Zijian Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5579981/publications.pdf

Version: 2024-02-01

		15504	22832
177	13,640	65	112
papers	citations	h-index	g-index
187	187	187	16740
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries. Chemical Engineering Journal, 2022, 429, 132196.	12.7	30
2	Permeable Conductors for Wearable and Onâ€Skin Electronics. Small Structures, 2022, 3, 2100135.	12.0	46
3	Rational Design of Liâ€Wicking Hosts for Ultrafast Fabrication of Flexible and Stable Lithium Metal Anodes. Small, 2022, 18, e2105308.	10.0	14
4	Bioinspired Hierarchical Structures for Contactâ€Sensible Adhesives. Advanced Functional Materials, 2022, 32, 2109076.	14.9	30
5	Flexible Photodetectors Based on Allâ€Solutionâ€Processed Cu Electrodes and InSe Nanoflakes with High Stabilities. Advanced Functional Materials, 2022, 32, 2108261.	14.9	18
6	Inverse Opaline Metallic Membrane Addresses the Tradeoff Between Volumetric Capacitance and Areal Capacitance of Supercapacitor. Advanced Energy Materials, 2022, 12, 2102802.	19.5	13
7	3D Dipâ€Pen Nanolithography. Advanced Materials Technologies, 2022, 7, 2101493.	5.8	11
8	Solution process formation of high performance, stable nanostructured transparent metal electrodes via displacement-diffusion-etch process. Npj Flexible Electronics, 2022, 6, .	10.7	12
9	Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. Nano-Micro Letters, 2022, 14, 61.	27.0	113
10	Au-coated carbon fabric as Janus current collector for dendrite-free flexible lithium metal anode and battery. Applied Physics Reviews, 2022, 9, .	11.3	18
11	Inverted Anode Structure for Longâ€Life Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	19.5	29
12	Supramolecularâ€mediated ballâ€inâ€ball porous carbon nanospheres for ultrafast energy storage. InformaÄnÃ-Materiály, 2022, 4, .	17.3	16
13	Saltâ€Assisted 2Hâ€toâ€1T′ Phase Transformation of Transition Metal Dichalcogenides. Advanced Materials, 2022, 34, e2201194.	21.0	19
14	Subnanometer MoP clusters confined in mesoporous carbon (CMK-3) as superior electrocatalytic sulfur hosts for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2022, 446, 137050.	12.7	9
15	Inkjetâ€Printed Xerogel Scaffolds Enabled Roomâ€Temperature Fabrication of Highâ€Quality Metal Electrodes for Flexible Electronics. Advanced Functional Materials, 2022, 32, .	14.9	9
16	Hybrid Lithium″on/Metal Electrodes Enable Long Cycle Stability and High Energy Density of Flexible Batteries. Advanced Functional Materials, 2022, 32, .	14.9	18
17	Unprecedented Superhighâ€Rate and Ultrastable Anode for Highâ€Power Battery via Cationic Disordering. Advanced Energy Materials, 2022, 12, .	19.5	22
18	Wideâ€ŧemperature range thermoregulating eâ€skin design through a hybrid structure of flexible thermoelectric devices and phase change materials heat sink. EcoMat, 2022, 4, .	11.9	14

#	Article	IF	CITATIONS
19	Tandem Selfâ€Powered Flexible Electrochromic Energy Supplier for Sustainable Allâ€Day Operations. Advanced Energy Materials, 2022, 12, .	19.5	17
20	Permeable graphited hemp fabrics-based, wearing-comfortable pressure sensors for monitoring human activities. Chemical Engineering Journal, 2021, 403, 126191.	12.7	47
21	Fibrous Materials for Flexible Li–S Battery. Advanced Energy Materials, 2021, 11, 2002580.	19.5	85
22	Lowâ€Temperatureâ€Deposited TiO ₂ Nanopillars for Efficient and Flexible Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2001512.	3.7	11
23	Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges. Advanced Energy Materials, 2021, 11, 2002838.	19.5	78
24	Titanium Nanopillar Arrays Functioning as Electron Transporting Layers for Efficient, Antiâ€Aging Perovskite Solar Cells. Small, 2021, 17, e2004778.	10.0	9
25	Dynamic cross-linking of an alginate–acrylamide tough hydrogel system: time-resolved <i>in situ</i> mapping of gel self-assembly. RSC Advances, 2021, 11, 10710-10726.	3.6	23
26	Textile Composite Electrodes: Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges (Adv. Energy Mater. 3/2021). Advanced Energy Materials, 2021, 11, 2170012.	19.5	1
27	Highly Breathable and Stretchable Strain Sensors with Insensitive Response to Pressure and Bending. Advanced Functional Materials, 2021, 31, 2007622.	14.9	96
28	Pathways of Developing Highâ€Energyâ€Density Flexible Lithium Batteries. Advanced Materials, 2021, 33, e2004419.	21.0	68
29	Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nature Materials, 2021, 20, 859-868.	27.5	407
30	Stretchable ITOâ€Free Organic Solar Cells with Intrinsic Antiâ€Reflection Substrate for Highâ€Efficiency Outdoor and Indoor Energy Harvesting. Advanced Functional Materials, 2021, 31, 2010172.	14.9	53
31	Metalâ€Based Flexible Transparent Electrodes: Challenges and Recent Advances. Advanced Electronic Materials, 2021, 7, 2001121.	5.1	79
32	Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels. Nature Communications, 2021, 12, 2082.	12.8	96
33	Li–S Batteries: Fibrous Materials for Flexible Li–S Battery (Adv. Energy Mater. 15/2021). Advanced Energy Materials, 2021, 11, 2170058.	19.5	5
34	Smart materials and devices for electronic textiles. MRS Bulletin, 2021, 46, 488-490.	3.5	6
35	Fiber-Based Thermoelectric Materials and Devices for Wearable Electronics. Micromachines, 2021, 12, 869.	2.9	13
36	Crumpled, high-power, and safe wearable Lithium-Ion Battery enabled by nanostructured metallic textiles. Fundamental Research, 2021, 1, 399-407.	3.3	15

#	Article	lF	Citations
37	Polymerâ€Assisted Metallization of Mammalian Cells. Advanced Materials, 2021, 33, e2102348.	21.0	12
38	Prediction of adhesion between randomly rough surfaces by order statistics. Applied Physics Letters, 2021, 119, .	3.3	7
39	Liquid–Metalâ€Superlyophilic and Conductivity–Strainâ€Enhancing Scaffold for Permeable Superelastic Conductors. Advanced Functional Materials, 2021, 31, 2105587.	14.9	64
40	Smoothing the Sodiumâ€Metal Anode with a Selfâ€Regulating Alloy Interface for Highâ€Energy and Sustainable Sodiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2102802.	21.0	50
41	Realizing Highâ€Energy and Stable Wireâ€Type Batteries with Flexible Lithium–Metal Composite Yarns. Advanced Energy Materials, 2021, 11, 2101809.	19.5	32
42	Sensitive, Highâ€Speed, and Broadband Perovskite Photodetectors with Builtâ€In TiO ₂ Metalenses. Small, 2021, 17, e2102694.	10.0	4
43	Enabling high-energy flexible solid-state lithium ion batteries at room temperature. Chemical Engineering Journal, 2021, 424, 130335.	12.7	13
44	A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration monitoring and identification. Chemical Engineering Journal, 2021, 426, 130869.	12.7	51
45	Interfacial design of thick sulfur cathodes to achieve high energy density and stability. Journal of Materials Chemistry A, 2021, 9, 17129-17142.	10.3	9
46	Seeded Synthesis of Unconventional 2H-Phase Pd Alloy Nanomaterials for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 17292-17299.	13.7	59
47	Pathways of Developing Highâ€Energyâ€Density Flexible Lithium Batteries (Adv. Mater. 46/2021). Advanced Materials, 2021, 33, .	21.0	8
48	V ₂ O ₅ Textile Cathodes with High Capacity and Stability for Flexible Lithiumâ€lon Batteries. Advanced Materials, 2020, 32, e1906205.	21.0	107
49	Soft Hybrid Scaffold (SHS) Strategy for Realization of Ultrahigh Energy Density of Wearable Aqueous Supercapacitors. Advanced Materials, 2020, 32, e1907088.	21.0	43
50	Rational Design of Binders for Stable Liâ€S and Naâ€S Batteries. Advanced Functional Materials, 2020, 30, 1907931.	14.9	92
51	Zwitterionic-Surfactant-Assisted Room-Temperature Coating of Efficient Perovskite Solar Cells. Joule, 2020, 4, 2404-2425.	24.0	137
52	Visible-light-assisted multimechanism design for one-step engineering tough hydrogels in seconds. Nature Communications, 2020, 11, 4694.	12.8	56
53	Hollow multishelled structural NiO as a "shelter―for high-performance Li–S batteries. Materials Chemistry Frontiers, 2020, 4, 2971-2975.	5.9	14
54	500 Wh kg ^{â^'1} Class Li Metal Battery Enabled by a Selfâ€Organized Core–Shell Composite Anode. Advanced Materials, 2020, 32, e2004793.	21.0	86

#	Article	IF	Citations
55	Efficient Flexible Perovskite Solar Cells Using Low-Cost Cu Top and Bottom Electrodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 26050-26059.	8.0	26
56	Facile Fabrication of Highly Uniform Tellurium Nanorods for Selfâ€Powered Flexible Optoelectronics. Advanced Electronic Materials, 2020, 6, 2000240.	5.1	12
57	Additive Functionalization and Embroidery for Manufacturing Wearable and Washable Textile Supercapacitors. Advanced Functional Materials, 2020, 30, 1910541.	14.9	55
58	A FigureÂof Merit for Flexible Batteries. Joule, 2020, 4, 1346-1349.	24.0	81
59	New Lithium Salt Forms Interphases Suppressing Both Li Dendrite and Polysulfide Shuttling. Advanced Energy Materials, 2020, 10, 1903937.	19.5	58
60	Flexible Interface Design for Stress Regulation of a Silicon Anode toward Highly Stable Dualâ€lon Batteries. Advanced Materials, 2020, 32, e1908470.	21.0	126
61	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	47.7	152
62	Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy, 2020, 70, 104528.	16.0	151
63	Boosting the Energy Density of Flexible Asymmetric Supercapacitor with Three Dimensional Fe2O3 Composite Brush Anode. Chemical Research in Chinese Universities, 2020, 36, 97-104.	2.6	9
64	In situ covalent bonding in polymerization to construct robust hydrogel lubrication coating on surface of silicone elastomer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124753.	4.7	15
65	Anisotropic Hydrogels with High Mechanical Strength by Stretching-Induced Oriented Crystallization and Drying. ACS Applied Polymer Materials, 2020, 2, 2142-2150.	4.4	11
66	Evolution of Dip-Pen Nanolithography (DPN): From Molecular Patterning to Materials Discovery. Chemical Reviews, 2020, 120, 6009-6047.	47.7	107
67	Water-based phytic acid-crosslinked supramolecular binders for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 395, 124981.	12.7	49
68	Polymerâ€Assisted Metal Deposition (PAMD) for Flexible and Wearable Electronics: Principle, Materials, Printing, and Devices. Advanced Materials, 2019, 31, e1902987.	21.0	128
69	Bioinspired Microfluidic Device by Integrating a Porous Membrane and Heterostructured Nanoporous Particles for Biomolecule Cleaning. ACS Nano, 2019, 13, 8374-8381.	14.6	40
70	Freestanding Lamellar Porous Carbon Stacks for Lowâ€Temperatureâ€Foldable Supercapacitors. Small, 2019, 15, e1902071.	10.0	39
71	Phosphorus Incorporation into Co ₉ S ₈ Nanocages for Highly Efficient Oxygen Evolution Catalysis. Small, 2019, 15, e1904507.	10.0	75
72	Simultaneous Surface Covalent Bonding and Radical Polymerization for Constructing Robust Soft Actuators with Fast Underwater Response. Chemistry of Materials, 2019, 31, 9504-9512.	6.7	36

#	Article	IF	Citations
73	Fabrication of Asymmetric Tubular Hydrogels through Polymerization-Assisted Welding for Thermal Flow Actuated Artificial Muscles. Chemistry of Materials, 2019, 31, 4469-4478.	6.7	39
74	Two-dimensional hierarchically porous carbon nanosheets for flexible aqueous supercapacitors with high volumetric capacitance. Nanoscale, 2019, 11, 11086-11092.	5.6	46
75	Vacuum-free fabrication of high-performance semitransparent perovskite solar cells via e-glue assisted lamination process. Science China Chemistry, 2019, 62, 875-882.	8.2	7
76	Polymerization induced phase separation as a generalized methodology for multi-layered hydrogel tubes. Journal of Materials Chemistry B, 2019, 7, 3505-3511.	5.8	6
77	Binary polymer brush patterns from facile initiator stickiness for cell culturing. Faraday Discussions, 2019, 219, 189-202.	3.2	8
78	Development of Dipâ€Pen Nanolithography (DPN) and Its Derivatives. Small, 2019, 15, e1900564.	10.0	75
79	EcoMat: Join us in the pursuit of functional materials for green energy and environment. EcoMat, 2019, 1, e12009.	11.9	0
80	Multidimensional micro- and nano-printing technologies: general discussion. Faraday Discussions, 2019, 219, 73-76.	3.2	0
81	New directions in surface functionalization and characterization: general discussion. Faraday Discussions, 2019, 219, 252-261.	3.2	0
82	Progress in textile-based triboelectric nanogenerators for smart fabrics. Nano Energy, 2019, 56, 16-24.	16.0	122
83	Design, preparation and assembly of flexible electrode based on carbon materials. Chinese Science Bulletin, 2019, 64, 514-531.	0.7	1
84	Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells. Solar Energy Materials and Solar Cells, 2018, 179, 36-44.	6.2	31
85	Graphene-based two-dimensional Janus materials. NPG Asia Materials, 2018, 10, 217-237.	7.9	113
86	Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells. Journal of Semiconductors, 2018, 39, 014002.	3.7	11
87	Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density. Advanced Materials, 2018, 30, 1706054.	21.0	405
88	Chemical formation of soft metal electrodes for flexible and wearable electronics. Chemical Society Reviews, 2018, 47, 4611-4641.	38.1	245
89	Fully Solutionâ€Processed TCOâ€Free Semitransparent Perovskite Solar Cells for Tandem and Flexible Applications. Advanced Energy Materials, 2018, 8, 1701569.	19.5	77
90	Functional polymer surfaces for controlling cell behaviors. Materials Today, 2018, 21, 38-59.	14.2	257

#	Article	IF	CITATIONS
91	Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nature Communications, 2018, 9, 4480.	12.8	193
92	Flexible high energy density zinc-ion batteries enabled by binder-free MnO2/reduced graphene oxide electrode. Npj Flexible Electronics, 2018, 2, .	10.7	69
93	Universal Nature-Inspired and Amine-Promoted Metallization for Flexible Electronics and Supercapacitors. ACS Applied Materials & Supercapacitors.	8.0	18
94	Improved air-stability of an organic–inorganic perovskite with anhydrously transferred graphene. Journal of Materials Chemistry C, 2018, 6, 8663-8669.	5.5	9
95	Scanning Nanowelding Lithography for Rewritable Oneâ€Step Patterning of Subâ€50 nm Highâ€Aspectâ€Ratio Metal Nanostructures. Advanced Materials, 2018, 30, e1801772.	21.0	15
96	Organic Flexible Electronics. Small Methods, 2018, 2, 1800070.	8.6	177
97	Flexible and Stretchable Perovskite Solar Cells: Device Design and Development Methods. Small Methods, 2018, 2, 1800031.	8.6	71
98	Waterproof, Ultrahigh Arealâ€Capacitance, Wearable Supercapacitor Fabrics. Advanced Materials, 2017, 29, 1606679.	21.0	297
99	A Transparent, Highly Stretchable, Autonomous Selfâ∈Healing Poly(dimethyl siloxane) Elastomer. Macromolecular Rapid Communications, 2017, 38, 1700110.	3.9	165
100	Size-tunable, highly sensitive microelectrode arrays enabled by polymer pen lithography. Soft Matter, 2017, 13, 3685-3689.	2.7	12
101	In situ formation of highly active Ni–Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. Journal of Materials Chemistry A, 2017, 5, 11009-11015.	10.3	85
102	Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors. Materials Research Express, 2017, 4, 075602.	1.6	6
103	Water-borne foldable polymer solar cells: one-step transferring free-standing polymer films onto woven fabric electrodes. Journal of Materials Chemistry A, 2017, 5, 782-788.	10.3	30
104	Selfâ∈Healing Materials for Nextâ∈Generation Energy Harvesting and Storage Devices. Advanced Energy Materials, 2017, 7, 1700890.	19.5	206
105	Largeâ€Area Patterning of Metal Nanostructures by Dipâ€Pen Nanodisplacement Lithography for Optical Applications. Small, 2017, 13, 1702003.	10.0	29
106	Frontiers in Nanointerfaces Research. Small, 2017, 13, 1703364.	10.0	2
107	Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 969-974.	10.3	56
108	Monolithic hierarchical gold sponges for efficient and stable catalysis in a continuous-flow microreactor. Materials Chemistry Frontiers, 2017, 1, 482-486.	5.9	18

#	Article	IF	Citations
109	Biomimicking Nanoâ€Micro Binary Polymer Brushes for Smart Cell Orientation and Adhesion Control. Small, 2016, 12, 3400-3406.	10.0	43
110	Photoreactive and Metalâ€Platable Copolymer Inks for Highâ€Throughput, Roomâ€Temperature Printing of Flexible Metal Electrodes for Thinâ€Film Electronics. Advanced Materials, 2016, 28, 4926-4934.	21.0	77
111	Machineâ€Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns. Advanced Materials, 2016, 28, 10267-10274.	21.0	328
112	Visible-Light Photolabile, Charge-Convertible Poly(ionic liquid) for Light-degradable Films and Carbon-Based Electronics. ACS Applied Materials & Electronics. ACS Applied Materials & Electronics. ACS Applied Materials & Electronics. The Electronics and Electronics and Electronics. ACS Applied Materials & Electronics and Electronics. ACS Applied Materials & Electronics and Electro	8.0	6
113	Printed light-trapping nanorelief Cu electrodes for full-solution-processed flexible organic solar cells. Materials Research Express, 2016, 3, 074006.	1.6	2
114	Textileâ€Based Electrochemical Energy Storage Devices. Advanced Energy Materials, 2016, 6, 1600783.	19.5	287
115	Production of Twoâ€Dimensional Nanomaterials via Liquidâ€Based Direct Exfoliation. Small, 2016, 12, 272-293.	10.0	407
116	One-step electrospinning of carbon nanowebs on metallic textiles for high-capacitance supercapacitor fabrics. Journal of Materials Chemistry A, 2016, 4, 6802-6808.	10.3	74
117	Arbitrary and Parallel Nanofabrication of 3D Metal Structures with Polymer Brush Resists. Small, 2015, 11, 6013-6017.	10.0	14
118	Onâ€Tip Photoâ€Modulated Molecular Printing. Angewandte Chemie - International Edition, 2015, 54, 12894-12899.	13.8	20
119	Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes. Nature Communications, 2015, 6, 7260.	12.8	534
120	Apertureless Cantilever-Free Pen Arrays for Scanning Photochemical Printing. Small, 2015, 11, 913-918.	10.0	39
121	Biomimicking Topographic Elastomeric Petals (Eâ€Petals) for Omnidirectional Stretchable and Printable Electronics. Advanced Science, 2015, 2, 1400021.	11.2	96
122	Bioâ€Inspired Chemical Fabrication of Stretchable Transparent Electrodes. Small, 2015, 11, 3444-3449.	10.0	58
123	Reversible Conversion of Dominant Polarity in Ambipolar Polymer/Graphene Oxide Hybrids. Scientific Reports, 2015, 5, 9446.	3.3	19
124	Construction of 3D Polymer Brushes by Dipâ€Pen Nanodisplacement Lithography: Understanding the Molecular Displacement for Ultrafine and Highâ€Speed Patterning. Small, 2015, 11, 613-621.	10.0	22
125	Transferable, transparent and functional polymer@graphene 2D objects. NPG Asia Materials, 2014, 6, e130-e130.	7.9	13
126	Hong Kong: An R&D Hub in Asia for Materials Science and Engineering. Advanced Materials, 2014, 26, 5235-5238.	21.0	0

#	Article	IF	Citations
127	Aqueous and Airâ€Compatible Fabrication of Highâ€Performance Conductive Textiles. Chemistry - an Asian Journal, 2014, 9, 2170-2177.	3.3	36
128	Photosensitive Graphene Transistors. Advanced Materials, 2014, 26, 5239-5273.	21.0	290
129	Fullâ€Solution Processed Flexible Organic Solar Cells Using Lowâ€Cost Printable Copper Electrodes. Advanced Materials, 2014, 26, 7271-7278.	21.0	67
130	Massively Parallel Patterning of Complex 2D and 3D Functional Polymer Brushes by Polymer Pen Lithography. ACS Applied Materials & Samp; Interfaces, 2014, 6, 11955-11964.	8.0	52
131	Saltâ€Assisted Highâ€Throughput Synthesis of Single―and Fewâ€Layer Transition Metal Dichalcogenides and Their Application in Organic Solar Cells. Small, 2014, 10, 4651-4657.	10.0	94
132	Polymerâ€Assisted Metal Deposition (PAMD): A Fullâ€Solution Strategy for Flexible, Stretchable, Compressible, and Wearable Metal Conductors. Advanced Materials, 2014, 26, 5508-5516.	21.0	170
133	Threeâ€Dimensional Compressible and Stretchable Conductive Composites. Advanced Materials, 2014, 26, 810-815.	21.0	156
134	Organic electrochemical transistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors. Journal of Materials Chemistry B, 2014, 2, 191-200.	5.8	119
135	Ionic liquids as two-dimensional templates for the spontaneous assembly of copper nanoparticles into nanobelts and observation of an intermediate state. RSC Advances, 2013, 3, 341-344.	3.6	9
136	Liquidâ€Mediated Threeâ€Dimensional Scanning Probe Nanosculpting. Small, 2013, 9, 2851-2856.	10.0	13
137	Generation of Silk Fibroin Nanoparticles via Solution-Enhanced Dispersion by Supercritical CO ₂ . Industrial & Engineering Chemistry Research, 2013, 52, 3752-3761.	3.7	36
138	Matrixâ€Assisted Catalytic Printing for the Fabrication of Multiscale, Flexible, Foldable, and Stretchable Metal Conductors. Advanced Materials, 2013, 25, 3343-3350.	21.0	160
139	Regulating Infrared Photoresponses in Reduced Graphene Oxide Phototransistors by Defect and Atomic Structure Control. ACS Nano, 2013, 7, 6310-6320.	14.6	112
140	Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. Journal of Materials Chemistry B, 2013, 1, 3820.	5.8	126
141	Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets. Nanoscale, 2013, 5, 7202.	5.6	88
142	Polymer Brushes: Liquid-Mediated Three-Dimensional Scanning Probe Nanosculpting (Small 17/2013). Small, 2013, 9, 2850-2850.	10.0	1
143	Polymer Brush Electrets. Advanced Functional Materials, 2013, 23, 3239-3246.	14.9	20
144	The Development of Pad-Dry-Cure Compatible Method for Preparing Electrically Conductive Copper Coated Cotton Woven Fabrics. Journal of Fiber Bioengineering and Informatics, 2013, 6, 117-128.	0.2	7

#	Article	IF	Citations
145	Highâ€Resolution, Largeâ€Area, Serial Fabrication of 3D Polymer Brush Structures by Parallel Dipâ€Pen Nanodisplacement Lithography. Small, 2012, 8, 3568-3572.	10.0	28
146	Positionally Defined, Binary Semiconductor Nanoparticles Synthesized by Scanning Probe Block Copolymer Lithography. Nano Letters, 2012, 12, 1022-1025.	9.1	36
147	Polymer Pen Lithography Using Dualâ€Elastomer Tip Arrays. Small, 2012, 8, 2664-2669.	10.0	37
148	Surfaceâ€Grafted Polymerâ€Assisted Electroless Deposition of Metals for Flexible and Stretchable Electronics. Chemistry - an Asian Journal, 2012, 7, 862-870.	3.3	61
149	Fabrication of silk fibroin nanoparticles for controlled drug delivery. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	54
150	Polymer Nanostructures Made by Scanning Probe Lithography: Recent Progress in Material Applications. Macromolecular Rapid Communications, 2012, 33, 359-373.	3.9	36
151	A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale, 2011, 3, 258-264.	5.6	273
152	3D-patterned polymer brush surfaces. Nanoscale, 2011, 3, 4929.	5.6	58
153	Stretchable Conductors with Ultrahigh Tensile Strain and Stable Metallic Conductance Enabled by Prestrained Polyelectrolyte Nanoplatforms. Advanced Materials, 2011, 23, 3090-3094.	21.0	196
154	Fabrication of Arbitrary Threeâ€Dimensional Polymer Structures by Rational Control of the Spacing between Nanobrushes. Angewandte Chemie - International Edition, 2011, 50, 6506-6510.	13.8	68
155	Facile Synthesis of Wideâ€Bandgap Fluorinated Graphene Semiconductors. Chemistry - A European Journal, 2011, 17, 8896-8903.	3.3	121
156	Bioinspired solar water splitting, sensitized solar cells, and ultraviolet sensor based on semiconductor nanocrystal antenna/graphene nanoassemblies. , 2011 , , .		1
157	Force―and Timeâ€Dependent Feature Size and Shape Control in Molecular Printing via Polymerâ€Pen Lithography. Small, 2010, 6, 1082-1086.	10.0	68
158	A Transparent, Flexible, Lowâ€Temperature, and Solutionâ€Processible Graphene Composite Electrode. Advanced Functional Materials, 2010, 20, 2893-2902.	14.9	380
159	Thin Film Fieldâ€Effect Phototransistors from Bandgapâ€Tunable, Solutionâ€Processed, Fewâ€Layer Reduced Graphene Oxide Films. Advanced Materials, 2010, 22, 4872-4876.	21.0	209
160	Polyelectrolyte-Bridged Metal/Cotton Hierarchical Structures for Highly Durable Conductive Yarns. ACS Applied Materials & Durable Conductive Yarns.	8.0	184
161	Arrays of Nanoscale Lenses for Subwavelength Optical Lithography. Nano Letters, 2010, 10, 4399-4404.	9.1	47
162	Scanning probe block copolymer lithography. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20202-20206.	7.1	131

#	Article	IF	Citations
163	Programming nanostructures of polymer brushes by dip-pen nanodisplacement lithography (DNL). Nanoscale, 2010, 2, 2614.	5.6	54
164	Multiplexed Protein Arrays Enabled by Polymer Pen Lithography: Addressing the Inking Challenge. Angewandte Chemie - International Edition, 2009, 48, 7626-7629.	13.8	111
165	Generation of Metal Photomasks by Dipâ€Pen Nanolithography. Small, 2009, 5, 1850-1853.	10.0	37
166	Binary oppositely charged polyelectrolyte brushes for highly selective electroless deposition of bimetallic patterns. Electrochemistry Communications, 2009, 11, 492-495.	4.7	27
167	Topographically Flat, Chemically Patterned PDMS Stamps Made by Dipâ€Pen Nanolithography. Angewandte Chemie - International Edition, 2008, 47, 9951-9954.	13.8	49
168	Efficient Conjugatedâ€Polymer Optoelectronic Devices Fabricated by Thinâ€Film Transferâ€Printing Technique. Advanced Functional Materials, 2008, 18, 1012-1019.	14.9	125
169	Surfaceâ€Directed Phase Separation of Conjugated Polymer Blends for Efficient Lightâ€Emitting Diodes. Advanced Functional Materials, 2008, 18, 2897-2904.	14.9	50
170	Polymer Pen Lithography. Science, 2008, 321, 1658-1660.	12.6	501
171	Polarization anisotropy dynamics for thin films of a conjugated polymer aligned by nanoimprinting. Physical Review B, 2008, 77, .	3.2	28
172	Uniaxial Alignment of Liquid-Crystalline Conjugated Polymers by Nanoconfinement. Nano Letters, 2007, 7, 987-992.	9.1	173
173	Multicomponent Polymer Brushes. Journal of the American Chemical Society, 2006, 128, 16253-16258.	13.7	177
174	Topography Printing to Locally Control Wettability. Journal of the American Chemical Society, 2006, 128, 7730-7731.	13.7	75
175	Polyelectrolyte Brushes as Efficient Ultrathin Platforms for Site-Selective Copper Electroless Deposition. Langmuir, 2006, 22, 6730-6733.	3.5	73
176	Transfer Printing Water-Soluble Inorganic Salts. Advanced Functional Materials, 2006, 16, 805-811.	14.9	6
177	Polyelectrolyte Brushes as Ink Nanoreservoirs for Microcontact Printing of Ionic Species with Poly(dimethyl siloxane) Stamps. Advanced Functional Materials, 2006, 16, 1037-1042.	14.9	52