Yangang Su,, Fhrs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5580642/publications.pdf

Version: 2024-02-01

623734 580821 69 848 14 25 citations g-index h-index papers 71 71 71 938 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cardiac resynchronization therapy via left bundle branch pacing vs. optimized biventricular pacing with adaptive algorithm in heart failure with left bundle branch block: a prospective, multi-centre, observational study. Europace, 2022, 24, 807-816.	1.7	65
2	Implantable device measured objective daily physical activity as a predictor of long-term all-cause mortality and cardiac death in patients with age > 75 years and high risk of sudden cardiac death cohort study. BMC Geriatrics, 2022, 22, 130.	: 2. 7	1
3	Acute Hemodynamic Impact of Atrioventricular Delay and Left Ventricular Pacing Vector Programming in MultiPoint Pacing. PACE - Pacing and Clinical Electrophysiology, 2022, , .	1.2	O
4	Current of injury is an indicator of lead depth and performance during left bundle branch pacing lead implantation. Heart Rhythm, 2022, 19, 1281-1288.	0.7	15
5	Risk factors of pacing dependence and cardiac dysfunction in patients with permanent pacemaker implantation. ESC Heart Failure, 2022, 9, 2325-2335.	3.1	4
6	Evaluation of electrophysiological characteristics and ventricular synchrony: An intrapatientâ€controlled study during Hisâ€Purkinje conduction system pacingÂversus right ventricular pacing. Clinical Cardiology, 2022, 45, 723-732.	1.8	7
7	Protective effects of cardiac resynchronization therapy in a canine model with experimental heart failure by improving mitochondrial function: a mitochondrial proteomics study. Journal of Interventional Cardiac Electrophysiology, 2021, 61, 123-135.	1.3	3
8	The risk factors of new-onset atrial fibrillation after pacemaker implantation. Herz, 2021, 46, 61-68.	1.1	9
9	A new method to recommend left ventricular lead positions for improved CRT volumetric response and long-term prognosis. Journal of Nuclear Cardiology, 2021, 28, 672-684.	2.1	12
10	Biventricular pacemaker and defibrillator implantation in patients with chronic heart failure in China. ESC Heart Failure, 2021, 8, 546-554.	3.1	7
11	Angiotensin II Increases HMGB1 Expression in the Myocardium Through AT1 and AT2 Receptors When Under Pressure Overload. International Heart Journal, 2021, 62, 162-170.	1.0	5
12	Procedure-Related Complications of Left Bundle Branch Pacing: A Single-Center Experience. Frontiers in Cardiovascular Medicine, 2021, 8, 645947.	2.4	51
13	The value of non-invasive myocardial work indices derived from left ventricular pressure-strain loops in predicting the response to cardiac resynchronization therapy. Quantitative Imaging in Medicine and Surgery, 2021, 11, 1406-1420.	2.0	9
14	Feasibility and Outcomes of Upgrading to Left Bundle Branch Pacing in Patients With Pacing-Induced Cardiomyopathy and Infranodal Atrioventricular Block. Frontiers in Cardiovascular Medicine, 2021, 8, 674452.	2.4	25
15	Association Between Changes in Physical Activity and New-Onset Atrial Fibrillation After ICD/CRT-D Implantation. Frontiers in Cardiovascular Medicine, 2021, 8, 693458.	2.4	O
16	Left ventricularâ€only fusion pacing versus cardiac resynchronization therapy in heart failure patients: A randomized controlled trial. Clinical Cardiology, 2021, 44, 1225-1232.	1.8	4
17	Association between cardiac autonomic function and physical activity in patients at high risk of sudden cardiac death: a cohort study. International Journal of Behavioral Nutrition and Physical Activity, 2021, 18, 128.	4.6	2
18	Prediction of response after cardiac resynchronization therapy with machine learning. International Journal of Cardiology, 2021, 344, 120-126.	1.7	10

#	Article	IF	CITATIONS
19	Association of Night-Time Heart Rate With Ventricular Tachyarrhythmias, Appropriate and Inappropriate Implantable Cardioverter-Defibrillator Shocks. Frontiers in Cardiovascular Medicine, 2021, 8, 739889.	2.4	2
20	Pericardial effusion caused by accidently placing a Micra transcatheter pacing system into the coronary sinus. BMC Cardiovascular Disorders, 2021, 21, 461.	1.7	3
21	Abstract 11164: Better Electromechanical Synchrony During Left Bundle Branch Pacing and His Bundle Pacing as Compared to Right Ventricular Pacing in Atrioventricular Block. Circulation, 2021, 144, .	1.6	0
22	Abstract 11215: Cardiac Resynchronization Therapy via Left Bundle Branch Pacing Vvrsus Optimized Biventricular Pacing with Adaptive Algorithm in Heart Failure with Left Bundle Branch Block: A Prospective, Multi-Center, Observational Study. Circulation, 2021, 144, .	1.6	5
23	Absence of Obesity Paradox in All-Cause Mortality Among Chinese Patients With an Implantable Cardioverter Defibrillator: A Multicenter Cohort Study. Frontiers in Cardiovascular Medicine, 2021, 8, 730368.	2.4	1
24	Abstract 13622: Current of Injury is an Indicator of Lead Depth and Acute Perforation During Left Bundle Branch Pacing Lead Implantation. Circulation, 2021, 144, .	1.6	0
25	Predictive value of rapid-rate non-sustained ventricular tachycardia in the occurrence of appropriate implantable cardioverter-defibrillator therapy. Journal of Interventional Cardiac Electrophysiology, 2020, 57, 473-480.	1.3	6
26	An S wave in ECG lead V6 predicts poor response to cardiac resynchronization therapy and long-term outcome. Heart Rhythm, 2020, 17, 265-272.	0.7	9
27	Comparison between cardiac resynchronization therapy with and without defibrillator on long-term mortality: A propensity score matched analysis. Journal of Cardiology, 2020, 75, 432-438.	1.9	9
28	Patientâ€tailored SyncAV algorithm: A novel strategy to improve synchrony and acute hemodynamic response in heart failure patients treated by cardiac resynchronization therapy. Journal of Cardiovascular Electrophysiology, 2020, 31, 512-520.	1.7	14
29	Electrophysiological parameters and anatomical evaluation of left bundle branch pacing in an in vivo canine model. Journal of Cardiovascular Electrophysiology, 2020, 31, 214-219.	1.7	21
30	Left bundle branch area pacing is superior to right ventricular septum pacing concerning depolarizationâ€repolarization reserve. Journal of Cardiovascular Electrophysiology, 2020, 31, 313-322.	1.7	43
31	HMGB1 Aggravates Pressure Overload-Induced Left Ventricular Dysfunction by Promoting Myocardial Fibrosis. International Journal of Hypertension, 2020, 2020, 1-8.	1.3	5
32	Dose-response association of implantable device-measured physical activity with long-term cardiac death and all-cause mortality in patients at high risk of sudden cardiac death: a cohort study. International Journal of Behavioral Nutrition and Physical Activity, 2020, 17, 119.	4.6	1
33	Overweight and obesity as protective factors against mortality in nonischemic cardiomyopathy patients with an implantable cardioverter defibrillator. Clinical Cardiology, 2020, 43, 1435-1442.	1.8	6
34	Association of the Obesity Paradox With Objective Physical Activity in Patients at High Risk of Sudden Cardiac Death. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4801-e4810.	3.6	3
35	Non-linear Association Between Body Mass Index and Ventricular Tachycardia/Ventricular Fibrillation in Patients With an Implantable Cardioverter-Defibrillator or Cardiac Resynchronization Therapy Defibrillator: A Multicenter Cohort Study. Frontiers in Cardiovascular Medicine, 2020, 7, 610629.	2.4	0
36	Sex Differences in Physical Activity and Its Association With Cardiac Death and All-Cause Mortality in Patients With Implantable Cardioverter-Defibrillators. Frontiers in Cardiovascular Medicine, 2020, 7, 588622.	2.4	2

#	Article	IF	CITATIONS
37	Circulating metabolite profiles to predict response to cardiac resynchronization therapy. BMC Cardiovascular Disorders, 2020, 20, 178.	1.7	2
38	The feasibility and safety of left bundle branch pacing vs. right ventricular pacing after mid-long-term follow-up: a single-centre experience. Europace, 2020, 22, ii36-ii44.	1.7	47
39	Risk of subsequent ventricular arrhythmia is higher in primary prevention patients with implantable cardioverter defibrillator than in secondary prevention patients. BMC Cardiovascular Disorders, 2019, 19, 230.	1.7	2
40	HMGB1 enhances mechanical stress-induced cardiomyocyte hypertrophy in�vitro via the RAGE/ERK1/2 signaling pathway. International Journal of Molecular Medicine, 2019, 44, 885-892.	4.0	13
41	The characteristics of the electrocardiogram and the intracardiac electrogram in left bundle branch pacing. Journal of Cardiovascular Electrophysiology, 2019, 30, 1096-1101.	1.7	125
42	The mechanical effects of CRT promoting autophagy via mitochondrial calcium uniporter downâ€regulation and mitochondrial dynamics alteration. Journal of Cellular and Molecular Medicine, 2019, 23, 3833-3842.	3.6	10
43	The value of left ventricular strain–volume loops in predicting response to cardiac resynchronization therapy. Cardiovascular Ultrasound, 2019, 17, 3.	1.6	7
44	Left ventricular global longitudinal strain and mechanical dispersion predict response to multipoint pacing for cardiac resynchronization therapy. Journal of Clinical Ultrasound, 2019, 47, 356-365.	0.8	8
45	Atrial transseptal left ventricular lead implantation for cardiac resynchronization therapy using arteriovenous loop technique. PACE - Pacing and Clinical Electrophysiology, 2018, 41, 866-869.	1.2	0
46	Could persistency of current of injury forecast successful active-fixation pacing lead implantation?. International Journal of Cardiology, 2018, 258, 121-125.	1.7	6
47	Electrocardiographic parameters effectively predict ventricular tachycardia/fibrillation in acute phase and abnormal cardiac function in chronic phase of STâ€segment elevation myocardial infarction. Journal of Cardiovascular Electrophysiology, 2018, 29, 756-766.	1.7	12
48	Comparison of single-coil lead versus dual-coil lead of implantable cardioverter defibrillator on lead-related venous complications in a canine model. Journal of Interventional Cardiac Electrophysiology, 2018, 52, 195-201.	1.3	3
49	Speckle tracking echocardiography analyses of myocardial contraction efficiency predict response for cardiac resynchronization therapy. Cardiovascular Ultrasound, 2018, 16, 30.	1.6	9
50	Mitochondrial calcium uniporter inhibition provides cardioprotection in pressure overload-induced heart failure through autophagy enhancement. International Journal of Cardiology, 2018, 271, 161-168.	1.7	52
51	Transvenous cardiac implantable electronic device implantation in patients with persistent left superior vena cava in a tertiary center. Journal of Interventional Cardiac Electrophysiology, 2018, 53, 255-262.	1.3	11
52	Cessation of pacing in superâ€responders of cardiac resynchronization therapy: A randomized controlled trial. Journal of Cardiovascular Electrophysiology, 2018, 29, 1548-1555.	1.7	7
53	Prognostic significance of frequent premature ventricular complex early after implantation among patients with implantable cardioverter defibrillator. Journal of Electrocardiology, 2018, 51, 898-905.	0.9	5
54	Effect of Cardiac Resynchronization Therapy on Myocardial Fibrosis and Relevant Cytokines in a Canine Model With Experimental Heart Failure. Journal of Cardiovascular Electrophysiology, 2017, 28, 438-445.	1.7	17

#	Article	IF	CITATIONS
55	Electro-echocardiographic Indices to Predict Cardiac Resynchronization Therapy Non-response on Non-ischemic Cardiomyopathy. Scientific Reports, 2017, 7, 44009.	3.3	9
56	Troponin T elevation after permanent pacemaker implantation. Journal of Interventional Cardiac Electrophysiology, 2017, 49, 211-218.	1.3	4
57	Association between patient activity and long-term cardiac death in patients with implantable cardioverter-defibrillators and cardiac resynchronization therapy defibrillators. European Journal of Preventive Cardiology, 2017, 24, 760-767.	1.8	17
58	Benefits of Cardiac Resynchronization Therapy in an Asynchronous Heart Failure Model Induced by Left Bundle Branch Ablation and Rapid Pacing. Journal of Visualized Experiments, 2017, , .	0.3	1
59	Integrative and quantitive evaluation of the efficacy of his bundle related pacing in comparison with conventional right ventricular pacing: a meta-analysis. BMC Cardiovascular Disorders, 2017, 17, 221.	1.7	15
60	Multiple systemic embolism in infective endocarditis underlying in Barlow's disease. BMC Infectious Diseases, 2016, 16, 403.	2.9	2
61	Interatrial septal pacing to suppress atrial fibrillation in patients with dual chamber pacemakers: A meta-analysis of randomized, controlled trials. International Journal of Cardiology, 2016, 219, 421-427.	1.7	15
62	High incidence of ventricular arrhythmias in patients with left ventricular enlargement and moderate left ventricular dysfunction. Clinical Cardiology, 2016, 39, 703-708.	1.8	5
63	Dual roles of calpain in facilitating Coxsackievirus B3 replication and prompting inflammation in acute myocarditis. International Journal of Cardiology, 2016, 221, 1123-1131.	1.7	19
64	Pacing lead is more easily located at RVOT septum in patients with severe tricuspid regurgitation. Acta Cardiologica, 2016, 71, 730-736.	0.9	1
65	Ethyl pyruvate attenuated coxsackievirus B3-induced acute viral myocarditis by suppression of HMGB1/RAGE/NF-ΚB pathway. SpringerPlus, 2016, 5, 215.	1.2	22
66	The role of variability in night-time mean heart rate on the prediction of ventricular arrhythmias and all-cause mortality in implantable cardioverter defibrillator patients. Europace, 2015, 17, ii76-ii82.	1.7	6
67	Assessment of Adaptive Rate Response Provided by Accelerometer, Minute Ventilation and Dual Sensor Compared with Normal Sinus Rhythm During Exercise. Chinese Medical Journal, 2015, 128, 25-31.	2.3	5
68	miRNA-130b is required for the ERK/FOXM1 pathway activation-mediated protective effects of isosorbide dinitrate against mesenchymal stem cell senescence induced by high glucose. International Journal of Molecular Medicine, 2015, 35, 59-71.	4.0	25
69	Relationships between paced QRS duration and left cardiac structures and function. Acta Cardiologica, 2009, 64, 231-238.	0.9	7