Francisco Juan MartÃ-nez Mojica

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5583219/publications.pdf Version: 2024-02-01

		304743	501196
30	11,259	22	28
papers	citations	h-index	g-index
32	32	32	9142
all docs	docs citations	times ranked	citing authors

Francisco Juan MartÃnez

#	Article	IF	CITATIONS
1	An updated evolutionary classification of CRISPR–Cas systems. Nature Reviews Microbiology, 2015, 13, 722-736.	28.6	2,081
2	Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, 2011, 9, 467-477.	28.6	2,078
3	Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. Journal of Molecular Evolution, 2005, 60, 174-182.	1.8	1,706
4	Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nature Reviews Microbiology, 2020, 18, 67-83.	28.6	1,427
5	Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology (United Kingdom), 2009, 155, 733-740.	1.8	1,267
6	Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Molecular Microbiology, 2000, 36, 244-246.	2.5	627
7	Protospacer recognition motifs. RNA Biology, 2013, 10, 891-899.	3.1	309
8	Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Molecular Microbiology, 1995, 17, 85-93.	2.5	266
9	Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified Pstl sites. Molecular Microbiology, 1993, 9, 613-621.	2.5	263
10	Complete Genome Sequence of Crohn's Disease-Associated Adherent-Invasive E. coli Strain LF82. PLoS ONE, 2010, 5, e12714.	2.5	180
11	Diversity of CRISPR loci in Escherichia coli. Microbiology (United Kingdom), 2010, 156, 1351-1361.	1.8	170
12	On the Origin of CRISPR-Cas Technology: From Prokaryotes to Mammals. Trends in Microbiology, 2016, 24, 811-820.	7.7	143
13	The discovery of <scp>CRISPR</scp> in archaea and bacteria. FEBS Journal, 2016, 283, 3162-3169.	4.7	130
14	CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of <i><i>Escherichia coli</i>. RNA Biology, 2013, 10, 792-802.</i>	3.1	123
15	Next-generation precision antimicrobials: towards personalized treatment of infectious diseases. Current Opinion in Microbiology, 2017, 37, 95-102.	5.1	100
16	Reconstructing Viral Genomes from the Environment Using Fosmid Clones: The Case of Haloviruses. PLoS ONE, 2012, 7, e33802.	2.5	78
17	Target Motifs Affecting Natural Immunity by a Constitutive CRISPR-Cas System in Escherichia coli. PLoS ONE, 2012, 7, e50797.	2.5	54
18	CRISPR Content Correlates with the Pathogenic Potential of Escherichia coli. PLoS ONE, 2015, 10, e0131935.	2.5	47

Francisco Juan MartÃnez

#	Article	IF	CITATIONS
19	Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR–Cas I-F systems. Nature Microbiology, 2016, 1, 16081.	13.3	40
20	Localized domains of DNA supercoiling: topological coupling between promoters. Molecular Microbiology, 1996, 22, 919-928.	2.5	33
21	The on–off switch of CRISPR immunity against phages in <i>Escherichia coli</i> . Molecular Microbiology, 2010, 77, 1341-1345.	2.5	31
22	CRISPR-Cas Functional Module Exchange in Escherichia coli. MBio, 2014, 5, e00767-13.	4.1	31
23	The CRISPR conundrum: evolve and maybe die, or survive and risk stagnation. Microbial Cell, 2018, 5, 262-268.	3.2	21
24	Leuconostoc mesenteroides and Leuconostoc pseudomesenteroides bacteriophages: Genomics and cross-species host ranges. International Journal of Food Microbiology, 2017, 257, 128-137.	4.7	19
25	Digging into the lesser-known aspects of CRISPR biology. International Microbiology, 2021, 24, 473-498.	2.4	10
26	Discovery and Seminal Developments in the CRISPR Field. , 2013, , 1-31.		9
27	Discovery and Seminal Developments in the CRISPR Field. , 2013, , 1-31.		8
28	Exploring CRISPR Interference by Transformation with Plasmid Mixtures: Identification of Target Interference Motifs in Escherichia coli. Methods in Molecular Biology, 2015, 1311, 161-170.	0.9	3
29	Right of admission reserved, no matter the path. Trends in Microbiology, 2013, 21, 446-448.	7.7	2
30	Response to Osmotic Stress in a Haloarchaeal Genome: a Role for General Stress Proteins and Global Regulatory Mechanisms. , 0, , 232-239.		0