared spectroscopy and hybrid hard- and soft-modelling multivariate curve resolution–alternating least squares. Chemometrics and Intelligent Laboratory Systems, 2015, 142, 285-292.	1.8	11
108	Data Fusion by Multivariate Curve Resolution. Data Handling in Science and Technology, 2019, , 205-233.	3.1	11

#	Article	IF	CITATIONS
109	3D and 4D Image Fusion: Coping with Differences in Spectroscopic Modes among Hyperspectral Images. Analytical Chemistry, 2020, 92, 9591-9602.	3.2	11
110	ICRM-2011 international chemometrics research meeting. Chemometrics and Intelligent Laboratory Systems, 2012, 111, 66.	1.8	10
111	Assessment of tissue-specific multifactor effects in environmental –omics studies of heterogeneous biological samples: Combining hyperspectral image information and chemometrics. Talanta, 2019, 194, 390-398.	2.9	10
112	Multiset Data Analysis: Extended Multivariate Curve Resolution. , 2020, , 305-336.		10
113	Effect of physicochemical factors and use of milk powder on milk rennet-coagulation: Process understanding by near infrared spectroscopy and chemometrics. Food Control, 2021, 119, 107494.	2.8	10
114	Characterization of the Polarity of Reversed-Phase Liquid Chromatographic Stationary Phases in the Presence of 1-Propanol Using Solvatochromism and Multivariate Curve Resolution. Analytical Chemistry, 2001, 73, 290-297.	3.2	9
115	Acid recovery from copper metallurgical process streams polluted with arsenic by diffusion dialysis. Journal of Environmental Chemical Engineering, 2021, 9, 104692.	3.3	9
116	Multivariate Curve Resolution Slicing of Multiexponential Time-Resolved Spectroscopy Fluorescence Data. Analytical Chemistry, 2021, 93, 12504-12513.	3.2	9
117	Three-Way Curve Resolution Applied to the Study of Solvent Effect on the Thermodynamic and Conformational Transitions Related to the Protonation of Polycytidylic Acid. Analytical Biochemistry, 1997, 249, 174-183.	1.1	8
118	Extraction of Pure Spectral Signatures and Corresponding Chemical Maps from EPR Imaging Data Sets: Identifying Defects on a CaF ₂ Surface Due to a Laser Beam Exposure. Analytical Chemistry, 2015, 87, 3929-3935.	3.2	8
119	Hyperspectral image analysis. When space meets Chemistry. Journal of Chemometrics, 2018, 32, e2985.	0.7	8
120	Preprocessing Tools Applied to Improve the Assessment of Aldrin Effects on Prostate Cancer Cells Using Raman Spectroscopy. Applied Spectroscopy, 2018, 72, 489-500.	1.2	8
121	Combining hyperspectral imaging and chemometrics to assess and interpret the effects of environmental stressors on zebrafish eye images at tissue level. Journal of Biophotonics, 2018, 11, e201700089.	1.1	8
122	Image Fusion. Data Handling in Science and Technology, 2019, , 311-344.	3.1	8
123	Application of a self-modeling curve resolution approach to the study of solvent effects on the acid-base and copper(II)-complexing behavior of polyuridylic acid. Journal of Inorganic Biochemistry, 1996, 63, 155-173.	1.5	7
124	Determination of a mixture of gamma-emitting radionuclides using solid scintillation detectors and multivariate calibration. Analytica Chimica Acta, 1999, 379, 121-133.	2.6	7
125	Multi-way analysis for investigation of industrial pectin using an analytical liquid dilution system. Chemometrics and Intelligent Laboratory Systems, 2006, 84, 9-20.	1.8	6
126	Design of Heterogeneity Indices for Blending Quality Assessment Based on Hyperspectral Images and Variographic Analysis. Analytical Chemistry, 2020, 92, 15880-15889.	3.2	6

#	Article	IF	CITATIONS
127	Use of physiological information based on grayscale images to improve mass spectrometry imaging data analysis from biological tissues. Analytica Chimica Acta, 2019, 1074, 69-79.	2.6	5
128	Introduction to Multivariate Curve Resolution. , 2020, , 85-94.		5
129	SWiVIA – Sliding window variographic image analysis for real-time assessment of heterogeneity indices in blending processes monitored with hyperspectral imaging. Analytica Chimica Acta, 2021, 1180, 338852.	2.6	5
130	Multivariate Curve Resolution Methods for Food Chemistry. Data Handling in Science and Technology, 2013, 28, 235-263.	3.1	4
131	Systematic comparison and potential combination between multivariate curve resolution–alternating least squares (<scp>MCRâ€ALS</scp>) and bandâ€ŧarget entropy minimization (<scp>BTEM</scp>). Journal of Chemometrics, 2018, 32, e3000.	0.7	4
132	Acid number, viscosity and end-point detection in a multiphase high temperature polymerisation process using an online miniaturised MEMS Fabry-Pérot interferometer. Talanta, 2021, 224, 121735.	2.9	4
133	Linear unmixing protocol for hyperspectral image fusion analysis applied to a case study of vegetal tissues. Scientific Reports, 2021, 11, 18665.	1.6	4
134	Linear Soft-Modeling: Introduction. , 2009, , 207-210.		3
135	Setting local rank constraints by orthogonal projections for image resolution analysis: Application to the determination of a low dose pharmaceutical compound. Analytica Chimica Acta, 2015, 892, 49-58.	2.6	3
136	New strategy to identify radicals in a time evolving EPR data set by multivariate curve resolution-alternating least squares. Analytica Chimica Acta, 2016, 947, 9-15.	2.6	3
137	Study of light-induced formation of photodimers in the i-motif nucleic acid structure by rapid-scan FTIR difference spectroscopy and hybrid hard- and soft-modelling. Physical Chemistry Chemical Physics, 2018, 20, 19635-19646.	1.3	3
138	Two-Way Data Analysis: Multivariate Curve Resolution, Iterative Methods. , 2019, , 153-171.		3
139	A perspective on modeling evolution. Journal of Chemometrics, 2020, 34, e3205.	0.7	2
140	ICRM-2011 International Chemometrics Research Meeting. Journal of Chemometrics, 2012, 26, 40-40.	0.7	1
141	NIR Monitoring and Modelling of Soybean Oil Methanolysis with Multivariate Curve Resolution-Alternating Least Squares with Correlation Constraint. Journal of the Brazilian Chemical Society, 2016, , .	0.6	1
142	CAC 2008. Analytica Chimica Acta, 2009, 642, 1-2.	2.6	0
143	Elucidation of the primary ultrafast steps in photo-switchable systems using chemometric analysis. , 2015, , .		0
144	Factor Analysis/Multivariate Curve Resolution. , 2018, , .		0

#	Article	IF	CITATIONS
145	Two-Way Data Analysis: Evolving Factor Analysis. , 2020, , 95-106.		0
146	Introduction to Linear Soft-Modeling. , 2020, , 1-2.		0
147	Autofluorescence of stingray skeletal cartilage: hyperspectral imaging as a tool for histological characterization. Discover Materials, 2021, 1, 1.	1.0	0
148	Anna de Juan, an internationally recognized researcher on Chemometrics, spoke to BrJAC. Brazilian Journal of Analytical Chemistry, 2021, 8, 6-12.	0.3	0
149	A Soft-Modelling Approach to Interpret PH-Dependent Thermodynamical and Conformational Transitions of Polynucleotides. , 1997, , 247-248.		0
150	Synchronization-Free Multivariate Statistical Process Control for Online Monitoring of Batch Process Evolution. Frontiers in Analytical Science, 2022, 1, .	1.1	0