
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5581869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exendin-4 stimulates autophagy in pancreatic β-cells via the RAPGEF/EPAC-Ca ²⁺ -PPP3/calcineurin-TFEB axis. Autophagy, 2022, 18, 799-815.	9.1	20
2	Melanoma secretion of transforming growth factorâ€Î²2 leads to loss of epidermal AMBRA1 threatening epidermal integrity and facilitating tumour ulceration*. British Journal of Dermatology, 2022, 186, 694-704.	1.5	8
3	Health professional and patient views of a novel prognostic test for melanoma: A theoretically informed qualitative study. PLoS ONE, 2022, 17, e0265048.	2.5	2
4	HPV sensitizes OPSCC cells to cisplatin-induced apoptosis by inhibiting autophagy through E7-mediated degradation of AMBRA1. Autophagy, 2021, 17, 2842-2855.	9.1	25
5	Research Techniques Made Simple: Analysis of Autophagy in the Skin. Journal of Investigative Dermatology, 2021, 141, 5-9.e1.	0.7	7
6	Optimal surveillance strategies for patients with stage 1 cutaneous melanoma post primary tumour excision: three systematic reviews and an economic model. Health Technology Assessment, 2021, 25, 1-178.	2.8	4
7	Epidermal autophagy and beclin 1 regulator 1 and loricrin: a paradigm shift in the prognostication and stratification of the American Joint Committee on Cancer stage I melanomas. British Journal of Dermatology, 2020, 182, 156-165.	1.5	16
8	TP53 mutant cell lines selected for resistance to MDM2 inhibitors retain growth inhibition by MAPK pathway inhibitors but a reduced apoptotic response. Cancer Cell International, 2019, 19, 53.	4.1	9
9	ATM Dependent DUSP6 Modulation of p53 Involved in Synergistic Targeting of MAPK and p53 Pathways with Trametinib and MDM2 Inhibitors in Cutaneous Melanoma. Cancers, 2019, 11, 3.	3.7	26
10	Harnessing autophagy to overcome mitogenâ€activated protein kinase kinase inhibitorâ€induced resistance in metastatic melanoma. British Journal of Dermatology, 2019, 180, 346-356.	1.5	23
11	Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma. British Journal of Cancer, 2018, 118, 495-508.	6.4	47
12	Exposure of Monocytic Cells to Lipopolysaccharide Induces Coordinated Endotoxin Tolerance, Mitochondrial Biogenesis, Mitophagy, and Antioxidant Defenses. Frontiers in Immunology, 2018, 9, 2217.	4.8	45
13	Glucagon-Like Peptide 1 Protects Pancreatic β-Cells From Death by Increasing Autophagic Flux and Restoring Lysosomal Function. Diabetes, 2017, 66, 1272-1285.	0.6	102
14	Persistent mTORC1 signaling in cell senescence results from defects in amino acid and growth factor sensing. Journal of Cell Biology, 2017, 216, 1949-1957.	5.2	106
15	Prognostic Impact of Autophagy Biomarkers for Cutaneous Melanoma. Frontiers in Oncology, 2016, 6, 236.	2.8	55
16	The prognostic significance and impact of the CXCR4-CXCR7-CXCL12 axis in primary cutaneous melanoma. British Journal of Dermatology, 2016, 175, 1210-1220.	1.5	32
17	Dihydroceramide accumulation mediates cytotoxic autophagy of cancer cells via autolysosome destabilization. Autophagy, 2016, 12, 2213-2229.	9.1	118
18	The role of autophagy in squamous cell carcinoma of the head and neck. Oral Oncology, 2016, 54, 1-6.	1.5	34

#	Article	IF	CITATIONS
19	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
20	Exploiting Cannabinoid-Induced Cytotoxic Autophagy to Drive Melanoma Cell Death. Journal of Investigative Dermatology, 2015, 135, 1629-1637.	0.7	126
21	Cellâ€Type Variation in Stress Responses as a Consequence of Manipulating GRP78 Expression in Neuroectodermal Cells. Journal of Cellular Biochemistry, 2015, 116, 438-449.	2.6	7
22	Fateful music from a talented orchestra with a wicked conductor: Connection between oncogenic BRAF, ER stress, and autophagy in human melanoma. Molecular and Cellular Oncology, 2015, 2, e995016.	0.7	13
23	A Novel Fully Humanized 3D Skin Equivalent to Model Early Melanoma Invasion. Molecular Cancer Therapeutics, 2015, 14, 2665-2673.	4.1	72
24	Established and Emerging Biomarkers in Cutaneous Malignant Melanoma. Healthcare (Switzerland), 2014, 2, 60-73.	2.0	7
25	Prognostic Impact of p62 Expression in Cutaneous Malignant Melanoma. Journal of Investigative Dermatology, 2014, 134, 1476-1478.	0.7	39
26	Induction of endoplasmic reticulum stress as a strategy for melanoma therapy: is there a future?. Melanoma Management, 2014, 1, 127-137.	0.5	13
27	Why is autophagy important for melanoma? Molecular mechanisms and therapeutic implications. Seminars in Cancer Biology, 2013, 23, 337-343.	9.6	46
28	Oncogenic <scp>BRAF</scp> signalling increases <scp>M</scp> clâ€4 expression in cutaneous metastatic melanoma. Experimental Dermatology, 2013, 22, 767-769.	2.9	35
29	The impact of retinoic acid treatment on the sensitivity of neuroblastoma cells to fenretinide. Oncology Reports, 2011, 27, 293-8.	2.6	5
30	Oncogenic B-RAF Signaling in Melanoma Impairs the Therapeutic Advantage of Autophagy Inhibition. Clinical Cancer Research, 2011, 17, 2216-2226.	7.0	61
31	FC2 Oncogenic B-RAF signalling confers the resistance of metastatic melanoma to autophagy. Melanoma Research, 2010, 20, e29.	1.2	0
32	Regulation of Endoplasmic Reticulum Stress-induced Cell Death by ATF4 in Neuroectodermal Tumor Cells. Journal of Biological Chemistry, 2010, 285, 6091-6100.	3.4	137
33	Targeting X-Linked Inhibitor of Apoptosis Protein to Increase the Efficacy of Endoplasmic Reticulum Stress-Induced Apoptosis for Melanoma Therapy. Journal of Investigative Dermatology, 2010, 130, 2250-2258.	0.7	33
34	Targeting GRP78 to enhance melanoma cell death. Pigment Cell and Melanoma Research, 2010, 23, 675-682.	3.3	44
35	Combining the Endoplasmic Reticulum Stress–Inducing Agents Bortezomib and Fenretinide as a Novel Therapeutic Strategy for Metastatic Melanoma. Clinical Cancer Research, 2009, 15, 1192-1198.	7.0	59
36	Increasing Melanoma Cell Death Using Inhibitors of Protein Disulfide Isomerases to Abrogate Survival Responses to Endoplasmic Reticulum Stress. Cancer Research, 2008, 68, 5363-5369.	0.9	165

#	Article	IF	CITATIONS
37	Role of Noxa in p53-independent fenretinide-induced apoptosis of neuroectodermal tumours. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 613-622.	4.9	48
38	The Role of MYCN in the Failure of MYCN Amplified Neuroblastoma Cell Lines to G1 Arrest After DNA Damage. Cell Cycle, 2006, 5, 2639-2647.	2.6	44
39	Fenretinide: A p53-independent way to kill cancer cells. Biochemical and Biophysical Research Communications, 2005, 331, 810-815.	2.1	42
40	The role of gangliosides in fenretinide-induced apoptosis of neuroblastoma. Cancer Letters, 2005, 228, 105-110.	7.2	23
41	Gangliosides Link the Acidic Sphingomyelinase-Mediated Induction of Ceramide to 12-Lipoxygenase-Dependent Apoptosis of Neuroblastoma in Response to Fenretinide. Journal of the National Cancer Institute, 2004, 96, 1288-1299.	6.3	84
42	Molecular Mechanisms of Fenretinide-Induced Apoptosis of Neuroblastoma Cells. Annals of the New York Academy of Sciences, 2004, 1028, 81-89.	3.8	40
43	Mechanisms of free-radical induction in relation to fenretinide-induced apoptosis of neuroblastoma. Journal of Cellular Biochemistry, 2003, 89, 698-708.	2.6	33
44	Induction of GADD153 and Bak: novel molecular targets of fenretinide-induced apoptosis of neuroblastoma. Cancer Letters, 2003, 197, 157-163.	7.2	19
45	Growth and DNA Damage-Inducible Transcription Factor 153 Mediates Apoptosis in Response to Fenretinide but Not Synergy between Fenretinide and Chemotherapeutic Drugs in Neuroblastoma. Molecular Pharmacology, 2003, 64, 1370-1378.	2.3	19
46	Glucosylceramide synthase and its functional interaction with RTN-1C regulate chemotherapeutic-induced apoptosis in neuroepithelioma cells. Cancer Research, 2003, 63, 3860-5.	0.9	42
47	Bak: a downstream mediator of fenretinide-induced apoptosis of SH-SY5Y neuroblastoma cells. Cancer Research, 2003, 63, 7310-3.	0.9	27
48	Retinoid signalling and gene expression in neuroblastoma cells: RXR agonist and antagonist effects on CRABP-II and RAR? expression. Journal of Cellular Biochemistry, 2002, 87, 284-291.	2.6	7
49	GADD153 and 12-lipoxygenase mediate fenretinide-induced apoptosis of neuroblastoma. Cancer Research, 2002, 62, 5158-67.	0.9	68
50	Apoptosis in neuroblastomas induced by interferon-? involves the CD95/CD95L pathway. Medical and Pediatric Oncology, 2001, 36, 115-117.	1.0	5
51	Differential gene regulation by 9-cis and all-trans retinoic acid in neuroblastoma cells. Medical and Pediatric Oncology, 2001, 36, 135-138.	1.0	2
52	Distinct properties of fenretinide and CD437 lead to synergistic responses with chemotherapeutic reagents. Medical and Pediatric Oncology, 2000, 35, 663-668.	1.0	18
53	Synergistic induction of apoptosis of neuroblastoma by fenretinide or CD437 in combination with chemotherapeutic drugs. International Journal of Cancer, 2000, 88, 977-985.	5.1	55
54	Effector Mechanisms of Fenretinide-Induced Apoptosis in Neuroblastoma. Experimental Cell Research, 2000, 260, 50-60.	2.6	87

#	Article	IF	CITATIONS
55	Receptor mechanisms mediating differentiation and proliferation effects of retinoids on neuroblastoma cells. Neuroscience Letters, 2000, 279, 113-116.	2.1	8
56	Differential effects of retinoic acid isomers on the expression of nuclear receptor co-regulators in neuroblastoma. FEBS Letters, 1999, 445, 415-419.	2.8	12
57	Retinoid-induced differentiation of neuroblastoma: Comparison between LG69, an RXR-selective analogue and 9-cis retinoic acid. European Journal of Cancer, 1998, 34, 111-117.	2.8	20
58	Retinoids in neuroblastoma therapy: distinct biological properties of 9-cis- and all-trans-retinoic acid. European Journal of Cancer, 1997, 33, 2075-2080.	2.8	38
59	9-cis retinoic acida better retinoid for the modulation of differentiation, proliferation and gene expression in human neuroblastoma. Journal of Neuro-Oncology, 1997, 31, 85-91.	2.9	21
60	Gene expression and neuroblastoma cell Differentiation in response to retinoic acid: Differential effects of 9-cis and all-trans retinoic acid. European Journal of Cancer, 1995, 31, 486-494.	2.8	44
61	Concentration-dependent effects of 9-cis retinoic acid on neuroblastoma differentiation and proliferation in vitro. Neuroscience Letters, 1994, 182, 29-32.	2.1	22
62	Retinoic acid receptor expression during the in vitro differentiation of human neuroblastoma. Neuroscience Letters, 1993, 162, 109-113.	2.1	27
63	Serial Study of T Lymphocytes in Childhood Leukemia During Remission. Pediatric Hematology and Oncology, 1993, 10, 129-139.	0.8	13
64	The effects of anesthesia and surgery on lymphocyte populations and function in infants and children. Journal of Pediatric Surgery, 1989, 24, 884-887.	1.6	23
65	Enumeration of lymphocyte subpopulations by immunofluorescent staining of whole blood smears. Journal of Immunological Methods, 1987, 97, 37-40.	1.4	6
66	The Kupffer cell in experimental extrahepatic cholestasis in the rat—a light microscopy, immunohistochemical and electron microscopy study. Journal of Pathology, 1986, 150, 187-194.	4.5	33