
Zijian Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5579981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes. Nature Communications, 2015, 6, 7260.	12.8	534
2	Polymer Pen Lithography. Science, 2008, 321, 1658-1660.	12.6	501
3	Production of Twoâ€Dimensional Nanomaterials via Liquidâ€Based Direct Exfoliation. Small, 2016, 12, 272-293.	10.0	407
4	Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nature Materials, 2021, 20, 859-868.	27.5	407
5	Scalable 2D Hierarchical Porous Carbon Nanosheets for Flexible Supercapacitors with Ultrahigh Energy Density. Advanced Materials, 2018, 30, 1706054.	21.0	405
6	A Transparent, Flexible, Lowâ€Temperature, and Solutionâ€Processible Graphene Composite Electrode. Advanced Functional Materials, 2010, 20, 2893-2902.	14.9	380
7	Machineâ€Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns. Advanced Materials, 2016, 28, 10267-10274.	21.0	328
8	Waterproof, Ultrahigh Areal apacitance, Wearable Supercapacitor Fabrics. Advanced Materials, 2017, 29, 1606679.	21.0	297
9	Photosensitive Graphene Transistors. Advanced Materials, 2014, 26, 5239-5273.	21.0	290
10	Textileâ€Based Electrochemical Energy Storage Devices. Advanced Energy Materials, 2016, 6, 1600783.	19.5	287
11	A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale, 2011, 3, 258-264.	5.6	273
12	Functional polymer surfaces for controlling cell behaviors. Materials Today, 2018, 21, 38-59.	14.2	257
13	Chemical formation of soft metal electrodes for flexible and wearable electronics. Chemical Society Reviews, 2018, 47, 4611-4641.	38.1	245
14	Thin Film Fieldâ€Effect Phototransistors from Bandgapâ€Tunable, Solutionâ€Processed, Fewâ€Layer Reduced Graphene Oxide Films. Advanced Materials, 2010, 22, 4872-4876.	21.0	209
15	Selfâ€Healing Materials for Nextâ€Generation Energy Harvesting and Storage Devices. Advanced Energy Materials, 2017, 7, 1700890.	19.5	206
16	Stretchable Conductors with Ultrahigh Tensile Strain and Stable Metallic Conductance Enabled by Prestrained Polyelectrolyte Nanoplatforms. Advanced Materials, 2011, 23, 3090-3094.	21.0	196
17	Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nature Communications, 2018, 9, 4480.	12.8	193
18	Polyelectrolyte-Bridged Metal/Cotton Hierarchical Structures for Highly Durable Conductive Yarns. ACS Applied Materials & Interfaces, 2010, 2, 529-535.	8.0	184

#	Article	IF	CITATIONS
19	Multicomponent Polymer Brushes. Journal of the American Chemical Society, 2006, 128, 16253-16258.	13.7	177
20	Organic Flexible Electronics. Small Methods, 2018, 2, 1800070.	8.6	177
21	Uniaxial Alignment of Liquid-Crystalline Conjugated Polymers by Nanoconfinement. Nano Letters, 2007, 7, 987-992.	9.1	173
22	Polymerâ€Assisted Metal Deposition (PAMD): A Fullâ€Solution Strategy for Flexible, Stretchable, Compressible, and Wearable Metal Conductors. Advanced Materials, 2014, 26, 5508-5516.	21.0	170
23	A Transparent, Highly Stretchable, Autonomous Selfâ€Healing Poly(dimethyl siloxane) Elastomer. Macromolecular Rapid Communications, 2017, 38, 1700110.	3.9	165
24	Matrixâ€Assisted Catalytic Printing for the Fabrication of Multiscale, Flexible, Foldable, and Stretchable Metal Conductors. Advanced Materials, 2013, 25, 3343-3350.	21.0	160
25	Threeâ€Dimensional Compressible and Stretchable Conductive Composites. Advanced Materials, 2014, 26, 810-815.	21.0	156
26	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemical Reviews, 2020, 120, 2049-2122.	47.7	152
27	Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy, 2020, 70, 104528.	16.0	151
28	Zwitterionic-Surfactant-Assisted Room-Temperature Coating of Efficient Perovskite Solar Cells. Joule, 2020, 4, 2404-2425.	24.0	137
29	Scanning probe block copolymer lithography. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20202-20206.	7.1	131
30	Polymerâ€Assisted Metal Deposition (PAMD) for Flexible and Wearable Electronics: Principle, Materials, Printing, and Devices. Advanced Materials, 2019, 31, e1902987.	21.0	128
31	Highly selective and sensitive glucose sensors based on organic electrochemical transistors with graphene-modified gate electrodes. Journal of Materials Chemistry B, 2013, 1, 3820.	5.8	126
32	Flexible Interface Design for Stress Regulation of a Silicon Anode toward Highly Stable Dualâ€lon Batteries. Advanced Materials, 2020, 32, e1908470.	21.0	126
33	Efficient Conjugatedâ€Polymer Optoelectronic Devices Fabricated by Thinâ€Film Transferâ€Printing Technique. Advanced Functional Materials, 2008, 18, 1012-1019.	14.9	125
34	Progress in textile-based triboelectric nanogenerators for smart fabrics. Nano Energy, 2019, 56, 16-24.	16.0	122
35	Facile Synthesis of Wideâ€Bandgap Fluorinated Graphene Semiconductors. Chemistry - A European Journal, 2011, 17, 8896-8903.	3.3	121
36	Organic electrochemical transistors with graphene-modified gate electrodes for highly sensitive and selective dopamine sensors. Journal of Materials Chemistry B, 2014, 2, 191-200.	5.8	119

#	Article	IF	CITATIONS
37	Graphene-based two-dimensional Janus materials. NPG Asia Materials, 2018, 10, 217-237.	7.9	113
38	Functionalized Fiber-Based Strain Sensors: Pathway to Next-Generation Wearable Electronics. Nano-Micro Letters, 2022, 14, 61.	27.0	113
39	Regulating Infrared Photoresponses in Reduced Graphene Oxide Phototransistors by Defect and Atomic Structure Control. ACS Nano, 2013, 7, 6310-6320.	14.6	112
40	Multiplexed Protein Arrays Enabled by Polymer Pen Lithography: Addressing the Inking Challenge. Angewandte Chemie - International Edition, 2009, 48, 7626-7629.	13.8	111
41	V ₂ O ₅ Textile Cathodes with High Capacity and Stability for Flexible Lithiumâ€lon Batteries. Advanced Materials, 2020, 32, e1906205.	21.0	107
42	Evolution of Dip-Pen Nanolithography (DPN): From Molecular Patterning to Materials Discovery. Chemical Reviews, 2020, 120, 6009-6047.	47.7	107
43	Biomimicking Topographic Elastomeric Petals (Eâ€Petals) for Omnidirectional Stretchable and Printable Electronics. Advanced Science, 2015, 2, 1400021.	11.2	96
44	Highly Breathable and Stretchable Strain Sensors with Insensitive Response to Pressure and Bending. Advanced Functional Materials, 2021, 31, 2007622.	14.9	96
45	Orthogonal photochemistry-assisted printing of 3D tough and stretchable conductive hydrogels. Nature Communications, 2021, 12, 2082.	12.8	96
46	Saltâ€Assisted Highâ€Throughput Synthesis of Single―and Fewâ€Layer Transition Metal Dichalcogenides and Their Application in Organic Solar Cells. Small, 2014, 10, 4651-4657.	10.0	94
47	Rational Design of Binders for Stable Li‣ and Na‣ Batteries. Advanced Functional Materials, 2020, 30, 1907931.	14.9	92
48	Salt-assisted direct exfoliation of graphite into high-quality, large-size, few-layer graphene sheets. Nanoscale, 2013, 5, 7202.	5.6	88
49	500 Wh kg ^{â~'1} Class Li Metal Battery Enabled by a Selfâ€Organized Core–Shell Composite Anode. Advanced Materials, 2020, 32, e2004793.	21.0	86
50	In situ formation of highly active Ni–Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. Journal of Materials Chemistry A, 2017, 5, 11009-11015.	10.3	85
51	Fibrous Materials for Flexible Li–S Battery. Advanced Energy Materials, 2021, 11, 2002580.	19.5	85
52	A FigureÂof Merit for Flexible Batteries. Joule, 2020, 4, 1346-1349.	24.0	81
53	Metalâ€Based Flexible Transparent Electrodes: Challenges and Recent Advances. Advanced Electronic Materials, 2021, 7, 2001121.	5.1	79
54	Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges. Advanced Energy Materials, 2021, 11, 2002838.	19.5	78

#	Article	IF	CITATIONS
55	Photoreactive and Metalâ€Platable Copolymer Inks for Highâ€Throughput, Roomâ€Temperature Printing of Flexible Metal Electrodes for Thinâ€Film Electronics. Advanced Materials, 2016, 28, 4926-4934.	21.0	77
56	Fully Solutionâ€Processed TCOâ€Free Semitransparent Perovskite Solar Cells for Tandem and Flexible Applications. Advanced Energy Materials, 2018, 8, 1701569.	19.5	77
57	Topography Printing to Locally Control Wettability. Journal of the American Chemical Society, 2006, 128, 7730-7731.	13.7	75
58	Phosphorus Incorporation into Co ₉ S ₈ Nanocages for Highly Efficient Oxygen Evolution Catalysis. Small, 2019, 15, e1904507.	10.0	75
59	Development of Dipâ€Pen Nanolithography (DPN) and Its Derivatives. Small, 2019, 15, e1900564.	10.0	75
60	One-step electrospinning of carbon nanowebs on metallic textiles for high-capacitance supercapacitor fabrics. Journal of Materials Chemistry A, 2016, 4, 6802-6808.	10.3	74
61	Polyelectrolyte Brushes as Efficient Ultrathin Platforms for Site-Selective Copper Electroless Deposition. Langmuir, 2006, 22, 6730-6733.	3.5	73
62	Flexible and Stretchable Perovskite Solar Cells: Device Design and Development Methods. Small Methods, 2018, 2, 1800031.	8.6	71
63	Flexible high energy density zinc-ion batteries enabled by binder-free MnO2/reduced graphene oxide electrode. Npj Flexible Electronics, 2018, 2, .	10.7	69
64	Force―and Timeâ€Dependent Feature Size and Shape Control in Molecular Printing via Polymerâ€Pen Lithography. Small, 2010, 6, 1082-1086.	10.0	68
65	Fabrication of Arbitrary Threeâ€Dimensional Polymer Structures by Rational Control of the Spacing between Nanobrushes. Angewandte Chemie - International Edition, 2011, 50, 6506-6510.	13.8	68
66	Pathways of Developing Highâ€Energyâ€Density Flexible Lithium Batteries. Advanced Materials, 2021, 33, e2004419.	21.0	68
67	Fullâ€Solution Processed Flexible Organic Solar Cells Using Low ost Printable Copper Electrodes. Advanced Materials, 2014, 26, 7271-7278.	21.0	67
68	Liquid–Metalâ€ 5 uperlyophilic and Conductivity–Strainâ€Enhancing Scaffold for Permeable Superelastic Conductors. Advanced Functional Materials, 2021, 31, 2105587.	14.9	64
69	Surfaceâ€Grafted Polymerâ€Assisted Electroless Deposition of Metals for Flexible and Stretchable Electronics. Chemistry - an Asian Journal, 2012, 7, 862-870.	3.3	61
70	Seeded Synthesis of Unconventional 2H-Phase Pd Alloy Nanomaterials for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 17292-17299.	13.7	59
71	3D-patterned polymer brush surfaces. Nanoscale, 2011, 3, 4929.	5.6	58
72	Bioâ€Inspired Chemical Fabrication of Stretchable Transparent Electrodes. Small, 2015, 11, 3444-3449.	10.0	58

#	Article	IF	CITATIONS
73	New Lithium Salt Forms Interphases Suppressing Both Li Dendrite and Polysulfide Shuttling. Advanced Energy Materials, 2020, 10, 1903937.	19.5	58
74	Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices. Journal of Materials Chemistry A, 2017, 5, 969-974.	10.3	56
75	Visible-light-assisted multimechanism design for one-step engineering tough hydrogels in seconds. Nature Communications, 2020, 11, 4694.	12.8	56
76	Additive Functionalization and Embroidery for Manufacturing Wearable and Washable Textile Supercapacitors. Advanced Functional Materials, 2020, 30, 1910541.	14.9	55
77	Programming nanostructures of polymer brushes by dip-pen nanodisplacement lithography (DNL). Nanoscale, 2010, 2, 2614.	5.6	54
78	Fabrication of silk fibroin nanoparticles for controlled drug delivery. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	54
79	Stretchable ITOâ€Free Organic Solar Cells with Intrinsic Antiâ€Reflection Substrate for Highâ€Efficiency Outdoor and Indoor Energy Harvesting. Advanced Functional Materials, 2021, 31, 2010172.	14.9	53
80	Polyelectrolyte Brushes as Ink Nanoreservoirs for Microcontact Printing of Ionic Species with Poly(dimethyl siloxane) Stamps. Advanced Functional Materials, 2006, 16, 1037-1042.	14.9	52
81	Massively Parallel Patterning of Complex 2D and 3D Functional Polymer Brushes by Polymer Pen Lithography. ACS Applied Materials & Interfaces, 2014, 6, 11955-11964.	8.0	52
82	A highly sensitive stretchable strain sensor based on multi-functionalized fabric for respiration monitoring and identification. Chemical Engineering Journal, 2021, 426, 130869.	12.7	51
83	Surfaceâ€Directed Phase Separation of Conjugated Polymer Blends for Efficient Lightâ€Emitting Diodes. Advanced Functional Materials, 2008, 18, 2897-2904.	14.9	50
84	Smoothing the Sodiumâ€Metal Anode with a Selfâ€Regulating Alloy Interface for Highâ€Energy and Sustainable Sodiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2102802.	21.0	50
85	Topographically Flat, Chemically Patterned PDMS Stamps Made by Dipâ€Pen Nanolithography. Angewandte Chemie - International Edition, 2008, 47, 9951-9954.	13.8	49
86	Water-based phytic acid-crosslinked supramolecular binders for lithium-sulfur batteries. Chemical Engineering Journal, 2020, 395, 124981.	12.7	49
87	Arrays of Nanoscale Lenses for Subwavelength Optical Lithography. Nano Letters, 2010, 10, 4399-4404.	9.1	47
88	Permeable graphited hemp fabrics-based, wearing-comfortable pressure sensors for monitoring human activities. Chemical Engineering Journal, 2021, 403, 126191.	12.7	47
89	Two-dimensional hierarchically porous carbon nanosheets for flexible aqueous supercapacitors with high volumetric capacitance. Nanoscale, 2019, 11, 11086-11092.	5.6	46
90	Permeable Conductors for Wearable and Onâ€Skin Electronics. Small Structures, 2022, 3, 2100135.	12.0	46

#	Article	IF	CITATIONS
91	Biomimicking Nanoâ€Micro Binary Polymer Brushes for Smart Cell Orientation and Adhesion Control. Small, 2016, 12, 3400-3406.	10.0	43
92	Soft Hybrid Scaffold (SHS) Strategy for Realization of Ultrahigh Energy Density of Wearable Aqueous Supercapacitors. Advanced Materials, 2020, 32, e1907088.	21.0	43
93	Bioinspired Microfluidic Device by Integrating a Porous Membrane and Heterostructured Nanoporous Particles for Biomolecule Cleaning. ACS Nano, 2019, 13, 8374-8381.	14.6	40
94	Apertureless Cantilever-Free Pen Arrays for Scanning Photochemical Printing. Small, 2015, 11, 913-918.	10.0	39
95	Freestanding Lamellar Porous Carbon Stacks for Lowâ€Temperatureâ€Foldable Supercapacitors. Small, 2019, 15, e1902071.	10.0	39
96	Fabrication of Asymmetric Tubular Hydrogels through Polymerization-Assisted Welding for Thermal Flow Actuated Artificial Muscles. Chemistry of Materials, 2019, 31, 4469-4478.	6.7	39
97	Generation of Metal Photomasks by Dipâ€Pen Nanolithography. Small, 2009, 5, 1850-1853.	10.0	37
98	Polymer Pen Lithography Using Dualâ€Elastomer Tip Arrays. Small, 2012, 8, 2664-2669.	10.0	37
99	Positionally Defined, Binary Semiconductor Nanoparticles Synthesized by Scanning Probe Block Copolymer Lithography. Nano Letters, 2012, 12, 1022-1025.	9.1	36
100	Polymer Nanostructures Made by Scanning Probe Lithography: Recent Progress in Material Applications. Macromolecular Rapid Communications, 2012, 33, 359-373.	3.9	36
101	Generation of Silk Fibroin Nanoparticles via Solution-Enhanced Dispersion by Supercritical CO ₂ . Industrial & Engineering Chemistry Research, 2013, 52, 3752-3761.	3.7	36
102	Aqueous and Airâ€Compatible Fabrication of Highâ€Performance Conductive Textiles. Chemistry - an Asian Journal, 2014, 9, 2170-2177.	3.3	36
103	Simultaneous Surface Covalent Bonding and Radical Polymerization for Constructing Robust Soft Actuators with Fast Underwater Response. Chemistry of Materials, 2019, 31, 9504-9512.	6.7	36
104	Realizing Highâ€Energy and Stable Wireâ€Type Batteries with Flexible Lithium–Metal Composite Yarns. Advanced Energy Materials, 2021, 11, 2101809.	19.5	32
105	Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells. Solar Energy Materials and Solar Cells, 2018, 179, 36-44.	6.2	31
106	Water-borne foldable polymer solar cells: one-step transferring free-standing polymer films onto woven fabric electrodes. Journal of Materials Chemistry A, 2017, 5, 782-788.	10.3	30
107	2D metal patterns transformed from 3D printed stamps for flexible Zn//MnO2 in-plane micro-batteries. Chemical Engineering Journal, 2022, 429, 132196.	12.7	30
108	Bioinspired Hierarchical Structures for Contactâ€Sensible Adhesives. Advanced Functional Materials, 2022, 32, 2109076.	14.9	30

#	Article	IF	CITATIONS
109	Largeâ€Area Patterning of Metal Nanostructures by Dipâ€Pen Nanodisplacement Lithography for Optical Applications. Small, 2017, 13, 1702003.	10.0	29
110	Inverted Anode Structure for Longâ€Life Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	19.5	29
111	Polarization anisotropy dynamics for thin films of a conjugated polymer aligned by nanoimprinting. Physical Review B, 2008, 77, .	3.2	28
112	Highâ€Resolution, Largeâ€Area, Serial Fabrication of 3D Polymer Brush Structures by Parallel Dipâ€Pen Nanodisplacement Lithography. Small, 2012, 8, 3568-3572.	10.0	28
113	Binary oppositely charged polyelectrolyte brushes for highly selective electroless deposition of bimetallic patterns. Electrochemistry Communications, 2009, 11, 492-495.	4.7	27
114	Efficient Flexible Perovskite Solar Cells Using Low-Cost Cu Top and Bottom Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 26050-26059.	8.0	26
115	Dynamic cross-linking of an alginate–acrylamide tough hydrogel system: time-resolved <i>in situ</i> mapping of gel self-assembly. RSC Advances, 2021, 11, 10710-10726.	3.6	23
116	Construction of 3D Polymer Brushes by Dipâ€Pen Nanodisplacement Lithography: Understanding the Molecular Displacement for Ultrafine and High‧peed Patterning. Small, 2015, 11, 613-621.	10.0	22
117	Unprecedented Superhighâ€Rate and Ultrastable Anode for Highâ€Power Battery via Cationic Disordering. Advanced Energy Materials, 2022, 12, .	19.5	22
118	Polymer Brush Electrets. Advanced Functional Materials, 2013, 23, 3239-3246.	14.9	20
119	Onâ€Tip Photoâ€Modulated Molecular Printing. Angewandte Chemie - International Edition, 2015, 54, 12894-12899.	13.8	20
120	Reversible Conversion of Dominant Polarity in Ambipolar Polymer/Graphene Oxide Hybrids. Scientific Reports, 2015, 5, 9446.	3.3	19
121	Saltâ€Assisted 2Hâ€ŧoâ€1T′ Phase Transformation of Transition Metal Dichalcogenides. Advanced Materials, 2022, 34, e2201194.	21.0	19
122	Monolithic hierarchical gold sponges for efficient and stable catalysis in a continuous-flow microreactor. Materials Chemistry Frontiers, 2017, 1, 482-486.	5.9	18
123	Universal Nature-Inspired and Amine-Promoted Metallization for Flexible Electronics and Supercapacitors. ACS Applied Materials & Interfaces, 2018, 10, 28963-28970.	8.0	18
124	Flexible Photodetectors Based on Allâ€Solutionâ€Processed Cu Electrodes and InSe Nanoflakes with High Stabilities. Advanced Functional Materials, 2022, 32, 2108261.	14.9	18
125	Au-coated carbon fabric as Janus current collector for dendrite-free flexible lithium metal anode and battery. Applied Physics Reviews, 2022, 9, .	11.3	18
126	Hybrid Lithiumâ€Ion/Metal Electrodes Enable Long Cycle Stability and High Energy Density of Flexible Batteries. Advanced Functional Materials, 2022, 32, .	14.9	18

#	Article	IF	CITATIONS
127	Tandem Selfâ€Powered Flexible Electrochromic Energy Supplier for Sustainable Allâ€Day Operations. Advanced Energy Materials, 2022, 12, .	19.5	17
128	Supramolecularâ€mediated ballâ€inâ€ball porous carbon nanospheres for ultrafast energy storage. InformaÄnÃ-Materiály, 2022, 4, .	17.3	16
129	Scanning Nanowelding Lithography for Rewritable One‣tep Patterning of Subâ€50 nm Highâ€Aspectâ€Ratio Metal Nanostructures. Advanced Materials, 2018, 30, e1801772.	21.0	15
130	In situ covalent bonding in polymerization to construct robust hydrogel lubrication coating on surface of silicone elastomer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 599, 124753.	4.7	15
131	Crumpled, high-power, and safe wearable Lithium-Ion Battery enabled by nanostructured metallic textiles. Fundamental Research, 2021, 1, 399-407.	3.3	15
132	Arbitrary and Parallel Nanofabrication of 3D Metal Structures with Polymer Brush Resists. Small, 2015, 11, 6013-6017.	10.0	14
133	Hollow multishelled structural NiO as a "shelter―for high-performance Li–S batteries. Materials Chemistry Frontiers, 2020, 4, 2971-2975.	5.9	14
134	Rational Design of Liâ€Wicking Hosts for Ultrafast Fabrication of Flexible and Stable Lithium Metal Anodes. Small, 2022, 18, e2105308.	10.0	14
135	Wideâ€ŧemperature range thermoregulating eâ€skin design through a hybrid structure of flexible thermoelectric devices and phase change materials heat sink. EcoMat, 2022, 4, .	11.9	14
136	Liquidâ€Mediated Threeâ€Dimensional Scanning Probe Nanosculpting. Small, 2013, 9, 2851-2856.	10.0	13
137	Transferable, transparent and functional polymer@graphene 2D objects. NPG Asia Materials, 2014, 6, e130.	7.9	13
138	Fiber-Based Thermoelectric Materials and Devices for Wearable Electronics. Micromachines, 2021, 12, 869.	2.9	13
139	Enabling high-energy flexible solid-state lithium ion batteries at room temperature. Chemical Engineering Journal, 2021, 424, 130335.	12.7	13
140	Inverse Opaline Metallic Membrane Addresses the Tradeoff Between Volumetric Capacitance and Areal Capacitance of Supercapacitor. Advanced Energy Materials, 2022, 12, 2102802.	19.5	13
141	Size-tunable, highly sensitive microelectrode arrays enabled by polymer pen lithography. Soft Matter, 2017, 13, 3685-3689.	2.7	12
142	Facile Fabrication of Highly Uniform Tellurium Nanorods for Selfâ€Powered Flexible Optoelectronics. Advanced Electronic Materials, 2020, 6, 2000240.	5.1	12
143	Polymerâ€Assisted Metallization of Mammalian Cells. Advanced Materials, 2021, 33, e2102348.	21.0	12
144	Solution process formation of high performance, stable nanostructured transparent metal electrodes via displacement-diffusion-etch process. Npj Flexible Electronics, 2022, 6, .	10.7	12

#	Article	IF	CITATIONS
145	Interfacial engineering of printable bottom back metal electrodes for full-solution processed flexible organic solar cells. Journal of Semiconductors, 2018, 39, 014002.	3.7	11
146	Anisotropic Hydrogels with High Mechanical Strength by Stretching-Induced Oriented Crystallization and Drying. ACS Applied Polymer Materials, 2020, 2, 2142-2150.	4.4	11
147	Lowâ€Temperatureâ€Deposited TiO ₂ Nanopillars for Efficient and Flexible Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2001512.	3.7	11
148	3D Dipâ€Pen Nanolithography. Advanced Materials Technologies, 2022, 7, 2101493.	5.8	11
149	Ionic liquids as two-dimensional templates for the spontaneous assembly of copper nanoparticles into nanobelts and observation of an intermediate state. RSC Advances, 2013, 3, 341-344.	3.6	9
150	Improved air-stability of an organic–inorganic perovskite with anhydrously transferred graphene. Journal of Materials Chemistry C, 2018, 6, 8663-8669.	5.5	9
151	Boosting the Energy Density of Flexible Asymmetric Supercapacitor with Three Dimensional Fe2O3 Composite Brush Anode. Chemical Research in Chinese Universities, 2020, 36, 97-104.	2.6	9
152	Titanium Nanopillar Arrays Functioning as Electron Transporting Layers for Efficient, Antiâ€Aging Perovskite Solar Cells. Small, 2021, 17, e2004778.	10.0	9
153	Interfacial design of thick sulfur cathodes to achieve high energy density and stability. Journal of Materials Chemistry A, 2021, 9, 17129-17142.	10.3	9
154	Subnanometer MoP clusters confined in mesoporous carbon (CMK-3) as superior electrocatalytic sulfur hosts for high-performance lithium-sulfur batteries. Chemical Engineering Journal, 2022, 446, 137050.	12.7	9
155	Inkjetâ€Printed Xerogel Scaffolds Enabled Roomâ€Temperature Fabrication of Highâ€Quality Metal Electrodes for Flexible Electronics. Advanced Functional Materials, 2022, 32, .	14.9	9
156	Binary polymer brush patterns from facile initiator stickiness for cell culturing. Faraday Discussions, 2019, 219, 189-202.	3.2	8
157	Pathways of Developing Highâ€Energyâ€Density Flexible Lithium Batteries (Adv. Mater. 46/2021). Advanced Materials, 2021, 33, .	21.0	8
158	Vacuum-free fabrication of high-performance semitransparent perovskite solar cells via e-glue assisted lamination process. Science China Chemistry, 2019, 62, 875-882.	8.2	7
159	Prediction of adhesion between randomly rough surfaces by order statistics. Applied Physics Letters, 2021, 119, .	3.3	7
160	The Development of Pad-Dry-Cure Compatible Method for Preparing Electrically Conductive Copper Coated Cotton Woven Fabrics. Journal of Fiber Bioengineering and Informatics, 2013, 6, 117-128.	0.2	7
161	Transfer Printing Water-Soluble Inorganic Salts. Advanced Functional Materials, 2006, 16, 805-811.	14.9	6
162	Visible-Light Photolabile, Charge-Convertible Poly(ionic liquid) for Light-degradable Films and Carbon-Based Electronics. ACS Applied Materials & Interfaces, 2016, 8, 23431-23436.	8.0	6

#	Article	IF	CITATIONS
163	Highly conductive templated-graphene fabrics for lightweight, flexible and foldable supercapacitors. Materials Research Express, 2017, 4, 075602.	1.6	6
164	Polymerization induced phase separation as a generalized methodology for multi-layered hydrogel tubes. Journal of Materials Chemistry B, 2019, 7, 3505-3511.	5.8	6
165	Smart materials and devices for electronic textiles. MRS Bulletin, 2021, 46, 488-490.	3.5	6
166	Li–S Batteries: Fibrous Materials for Flexible Li–S Battery (Adv. Energy Mater. 15/2021). Advanced Energy Materials, 2021, 11, 2170058.	19.5	5
167	Sensitive, Highâ€5peed, and Broadband Perovskite Photodetectors with Builtâ€In TiO ₂ Metalenses. Small, 2021, 17, e2102694.	10.0	4
168	Printed light-trapping nanorelief Cu electrodes for full-solution-processed flexible organic solar cells. Materials Research Express, 2016, 3, 074006.	1.6	2
169	Frontiers in Nanointerfaces Research. Small, 2017, 13, 1703364.	10.0	2
170	Bioinspired solar water splitting, sensitized solar cells, and ultraviolet sensor based on semiconductor nanocrystal antenna/graphene nanoassemblies. , 2011, , .		1
171	Polymer Brushes: Liquid-Mediated Three-Dimensional Scanning Probe Nanosculpting (Small 17/2013). Small, 2013, 9, 2850-2850.	10.0	1
172	Textile Composite Electrodes: Textile Composite Electrodes for Flexible Batteries and Supercapacitors: Opportunities and Challenges (Adv. Energy Mater. 3/2021). Advanced Energy Materials, 2021, 11, 2170012.	19.5	1
173	Design, preparation and assembly of flexible electrode based on carbon materials. Chinese Science Bulletin, 2019, 64, 514-531.	0.7	1
174	Hong Kong: An R&D Hub in Asia for Materials Science and Engineering. Advanced Materials, 2014, 26, 5235-5238.	21.0	0
175	EcoMat: Join us in the pursuit of functional materials for green energy and environment. EcoMat, 2019, 1, e12009.	11.9	0
176	Multidimensional micro- and nano-printing technologies: general discussion. Faraday Discussions, 2019, 219, 73-76.	3.2	0
177	New directions in surface functionalization and characterization: general discussion. Faraday Discussions, 2019, 219, 252-261.	3.2	0