David M Karl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5583303/publications.pdf

Version: 2024-02-01

316 papers 36,178 citations

93 h-index 176 g-index

331 all docs

331 docs citations

331 times ranked

21080 citing authors

#	Article	IF	CITATIONS
1	Seasonality and episodic variation in picoeukaryote diversity and structure reveal community resilience to disturbances in the North Pacific Subtropical Gyre. Limnology and Oceanography, 2022, 67, .	3.1	9
2	Biogeochemical Dynamics in Adjacent Mesoscale Eddies of Opposite Polarity. Global Biogeochemical Cycles, 2022, 36, .	4.9	13
3	Complex marine microbial communities partition metabolism of scarce resources over the diel cycle. Nature Ecology and Evolution, 2022, 6, 218-229.	7.8	21
4	Marine phytoplankton resilience may moderate oligotrophic ecosystem responses and biogeochemical feedbacks to climate change. Limnology and Oceanography, 2022, 67, .	3.1	15
5	Overlooked and widespread pennate diatom-diazotroph symbioses in the sea. Nature Communications, 2022, 13, 799.	12.8	26
6	Diversity and origins of bacterial and archaeal viruses on sinking particles reaching the abyssal ocean. ISME Journal, 2022, 16, 1627-1635.	9.8	18
7	Microbial Sources of Exocellular DNA in the Ocean. Applied and Environmental Microbiology, 2022, 88, e0209321.	3.1	6
8	Viruses affect picocyanobacterial abundance and biogeography in the North Pacific Ocean. Nature Microbiology, 2022, 7, 570-580.	13.3	25
9	Microbes and Climate Change: a Research Prospectus for the Future. MBio, 2022, 13, e0080022.	4.1	53
10	Temporal dynamics of total microbial biomass and particulate detritus at Station ALOHA. Progress in Oceanography, 2022, 205, 102803.	3.2	8
11	A method for characterizing dissolved <scp>DNA</scp> and its application to the North Pacific Subtropical Gyre. Limnology and Oceanography: Methods, 2021, 19, 210-221.	2.0	9
12	Microbial dynamics of elevated carbon flux in the open ocean's abyss. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	65
13	Sustaining Long-Term Ecological Research: Perspectives from Inside the LTER Program. Archimedes, 2021, , 81-116.	0.3	0
14	A system of coordinated autonomous robots for Lagrangian studies of microbes in the oceanic deep chlorophyll maximum. Science Robotics, 2021, 6, .	17.6	32
15	Euphotic Zone Metabolism in the North Pacific Subtropical Gyre Based on Oxygen Dynamics. Global Biogeochemical Cycles, 2021, 35, e2020GB006744.	4.9	5
16	Evaluation of argonâ€induced hydrogen production as a method to measure nitrogen fixation by cyanobacteria. Journal of Phycology, 2021, 57, 863-873.	2.3	7
17	Open Ocean Particle Flux Variability From Surface to Seafloor. Geophysical Research Letters, 2021, 48, e2021GL092895.	4.0	6
18	Seasonal-to-decadal scale variability in primary production and particulate matter export at Station ALOHA. Progress in Oceanography, 2021, 195, 102563.	3.2	32

#	Article	IF	CITATIONS
19	Constraining growth rates and the ratio of living to nonliving particulate carbon using beam attenuation and adenosine $\hat{s} = \hat{s} = $	3.9	10
20	Phosphate Scavenging During Lavaâ€Seawater Interaction Offshore of KÄ«lauea Volcano, Hawaii. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009754.	2.5	0
21	Production and diversity of microorganisms associated with sinking particles in the subtropical North Pacific Ocean. Limnology and Oceanography, 2021, 66, 3255-3270.	3.1	12
22	Light and depth dependency of nitrogen fixation by the nonâ€photosynthetic, symbiotic cyanobacterium UCYNâ€A. Environmental Microbiology, 2021, 23, 4518-4531.	3.8	14
23	Microbial community transcriptional patterns vary in response to mesoscale forcing in the North Pacific Subtropical Gyre. Environmental Microbiology, 2021, 23, 4807-4822.	3.8	14
24	A sensitive fluorescent assay for measuring carbonâ€phosphorus lyase activity in aquatic systems. Limnology and Oceanography: Methods, 2021, 19, 235-244.	2.0	2
25	Iron Depletion in the Deep Chlorophyll Maximum: Mesoscale Eddies as Natural Iron Fertilization Experiments. Global Biogeochemical Cycles, 2021, 35, e2021GB007112.	4.9	20
26	Autonomous Tracking and Sampling of the Deep Chlorophyll Maximum Layer in an Open-Ocean Eddy by a Long-Range Autonomous Underwater Vehicle. IEEE Journal of Oceanic Engineering, 2020, 45, 1308-1321.	3.8	22
27	Distinct nitrogen cycling and steep chemical gradients in <i>Trichodesmium</i> colonies. ISME Journal, 2020, 14, 399-412.	9.8	19
28	The Importance of the Phytoplankton "Middle Class―to Ocean Net Community Production. Global Biogeochemical Cycles, 2020, 34, e2020GB006702.	4.9	26
29	Anthropogenic Asian aerosols provide Fe to the North Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27862-27868.	7.1	54
30	Phosphonate cycling supports methane and ethylene supersaturation in the phosphateâ€depleted western North Atlantic Ocean. Limnology and Oceanography, 2020, 65, 2443-2459.	3.1	23
31	Metal isotope signatures from lava-seawater interaction during the 2018 eruption of Kīlauea. Geochimica Et Cosmochimica Acta, 2020, 282, 340-356.	3.9	17
32	Life and death of <i>Crocosphaera</i> sp. in the Pacific Ocean: Fine scale predator–prey dynamics. Limnology and Oceanography, 2020, 65, 2603-2617.	3.1	26
33	Latitudinal constraints on the abundance and activity of the cyanobacterium UCYNâ€A and other marine diazotrophs in the North Pacific. Limnology and Oceanography, 2020, 65, 1858-1875.	3.1	40
34	Diel variability of bulk optical properties associated with the growth and division of small phytoplankton in the North Pacific Subtropical Gyre. Applied Optics, 2020, 59, 6702.	1.8	14
35	Ocean Time Series Observations of Changing Marine Ecosystems: An Era of Integration, Synthesis, and Societal Applications. Frontiers in Marine Science, 2019, 6, .	2.5	50
36	Monitoring Microbial Communities in the Marine Environment. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 717-721.	1.5	3

#	Article	IF	CITATIONS
37	Validation of the in vivo Iodo-Nitro-Tetrazolium (INT) Salt Reduction Method as a Proxy for Plankton Respiration. Frontiers in Marine Science, 2019, 6, .	2.5	10
38	Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean. Science, 2019, 365, 1040-1044.	12.6	35
39	Biogeochemical controls of surface ocean phosphate. Science Advances, 2019, 5, eaax0341.	10.3	84
40	Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11824-11832.	7.1	150
41	Climate-driven oscillation of phosphorus and iron limitation in the North Pacific Subtropical Gyre. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12720-12728.	7.1	44
42	Scientists' warning to humanity: microorganisms and climate change. Nature Reviews Microbiology, 2019, 17, 569-586.	28.6	1,138
43	Methylphosphonate Oxidation in <i>Prochlorococcus</i> Strain MIT9301 Supports Phosphate Acquisition, Formate Excretion, and Carbon Assimilation into Purines. Applied and Environmental Microbiology, 2019, 85, .	3.1	32
44	Coupling carbon and energy fluxes in the North Pacific Subtropical Gyre. Nature Communications, 2019, 10, 1895.	12.8	60
45	Improved ultraviolet photoâ€oxidation system yields estimates for deepâ€sea dissolved organic nitrogen and phosphorus. Limnology and Oceanography: Methods, 2019, 17, 277-291.	2.0	16
46	Size dependence of metabolism within marine picoplankton populations. Limnology and Oceanography, 2019, 64, 1819-1827.	3.1	13
47	Phosphateâ€imited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation. Environmental Microbiology, 2019, 21, 2402-2414.	3.8	73
48	Station ALOHA: A Gathering Place for Discovery, Education, and Scientific Collaboration. Limnology and Oceanography Bulletin, 2019, 28, 10-12.	0.4	11
49	The estimation of gross oxygen production and community respiration from autonomous timeâ€series measurements in the oligotrophic ocean. Limnology and Oceanography: Methods, 2019, 17, 650-664.	2.0	17
50	Approaches to Measuring Marine Primary Production., 2019,, 484-491.		1
51	The ecological and biogeochemical state of the North Pacific Subtropical Gyre is linked to sea surface height. Journal of Marine Research, 2019, 77, 215-245.	0.3	29
52	Seasonal resource conditions favor a summertime increase in North Pacific diatom–diazotroph associations. ISME Journal, 2018, 12, 1543-1557.	9.8	43
53	An intercomparison of oceanic methane and nitrous oxide measurements. Biogeosciences, 2018, 15, 5891-5907.	3.3	42
54	Dynamics of Prochlorococcus Diversity and Photoacclimation During Short-Term Shifts in Water Column Stratification at Station ALOHA. Frontiers in Marine Science, 2018, 5, .	2.5	17

#	Article	lF	Citations
55	Spatial and Temporal Dynamics of Inorganic Phosphate and Adenosine-5′-Triphosphate in the North Pacific Ocean. Frontiers in Marine Science, 2018, 5, .	2.5	22
56	Carbonâ€Based Estimate of Nitrogen Fixationâ€Derived Net Community Production in Nâ€Depleted Ocean Gyres. Global Biogeochemical Cycles, 2018, 32, 1241-1252.	4.9	8
57	Production of methane and ethylene from plastic in the environment. PLoS ONE, 2018, 13, e0200574.	2.5	310
58	ALOHA From the Edge: Reconciling Three Decades of in Situ Eulerian Observations and Geographic Variability in the North Pacific Subtropical Gyre. Frontiers in Marine Science, 2018, 5, .	2.5	16
59	Phosphorus dynamics in biogeochemically distinct regions of the southeast subtropical Pacific Ocean. Progress in Oceanography, 2017, 151, 261-274.	3.2	24
60	Allochthonous sources and dynamic cycling of ocean dissolved organic carbon revealed by carbon isotopes. Geophysical Research Letters, 2017, 44, 2407-2415.	4.0	48
61	Interannual Variability of Methane and Nitrous Oxide in the North Pacific Subtropical Gyre. Geophysical Research Letters, 2017, 44, 9885-9892.	4.0	18
62	Environmental drivers of a microbial genomic transition zone in the ocean's interior. Nature Microbiology, 2017, 2, 1367-1373.	13.3	177
63	Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nature Microbiology, 2017, 2, 17118.	13.3	122
64	Light absorption by phytoplankton in the North Pacific Subtropical Gyre. Limnology and Oceanography, 2017, 62, 1526-1540.	3.1	35
65	Ecosystem Structure and Dynamics in the North Pacific Subtropical Gyre: New Views of an Old Ocean. Ecosystems, 2017, 20, 433-457.	3.4	90
66	Temporal variability of nitrogen fixation and particulate nitrogen export at Station ALOHA. Limnology and Oceanography, 2017, 62, 200-216.	3.1	110
67	Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of <i>Trichodesmium</i> under different <i>p</i> CO2. ISME Journal, 2017, 11, 1305-1317.	9.8	47
68	Productivity diagnosed from the diel cycle of particulate carbon in the North Pacific Subtropical Gyre. Geophysical Research Letters, 2017, 44, 3752-3760.	4.0	36
69	Dynamics of Prochlorococcus and Synechococcus at Station ALOHA Revealed through Flow Cytometry and High-Resolution Vertical Sampling. Frontiers in Marine Science, 2017, 4, .	2.5	44
70	The Importance of H in Particulate Organic Matter Stoichiometry, Export and Energy Flow. Frontiers in Microbiology, 2017, 8, 826.	3 . 5	7
71	Isolation and Characterization of Bacteria That Degrade Phosphonates in Marine Dissolved Organic Matter. Frontiers in Microbiology, 2017, 8, 1786.	3.5	49
72	Light-Enhanced Microbial Organic Carbon Yield. Frontiers in Microbiology, 2017, 8, 2157.	3.5	9

#	Article	IF	Citations
73	Diversity and Activity of Communities Inhabiting Plastic Debris in the North Pacific Gyre. MSystems, 2016, 1, .	3.8	330
74	Application of membrane inlet mass spectrometry to measure aquatic gross primary production by the < sup > 18 < / sup > 0 in vitro method. Limnology and Oceanography: Methods, 2016, 14, 610-622.	2.0	29
75	Polyphosphate dynamics at Station ALOHA, North Pacific subtropical gyre. Limnology and Oceanography, 2016, 61, 227-239.	3.1	39
76	Validation of Ti(III) as a reducing agent in the chemiluminescent determination of nitrate and nitrite in seawater. Marine Chemistry, 2016, 186, 83-89.	2.3	25
77	Adaptive Evolution of Phosphorus Metabolism in <i>Prochlorococcus</i> . MSystems, 2016, 1, .	3.8	19
78	Seasonal and longâ€term changes in elemental concentrations and ratios of marine particulate organic matter. Global Biogeochemical Cycles, 2016, 30, 1699-1711.	4.9	23
79	Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nature Geoscience, 2016, 9, 884-887.	12.9	231
80	Variable depth distribution of <i>Trichodesmium</i> clades in the North Pacific Ocean. Environmental Microbiology Reports, 2016, 8, 1058-1066.	2.4	16
81	Diversity and productivity of photosynthetic picoeukaryotes in biogeochemically distinct regions of the <scp>S</scp> outh <scp>E</scp> ast <scp>P</scp> acific <scp>O</scp> cean. Limnology and Oceanography, 2016, 61, 806-824.	3.1	65
82	Wind and sunlight shape microbial diversity in surface waters of the North Pacific Subtropical Gyre. ISME Journal, 2016 , 10 , $1308-1322$.	9.8	73
83	Metabolic balance in the mixed layer of the oligotrophic North Pacific Ocean from diel changes in O ₂ /Ar saturation ratios. Geophysical Research Letters, 2015, 42, 3421-3430.	4.0	27
84	Quantifying subtropical North Pacific gyre mixed layer primary productivity from Seaglider observations of diel oxygen cycles. Geophysical Research Letters, 2015, 42, 4032-4039.	4.0	39
85	Shortâ€term variability in euphotic zone biogeochemistry and primary productivity at Station ALOHA: A case study of summer 2012. Global Biogeochemical Cycles, 2015, 29, 1145-1164.	4.9	22
86	Phenology of particle size distributions and primary productivity in the <scp>N</scp> orth <scp>P</scp> acific subtropical gyre (<scp>S</scp> tation <scp>ALOHA</scp>). Journal of Geophysical Research: Oceans, 2015, 120, 7381-7399.	2.6	45
87	Variability in photosynthetic production of dissolved and particulate organic carbon in the North Pacific Subtropical Gyre. Frontiers in Marine Science, 2015, 2, .	2.5	21
88	Microbial community structure and function on sinking particles in the North Pacific Subtropical Gyre. Frontiers in Microbiology, 2015, 6, 469.	3.5	148
89	Differential Assimilation of Inorganic Carbon and Leucine by Prochlorococcus in the Oligotrophic North Pacific Subtropical Gyre. Frontiers in Microbiology, 2015, 6, 1401.	3.5	24
90	Environmental Properties of Coastal Waters in Mamala Bay, Oahu, Hawaii, at the Future Site of a Seawater Air Conditioning Outfall. Oceanography, 2015, 25, 230-239.	1.0	10

#	Article	IF	Citations
91	Functional group-specific traits drive phytoplankton dynamics in the oligotrophic ocean. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E5972-9.	7.1	118
92	Measurements of nitrogen fixation in the oligotrophic North Pacific Subtropical Gyre using a free-drifting submersible incubation device. Journal of Plankton Research, 2015, 37, 727-739.	1.8	18
93	Microbial respiration in the euphotic zone at Station ALOHA. Limnology and Oceanography, 2015, 60, 1039-1050.	3.1	17
94	Particle distributions and dynamics in the euphotic zone of the <scp>N</scp> orth <scp>P</scp> acific <scp>S</scp> ubtropical <scp>G</scp> yre. Journal of Geophysical Research: Oceans, 2015, 120, 3229-3247.	2.6	35
95	Substrate selection for heterotrophic bacterial growth in the sea. Marine Chemistry, 2015, 177, 349-356.	2.3	16
96	Dynamics of Dissolved Organic Phosphorus. , 2015, , 233-334.		59
97	The Contemporary Challenge of the Sea: Science, Society, and Sustainability. Oceanography, 2014, 27, 208-225.	1.0	4
98	Evaluation of the utility of xanthophyll cycle pigment dynamics for assessing upper ocean mixing processes at Station ALOHA. Journal of Plankton Research, 2014, 36, 1423-1433.	1.8	18
99	Increasing anthropogenic nitrogen in the North Pacific Ocean. Science, 2014, 346, 1102-1106.	12.6	174
100	Paired windward and leeward biogeochemical time series reveal consistent surface ocean CO ₂ trends across the Hawaiian Ridge. Geophysical Research Letters, 2014, 41, 6459-6467.	4.0	5
101	Volume Editors' Introduction. , 2014, , xxiii-xxvi.		2
102	Distinct dissolved organic matter sources induce rapid transcriptional responses in coexisting populations of <i><scp>P</scp>rochlorococcus</i> <scp>P</scp> elagibacter and the <scp>OM60</scp> clade. Environmental Microbiology, 2014, 16, 2815-2830.	3.8	47
103	Estimating the compensation irradiance in the ocean: The importance of accounting for non-photosynthetic uptake of inorganic carbon. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 93, 35-40.	1.4	25
104	Microbial oceanography and the Hawaii Ocean Time-series programme. Nature Reviews Microbiology, 2014, 12, 699-713.	28.6	183
105	Ecogenomic sensor reveals controls on N2-fixing microorganisms in the North Pacific Ocean. ISME Journal, 2014, 8, 1175-1185.	9.8	70
106	A role for nitrite in the production of nitrous oxide in the lower euphotic zone of the oligotrophic North Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 85, 47-55.	1.4	28
107	Microbially Mediated Transformations of Phosphorus in the Sea: New Views of an Old Cycle. Annual Review of Marine Science, 2014, 6, 279-337.	11.6	285
108	Experimental assessment of diazotroph responses to elevated seawater $\langle i \rangle p \langle i \rangle CO \langle sub \rangle 2 \langle sub \rangle$ in the North Pacific Subtropical Gyre. Global Biogeochemical Cycles, 2014, 28, 601-616.	4.9	36

#	Article	IF	Citations
109	Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. Standards in Genomic Sciences, 2014, 9, 632-645.	1.5	40
110	Solar energy capture and transformation in the sea. Elementa, 2014, 2, .	3.2	15
111	Variability of chromophytic phytoplankton in the North Pacific Subtropical Gyre. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 93, 84-95.	1.4	21
112	Dissolved hydrogen and nitrogen fixation in the oligotrophic <scp>N</scp> orth <scp>P</scp> acific <scp>S</scp> ubtropical <scp>G</scp> yre. Environmental Microbiology Reports, 2013, 5, 697-704.	2.4	12
113	Relationship between Abundance and Specific Activity of Bacterioplankton in Open Ocean Surface Waters. Applied and Environmental Microbiology, 2013, 79, 177-184.	3.1	127
114	Physical and biological controls of nitrate concentrations in the upper subtropical North Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2013, 93, 119-134.	1.4	39
115	Present and future global distributions of the marine Cyanobacteria <i>Prochlorococcus</i> and <i>Synechococcus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9824-9829.	7.1	1,097
116	Metatranscriptomic and functional metagenomic analysis of methylphosphonate utilization by marine bacteria. Frontiers in Microbiology, 2013, 4, 340.	3.5	63
117	Dissolved hydrogen and nitrogen fixation in the oligotrophic North Pacific Subtropical Gyre. Environmental Microbiology Reports, 2013, 5, 697-704.	2.4	5
118	Bacterial Dimethylsulfoniopropionate Degradation Genes in the Oligotrophic North Pacific Subtropical Gyre. Applied and Environmental Microbiology, 2012, 78, 2775-2782.	3.1	39
119	Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1842-1849.	7.1	258
120	Comparative Assessment of Nitrogen Fixation Methodologies, Conducted in the Oligotrophic North Pacific Ocean. Applied and Environmental Microbiology, 2012, 78, 6516-6523.	3.1	155
121	Multiple B-vitamin depletion in large areas of the coastal ocean. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14041-14045.	7.1	188
122	Does eddyâ€eddy interaction control surface phytoplankton distribution and carbon export in the North Pacific Subtropical Gyre?. Journal of Geophysical Research, 2012, 117, .	3.3	80
123	Evaluating triple oxygen isotope estimates of gross primary production at the Hawaii Ocean Timeâ€series and Bermuda Atlantic Timeâ€series Study sites. Journal of Geophysical Research, 2012, 117, .	3.3	43
124	Interannual variability of primary production and dissolved organic nitrogen storage in the North Pacific Subtropical Gyre. Journal of Geophysical Research, 2012, 117, .	3.3	16
125	Microbial Group Specific Uptake Kinetics of Inorganic Phosphate and Adenosine-5′-Triphosphate (ATP) in the North Pacific Subtropical Gyre. Frontiers in Microbiology, 2012, 3, 189.	3.5	42
126	NITROGEN FIXATION, HYDROGEN CYCLING, AND ELECTRON TRANSPORT KINETICS IN <i>TRICHODESMIUM ERYTHRAEUM</i> (CYANOBACTERIA) STRAIN IMS101	2.3	21

#	Article	IF	Citations
127	Shifts in biogenic carbon flow from particulate to dissolved forms under high carbon dioxide and warm ocean conditions. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	70
128	The annual silica cycle of the North Pacific subtropical gyre. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 988-1001.	1.4	55
129	ALOHA cabled observatory installation. , 2011, , .		17
130	Draft genome sequence of strain HIMB100, a cultured representative of the SAR116 clade of marine Alphaproteobacteria. Standards in Genomic Sciences, 2011, 5, 269-278.	1.5	27
131	Will ocean acidification affect marine microbes?. ISME Journal, 2011, 5, 1-7.	9.8	200
132	Weaving marine food webs from end to end under global change. Journal of Marine Systems, 2011, 84, 106-116.	2.1	45
133	Characterization of alkaline phosphatase activity in the North and South Pacific Subtropical Gyres: Implications for phosphorus cycling. Limnology and Oceanography, 2011, 56, 1244-1254.	3.1	68
134	Alkaline phosphatase activity and regulation in the North Pacific Subtropical Gyre. Limnology and Oceanography, 2010, 55, 1414-1425.	3.1	132
135	The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnology and Oceanography: Methods, 2010, 8, 462-473.	2.0	255
136	Vitamin B ₁₂ excretion by cultures of the marine cyanobacteria <i>Crocosphaera</i> and <i>Synechococcus</i> . Limnology and Oceanography, 2010, 55, 1959-1964.	3.1	107
137	Nitrate supply from deep to near-surface waters of the North Pacific subtropical gyre. Nature, 2010, 465, 1062-1065.	27.8	225
138	Abundances of crenarchaeal <i>amoA</i> genes and transcripts in the Pacific Ocean. Environmental Microbiology, 2010, 12, 679-688.	3.8	209
139	Oceanic Ecosystem Time-Series Programs: Ten Lessons Learned. Oceanography, 2010, 23, 104-125.	1.0	32
140	Hydrogen Cycling by the Unicellular Marine Diazotroph <i>Crocosphaera watsonii</i> Strain WH8501. Applied and Environmental Microbiology, 2010, 76, 6797-6803.	3.1	22
141	Challenges of modeling depthâ€integrated marine primary productivity over multiple decades: A case study at BATS and HOT. Global Biogeochemical Cycles, 2010, 24, .	4.9	150
142	An Open Ocean Trial of Controlled Upwelling Using Wave Pump Technology. Journal of Atmospheric and Oceanic Technology, 2010, 27, 385-396.	1.3	42
143	IV.9 Seascape Microbial Ecology: Habitat Structure, Biodiversity, and Ecosystem Function., 2009,, 488-500.		3
144	The NOPP O-SCOPE and MOSEAN Projects: Advanced Sensing for Ocean Observing Systems. Oceanography, 2009, 22, 168-181.	1.0	35

#	Article	IF	Citations
145	Physical and biogeochemical modulation of ocean acidification in the central North Pacific. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12235-12240.	7.1	440
146	Comparative Metagenomic Analysis of a Microbial Community Residing at a Depth of 4,000 Meters at Station ALOHA in the North Pacific Subtropical Gyre. Applied and Environmental Microbiology, 2009, 75, 5345-5355.	3.1	203
147	Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature, 2009, 458, 69-72.	27.8	662
148	Microbial oceanography in a sea of opportunity. Nature, 2009, 459, 180-184.	27.8	79
149	Dynamics of the SAR11 bacterioplankton lineage in relation to environmental conditions in the oligotrophic North Pacific subtropical gyre. Environmental Microbiology, 2009, 11, 2291-2300.	3.8	82
150	Export stoichiometry and migrant-mediated flux of phosphorus in the North Pacific Subtropical Gyre. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 73-88.	1.4	66
151	The dual isotopes of deep nitrate as a constraint on the cycle and budget of oceanic fixed nitrogen. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 1419-1439.	1.4	177
152	The relationship between dissolved hydrogen and nitrogen fixation in ocean waters. Deep-Sea Research Part I: Oceanographic Research Papers, 2009, 56, 1449-1458.	1.4	30
153	Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre. Global Biogeochemical Cycles, 2009, 23, .	4.9	200
154	Sinking organic matter spreads the nitrogen isotope signal of pelagic denitrification in the North Pacific. Geophysical Research Letters, 2009, 36, .	4.0	66
155	Metagenomic potential of microbial assemblages in the surface waters of the central Pacific Ocean tracks variability in oceanic habitat. Limnology and Oceanography, 2009, 54, 1981-1994.	3.1	46
156	Nitrogen fixation in an anticyclonic eddy in the oligotrophic North Pacific Ocean. ISME Journal, 2008, 2, 663-676.	9.8	137
157	Aerobic production of methane in the sea. Nature Geoscience, 2008, 1, 473-478.	12.9	450
158	Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre: Historical perspective and recent observations. Progress in Oceanography, 2008, 76, 2-38.	3.2	181
159	Particle export from the upper ocean over the continental shelf of the west Antarctic Peninsula: A long-term record, 1992–2007. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 2118-2131.	1.4	56
160	Primary production and implications for metabolic balance in Hawaiian lee eddies. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 1300-1309.	1.4	11
161	The transient oasis: Nutrient-phytoplankton dynamics and particle export in Hawaiian lee cyclones. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 1275-1290.	1.4	74
162	Nitrogen dynamics within a wind-driven eddy. Deep-Sea Research Part II: Topical Studies in Oceanography, 2008, 55, 1398-1411.	1.4	28

#	Article	IF	Citations
163	Ocean Iron Fertilization-Moving Forward in a Sea of Uncertainty. Science, 2008, 319, 162-162.	12.6	156
164	Regional distributions of nitrogenâ€fixing bacteria in the Pacific Ocean. Limnology and Oceanography, 2008, 53, 63-77.	3.1	154
165	Bacterial vs. zooplankton control of sinking particle flux in the ocean's twilight zone. Limnology and Oceanography, 2008, 53, 1327-1338.	3.1	350
166	Temporal and vertical variability in photosynthesis in the North Pacific Subtropical Gyre. Limnology and Oceanography, 2008, 53, 1252-1265.	3.1	14
167	The Nitrogen Cycle in the North Pacific Trades Biome. , 2008, , 705-769.		35
168	Revisiting Carbon Flux Through the Ocean's Twilight Zone. Science, 2007, 316, 567-570.	12.6	547
169	PLASTICS-IRRADIATED-ETCHED: THE NUCLEPORE® FILTER TURNS 45 YEARS OLD. Limnology and Oceanography Bulletin, 2007, 16, 49-54.	0.4	11
170	Experiments linking nitrogenase gene expression to nitrogen fixation in the North Pacific subtropical gyre. Limnology and Oceanography, 2007, 52, 169-183.	3.1	127
171	Impact of climate forcing on ecosystem processes in the North Pacific Subtropical Gyre. Journal of Geophysical Research, 2007, 112, .	3.3	69
172	The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific. PLoS Biology, 2007, 5, e77.	5.6	1,757
173	Foundations of Microbial Oceanography. Oceanography, 2007, 20, 16-27.	1.0	12
174	Microbial oceanography: paradigms, processes and promise. Nature Reviews Microbiology, 2007, 5, 759-769.	28.6	157
175	Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environmental Microbiology, 2007, 9, 1162-1175.	3.8	466
176	Introduction to "A Sea of Microbes" Special Issue. Oceanography, 2007, 20, 14-15.	1.0	267
177	Community Genomics Among Stratified Microbial Assemblages in the Ocean's Interior. Science, 2006, 311, 496-503.	12.6	1,261
178	On the relationships between primary, net community, and export production in subtropical gyres. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 698-717.	1.4	74
179	Water-column processes in the West Antarctic Peninsula and the Ross Sea: Interannual variations and foodweb structure. Deep-Sea Research Part II: Topical Studies in Oceanography, 2006, 53, 834-852.	1.4	78
180	Modeling Ocean Ecosystems: The PARADIGM Program. Oceanography, 2006, 19, 22-51.	1.0	27

#	Article	IF	CITATIONS
181	ASSESSING PRIMARY PRODUCTION VARIABILITY IN THE NORTH PACIFIC SUBTROPICAL GYRE: A COMPARISON OF FAST REPETITION RATE FLUOROMETRY AND 14C MEASUREMENTS1. Journal of Phycology, 2006, 42, 51-60.	2.3	59
182	Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum. Nature, 2006, 439, 322-325.	27.8	333
183	Flexible elemental stoichiometry in Trichodesmium spp. and its ecological implications. Limnology and Oceanography, 2006, 51, 1777-1790.	3.1	89
184	Genomic perspectives in microbial oceanography. Nature, 2005, 437, 336-342.	27.8	241
185	Carbon mass balance methodology to characterize the growth of pigmented marine bacteria under conditions of light cycling. Bioprocess and Biosystems Engineering, 2005, 27, 163-174.	3.4	4
186	Temporal Patterns of Nitrogenase Gene (nifH) Expression in the Oligotrophic North Pacific Ocean. Applied and Environmental Microbiology, 2005, 71, 5362-5370.	3.1	264
187	Marine phosphate oxygen isotopes and organic matter remineralization in the oceans. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13023-13028.	7.1	122
188	Ecology and biogeochemistry of alkenone production at Station ALOHA. Deep-Sea Research Part I: Oceanographic Research Papers, 2005, 52, 699-719.	1.4	60
189	From genes to ecosystems: the ocean's new frontier. Frontiers in Ecology and the Environment, 2004, 2, 457-468.	4.0	59
190	A novel method for the measurement of dissolved deoxyribonucleic acid in seawater. Limnology and Oceanography: Methods, 2004, 2, 248-255.	2.0	16
191	Light Dependence of [3 H]Leucine Incorporation in the Oligotrophic North Pacific Ocean. Applied and Environmental Microbiology, 2004, 70, 4079-4087.	3.1	92
192	Processes regulating oxygen and carbon dioxide in surface waters west of the Antarctic Peninsula. Marine Chemistry, 2004, 84, 161-179.	2.3	64
193	Influence of Rossby waves on nutrient dynamics and the plankton community structure in the North Pacific subtropical gyre. Journal of Geophysical Research, 2004, 109, .	3.3	68
194	Nitrogen modulates phytoplankton growth in spring in the South China Sea. Continental Shelf Research, 2004, 24, 527-541.	1.8	138
195	Net community production and metabolic balance at the oligotrophic ocean site, station ALOHA. Deep-Sea Research Part I: Oceanographic Research Papers, 2004, 51, 1563-1578.	1.4	107
196	Light driven seasonal patterns of chlorophyll and nitrate in the lower euphotic zone of the North Pacific Subtropical Gyre. Limnology and Oceanography, 2004, 49, 508-519.	3.1	246
197	Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean. Nature, 2003, 424, 754-757.	27.8	151
198	Metabolic balance of the open sea. Nature, 2003, 426, 32-32.	27.8	149

#	Article	IF	Citations
199	Temporal Studies of Biogeochemical Processes Determined from Ocean Time-Series Observations During the JGOFS Era., 2003,, 239-267.		55
200	Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South China Sea. Global Biogeochemical Cycles, 2003, 17, 8-1-8-10.	4.9	189
201	Surface ocean-lower atmosphere interactions in the Northeast Pacific Ocean Gyre: Aerosols, iron, and the ecosystem response. Global Biogeochemical Cycles, 2003, 17, n/a-n/a.	4.9	104
202	Bioavailability of dissolved organic phosphorus in the euphotic zone at Station ALOHA, North Pacific Subtropical Gyre. Limnology and Oceanography, 2003, 48, 1049-1057.	3.1	178
203	Proteorhodopsin genes are distributed among divergent marine bacterial taxa. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12830-12835.	7.1	255
204	Abundance and distribution of planktonic <i>Archaea</i> and <i>Bacteria</i> in the waters west of the Antarctic Peninsula. Limnology and Oceanography, 2003, 48, 1893-1902.	3.1	228
205	Phosphorus cycling in the North Pacific Subtropical Gyre using cosmogenic 32 P and 33 P. Limnology and Oceanography, 2002, 47, 762-770.	3.1	34
206	Multiyear increases in dissolved organic matter inventories at Station ALOHA in the North Pacific Subtropical Gyre. Limnology and Oceanography, 2002, 47, 1-10.	3.1	108
207	Seasonal and interannual variability in sources of nitrogen supporting export in the oligotrophic subtropical North Pacific Ocean. Limnology and Oceanography, 2002, 47, 1595-1607.	3.1	223
208	Differences in the biological carbon pump at three subtropical ocean sites. Geophysical Research Letters, 2002, 29, 32-1-32-4.	4.0	57
209	Global estimates of net carbon production in the nitrate-depleted tropical and subtropical oceans. Geophysical Research Letters, 2002, 29, 13-1-13-4.	4.0	66
210	Nutrient dynamics in the deep blue sea. Trends in Microbiology, 2002, 10, 410-418.	7.7	163
211	In situ determination of oxygen and nitrogen dynamics in the upper ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2002, 49, 941-952.	1.4	64
212	Hidden in a sea of microbes. Nature, 2002, 415, 590-591.	27.8	101
213	A novel method for the measurement of dissolved adenosine and guanosine triphosphate in aquatic habitats: applications to marine microbial ecology. Journal of Microbiological Methods, 2001, 47, 159-167.	1.6	45
214	Nutrient gradients in the western North Atlantic Ocean: Relationship to microbial community structure and comparison to patterns in the Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48, 2373-2395.	1.4	201
215	A time-series study of particulate matter export in the North Pacific Subtropical Gyre based on 234Th:238U disequilibrium. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48, 2595-2611.	1.4	159
216	Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 1529-1566.	1.4	274

#	Article	IF	Citations
217	Seasonal, interannual and decadal variations in particulate matter concentrations and composition in the subtropical North Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 1669-1695.	1.4	72
218	Nutrient regulation of bacterial production and ectoenzyme activities in the subtropical North Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 1719-1732.	1.4	24
219	A predictive model for estimating rates of primary production in the subtropical North Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 48, 1837-1863.	1.4	50
220	A deterministic model for N2 fixation at stn. ALOHA in the subtropical North Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2001, 49, 149-174.	1.4	54
221	Building the Long-Term Picture: The U.S. JGOFS Time-Series Programs. Oceanography, 2001, 14, 6-17.	1.0	75
222	Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 2001, 409, 507-510.	27.8	1,373
223	Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature, 2001, 412, 635-638.	27.8	678
224	Element Stoichiometry, New Production and Nitrogen Fixation. Oceanography, 2001, 14, 68-77.	1.0	99
225	Phosphorus, the staff of life. Nature, 2000, 406, 31-33.	27.8	199
226	Mechanisms of nitrous oxide production in the subtropical North Pacific based on determinations of the isotopic abundances of nitrous oxide and di-oxygen. Chemosphere, 2000, 2, 281-290.	1.2	73
227	Remineralization Ratios in the Subtropical North Pacific Gyre. Aquatic Geochemistry, 2000, 6, 65-85.	1.3	24
228	A new source of †new†nitrogen in the sea. Trends in Microbiology, 2000, 8, 301.	7.7	17
229	Phosphate Depletion in the Western North Atlantic Ocean. Science, 2000, 289, 759-762.	12.6	734
230	Minireviews: A Sea of Change: Biogeochemical Variability in the North Pacific Subtropical Gyre. Ecosystems, 1999, 2, 181-214.	3.4	378
231	Temporal variations in diatom abundance and downward vertical flux in the oligotrophic North Pacific gyre. Deep-Sea Research Part I: Oceanographic Research Papers, 1999, 46, 1051-1075.	1.4	103
232	Evolutionary processes a focus of decadeâ€long ecosystem study of Antarctic's Lake Vostok. Eos, 1999, 80, 573-579.	0.1	5
233	Dissolved inorganic carbon pool dynamics in northern Gerlache Strait, Antarctica. Journal of Geophysical Research, 1999, 104, 15873-15884.	3.3	22
234	A Farewell Tribute to the Antarctic Research Vessel Polar Duke. Oceanography, 1999, 12, 7-18.	1.0	O

#	Article	IF	Citations
235	A large source of atmospheric nitrous oxide from subtropical North Pacific surface waters. Nature, 1998, 396, 63-66.	27.8	184
236	Rising surface ocean dissolved inorganic carbon at the Hawaii Ocean Time-series site. Marine Chemistry, 1998, 60, 33-47.	2.3	84
237	Diversity of deep-sea hydrothermal vent Archaea from Loihi Seamount, Hawaii. Deep-Sea Research Part II: Topical Studies in Oceanography, 1998, 45, 303-317.	1.4	88
238	Application of a novel method for phosphorus determinations in the oligotrophic North Pacific Ocean. Limnology and Oceanography, 1998, 43, 1565-1577.	3.1	122
239	The role of dissolved organic matter release in the productivity of the oligotrophic North Pacific Ocean. Limnology and Oceanography, 1998, 43, 1270-1286.	3.1	203
240	Molecular Approaches to Microbial Biomass Estimation in the Sea. , 1998, , 29-89.		18
241	Partial characterization of the dissolved organic phosphorus pool in the oligotrophic North Pacific Ocean. Limnology and Oceanography, 1997, 42, 1398-1405.	3.1	90
242	Chlorophyll natural fluorescence response to upwelling events in the Southern Ocean. Geophysical Research Letters, 1997, 24, 409-412.	4.0	36
243	Vertical fluxes of carbon, nitrogen, and phosphorus in the North Pacific Subtropical Gyre near Hawaii. Journal of Geophysical Research, 1997, 102, 15667-15677.	3.3	66
244	Temporal variability in dissolved phosphorus concentrations in the subtropical North Pacific Ocean. Marine Chemistry, 1997, 56, 77-96.	2.3	113
245	Nitrite distributions and dynamics at Station ALOHA. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43, 385-402.	1.4	93
246	The Hawaii Ocean Time-series (HOT) program: Background, rationale and field implementation. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43, 129-156.	1.4	430
247	Growth rates and production of heterotrophic bacteria and phytoplankton in the North Pacific subtropical gyre. Deep-Sea Research Part I: Oceanographic Research Papers, 1996, 43, 1567-1580.	1.4	28
248	Microbiological oceanography in the region west of the Antarctic Peninsula: Microbial dynamics, nitrogen cycle and carbon flux. Antarctic Research Series, 1996, , 303-332.	0.2	43
249	Freezing as a method of sample preservation for the analysis of dissolved inorganic nutrients in seawater. Marine Chemistry, 1996, 53, 173-185.	2.3	131
250	Nitrification in the euphotic zone as a source for nitrite, nitrate, and nitrous oxide at Station ALOHA. Limnology and Oceanography, 1996, 41, 1619-1628.	3.1	228
251	On the chlorophyll a retention properties of glassâ€fiber GF/F filters. Limnology and Oceanography, 1995, 40, 428-433.	3.1	101
252	Bacterial ectoenzymes in marine waters: Activity ratios and temperature responses in three oceanographic provinces. Limnology and Oceanography, 1995, 40, 1042-1049.	3.1	144

#	Article	IF	Citations
253	DNA:ATP RATIOS IN MARINE MICROALGAE AND BACTERIA: IMPLICATIONS FOR GROWTH RATE ESTIMATES BASED ON RATES OF DNA SYNTHESIS1. Journal of Phycology, 1995, 31, 215-223.	2.3	13
254	HOT and the North Pacific gyre. Nature, 1995, 378, 22-22.	27.8	3
255	Methane sources, distributions and sinks from California coastal waters to the oligotrophic North Pacific gyre. Marine Chemistry, 1995, 49, 51-64.	2.3	91
256	The Palmer LTER: A Long-Term Ecological Research Program at Palmer Station, Antarctica. Oceanography, 1995, 8, 77-86.	1.0	109
257	Seasonal variability in the phytoplankton community of the North Pacific Subtropical Gyre. Global Biogeochemical Cycles, 1995, 9, 605-620.	4.9	98
258	Geochemistry of carbon dioxide in seawater at the Hawaii Ocean Time Series Station, ALOHA. Global Biogeochemical Cycles, 1995, 9, 637-651.	4.9	29
259	Nitrogen metabolism by heterotrophic bacterial assemblages in Antarctic coastal waters. Polar Biology, 1994, 14, 195.	1.2	55
260	Dissolved organic carbon in oligotrophic waters: experiments on sample preservation, storage and analysis. Marine Chemistry, 1994, 45, 207-216.	2.3	70
261	Production and transport of methane in oceanic particulate organic matter. Nature, 1994, 368, 732-734.	27.8	202
262	Air-sea carbon dioxide exchange in the North Pacific Subtropical Gyre: Implications for the Global Carbon Budget. Global Biogeochemical Cycles, 1994, 8, 157-163.	4.9	65
263	Microbial community structure at the U.SJoint Global Ocean Flux Study Station ALOHA: Inverse methods for estimating biochemical indicator ratios. Journal of Geophysical Research, 1994, 99, 14269.	3.3	76
264	Dissolved methane distributions, sources, and sinks in the western Bransfield Strait, Antarctica. Journal of Geophysical Research, 1994, 99, 16383.	3.3	27
265	Why does the relationship between sinking flux and planktonic primary production differ between lakes and oceans?. Limnology and Oceanography, 1994, 39, 213-226.	3.1	86
266	Total dissolved nitrogen and phosphorus concentrations at US-JGOFS station ALOHA: Redfield reconciliation. Marine Chemistry, 1993, 41, 203-208.	2.3	61
267	Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature, 1993, 363, 248-250.	27.8	323
268	MAGIC: A sensitive and precise method for measuring dissolved phosphorus in aquatic environments. Limnology and Oceanography, 1992, 37, 105-116.	3.1	403
269	Nitrogen dynamics at the VERTEX time-series site. Deep-sea Research Part A, Oceanographic Research Papers, 1992, 39, 1535-1552.	1.5	33
270	The grounding of the Bahia Paraiso: Microbial ecology of the 1989 Antarctic oil spill. Microbial Ecology, 1992, 24, 77-89.	2.8	36

#	Article	IF	Citations
271	Trichodesmium Blooms and New Nitrogen in the North Pacific Gyre. , 1992, , 219-237.		148
272	Microbial production and particle flux in the upper 350 m of the Black Sea. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, S921-S942.	1.5	129
273	Dissolved and particulate DNA dynamics during a spring bloom in the Antarctic Peninsula region, 1986–1987. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, 1077-1095.	1.5	34
274	Microbial biomass and population diversity in the upper water column of the Black Sea. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, S1069-S1082.	1.5	27
275	Research on Antarctic Coastal Ecosystem Rates (RACER): an interdisciplinary field experiment. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, 911-941.	1.5	86
276	Vertical fluxes of biogenic particles and associated biota in the eastern North Pacific: Implications for biogeochemical cycling and productivity. Global Biogeochemical Cycles, 1991, 5, 289-303.	4.9	16
277	Seasonal coupling of organic matter production and particle flux in the western Bransfield Strait, Antartica. Deep-sea Research Part A, Oceanographic Research Papers, 1991, 38, 1097-1126.	1.5	163
278	A Sea of Change: Monitoring the Oceans' Carbon Cycle. Environmental Science & Emp; Technology, 1991, 25, 1977-1981.	10.0	30
279	New production at the VERTEX time-series site. Deep-sea Research Part A, Oceanographic Research Papers, 1990, 37, 1121-1134.	1.5	70
280	Autotrophic production and elemental fluxes at $26 \hat{A}^{\circ} N$, $155 \hat{A}^{\circ} W$ in the North Pacific subtropical gyre. Deep-sea Research Part A, Oceanographic Research Papers, 1989, 36, 103-120.	1.5	48
281	Hydrothermal and microbial processes at Loihi Seamount, a mid-plate hot-spot volcano. Deep-sea Research Part A, Oceanographic Research Papers, 1989, 36, 1655-1673.	1.5	70
282	The measurement and distribution of dissolved nucleic acids in aquatic environments. Limnology and Oceanography, 1989, 34, 543-558.	3.1	170
283	Swimmers: A Recapitulation of the Problem and a Potential Solution. Oceanography, 1989, 2, 32-35.	1.0	69
284	Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature, 1988, 332, 438-441.	27.8	285
285	A microbiological study of Guaymas Basin high temperature hydrothermal vents. Deep-sea Research Part A, Oceanographic Research Papers, 1988, 35, 777-791.	1.5	41
286	VERTEX: carbon cycling in the northeast Pacific. Deep-sea Research Part A, Oceanographic Research Papers, 1987, 34, 267-285.	1.5	1,731
287	Specific growth rates of natural microbial communities measured by adenine nucleotide pool turnover. Journal of Microbiological Methods, 1987, 6, 221-235.	1.6	17
288	Primary production, new production and vertical flux in the eastern Pacific Ocean. Nature, 1987, 325, 803-804.	27.8	357

#	Article	IF	Citations
289	The direct measurement of ATP and adenine nucleotide pool turnover in microorganisms: a new method for environmental assessment of metabolism, energy flux and phosphorus dynamics. Journal of Plankton Research, 1986 , 8 , 1 - 13 .	1.8	26
290	Does adenine incorporation into nucleic acids measure total microbial production?: A response to comments by Fuhrman et al.1. Limnology and Oceanography, 1986, 31, 1384-1394.	3.1	21
291	Microorganisms in deep-sea hydrothermal plumes. Nature, 1986, 320, 744-746.	27.8	100
292	Method for Assessing Heterogeneity in Turnover Rates within Microbial Communities. Applied and Environmental Microbiology, 1986, 52, 866-874.	3.1	5
293	Measurement and significance of ATP and adenine nucleotide pool turnover in microbial cells and environmental samples. Journal of Microbiological Methods, 1985, 3, 125-139.	1.6	43
294	Measurement of Microbial Nucleic Acid Synthesis and Specific Growth Rate by ³² PO ₄ and [³ H]Adenine: Field Comparison. Applied and Environmental Microbiology, 1985, 50, 706-709.	3.1	28
295	Influence of Deep Ocean Sewage Outfalls on the Microbial Activity of the Surrounding Sediment. Applied and Environmental Microbiology, 1985, 50, 1464-1473.	3.1	11
296	Metabolic activity and bioluminescence of oceanic faecal pellets and sediment trap particles. Nature, 1984, 307, 539-541.	27.8	56
297	Vertical distribution, transport, and exchange of carbon in the northeast Pacific Ocean: evidence for multiple zones of biological activity. Deep-sea Research Part A, Oceanographic Research Papers, 1984, 31, 221-243.	1.5	146
298	<l>In situ</l> effects of selected preservatives on total carbon, nitrogen and metals collected in sediment traps. Journal of Marine Research, 1984, 42, 445-462.	0.3	151
299	Adenine Metabolism and Nucleic Acid Synthesis: Applications to Microbiological Oceanography. , 1984, , 197-215.		28
300	Laboratory Calibrations of the [³ H]Adenine Technique for Measuring Rates of RNA and DNA Synthesis in Marine Microorganisms. Applied and Environmental Microbiology, 1984, 47, 835-842.	3.1	29
301	VARIABILITY IN RATIOS OF PHYTOPLANKTON CARBON AND RNA TO ATP AND CHLOROPHYLL A IN BATCH AND CONTINUOUS CULTURES1,2. Journal of Phycology, 1983, 19, 439-445.	2.3	42
302	ATP as a biomass indicator for closed ecosystems. BioSystems, 1983, 16, 75-78.	2.0	5
303	A theoretical and experimental examination of the predictions of two recent models of phytoplankton growth. Journal of Theoretical Biology, 1983, 105, 469-491.	1.7	29
304	Microbial transformations of organic matter at oceanic interfaces: A review and prospectus. Eos, 1982, 63, 138-140.	0.1	17
305	Selected Nucleic Acid Precursors in Studies of Aquatic Microbial Ecology. Applied and Environmental Microbiology, 1982, 44, 891-902.	3.1	85
306	Large particle fluxes and the vertical transport of living carbon in the upper 1500 m of the northeast Pacific Ocean. Deep-sea Research Part A, Oceanographic Research Papers, 1981, 28, 921-936.	1.5	63

#	Article	IF	CITATIONS
307	Simultaneous Rates of Ribonucleic Acid and Deoxyribonucleic Acid Syntheses for Estimating Growth and Cell Division of Aquatic Microbial Communities. Applied and Environmental Microbiology, 1981, 42, 802-810.	3.1	90
308	DIEL CHANGES IN PHASEDâ€DIVIDING CULTURES OF <i>CERATIUM FURCA</i> (DINOPHYCEAE): NUCLEOTIDE TRIPHOSPHATES, ADENYLATE ENERGY CHARGE, CELL CARBON, AND PATTERNS OF VERTICAL MIGRATION Sup>1 sup>. Journal of Phycology, 1979, 15, 384-391.	2.3	32
309	Measurement of Microbial Activity and Growth in the Ocean by Rates of Stable Ribonucleic Acid Synthesis. Applied and Environmental Microbiology, 1979, 38, 850-860.	3.1	104
310	A rapid sensitive method for the measurement of guanine ribonucleotides in bacterial and environmental extracts. Analytical Biochemistry, 1978, 89, 581-595.	2.4	24
311	Distribution, abundance, and metabolic states of microorganisms in the water column and sediments of the Black Sea1. Limnology and Oceanography, 1978, 23, 936-949.	3.1	62
312	[8] Biomass and adenylate energy charge determination in microbial cell extracts and environmental samples. Methods in Enzymology, 1978, 57, 73-85.	1.0	60
313	Adenosine triphosphate in the North Atlantic ocean and its relationship to the oxygen minimum. Deep Sea Research and Oceanographic Abstracts, 1976, 23, 81-88.	0.3	16
314	Adenosine Triphosphate Measurements in Soil and Marine Sediments. Journal of the Fisheries Research Board of Canada, 1975, 32, 599-607.	0.9	111
315	Workshop Report: Major Bioelements. Geophysical Monograph Series, 0, , 33-42.	0.1	3
316	Microbial Nucleotide Fingerprints in Nature. , 0, , 869-878.		0