List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5579935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell, 2020, 182, 812-827.e19.	13.5	3,551
2	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	6.0	482
3	Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. Journal of Experimental Medicine, 2018, 215, 1571-1588.	4.2	366
4	Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. Cell, 2015, 163, 1702-1715.	13.5	341
5	D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host and Microbe, 2021, 29, 23-31.e4.	5.1	308
6	Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches. Immunity, 2017, 46, 1073-1088.e6.	6.6	286
7	Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies. Journal of Virology, 2014, 88, 2489-2507.	1.5	274
8	Magnitude and Breadth of the Neutralizing Antibody Response in the RV144 and Vax003 HIV-1 Vaccine Efficacy Trials. Journal of Infectious Diseases, 2012, 206, 431-441.	1.9	273
9	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Reports, 2017, 20, 1805-1817.	2.9	171
10	Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. Retrovirology, 2015, 12, 82.	0.9	156
11	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nature Communications, 2019, 10, 4272.	5.8	149
12	Vaccine-Elicited Tier 2 HIV-1 Neutralizing Antibodies Bind to Quaternary Epitopes Involving Glycan-Deficient Patches Proximal to the CD4 Binding Site. PLoS Pathogens, 2015, 11, e1004932.	2.1	141
13	Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature, 2014, 505, 502-508.	13.7	140
14	Potent Immune Responses in Rhesus Macaques Induced by Nonviral Delivery of a Self-amplifying RNA Vaccine Expressing HIV Type 1 Envelope With a Cationic Nanoemulsion. Journal of Infectious Diseases, 2015, 211, 947-955.	1.9	140
15	Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS Pathogens, 2016, 12, e1005864.	2.1	138
16	Relationships between CD4 Independence, Neutralization Sensitivity, and Exposure of a CD4-Induced Epitope in a Human Immunodeficiency Virus Type 1 Envelope Protein. Journal of Virology, 2001, 75, 5230-5239.	1.5	135
17	T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nature Medicine, 2020, 26, 932-940.	15.2	124
18	Balance of cellular and humoral immunity determines the level of protection by HIV vaccines in rhesus macaque models of HIV infection. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E992-9.	3.3	117

#	Article	IF	CITATIONS
19	Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nature Communications, 2019, 10, 2355.	5.8	116
20	Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS Pathogens, 2018, 14, e1006913.	2.1	111
21	3M-052, a synthetic TLR-7/8 agonist, induces durable HIV-1 envelope–specific plasma cells and humoral immunity in nonhuman primates. Science Immunology, 2020, 5, .	5.6	90
22	Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: a phase 1 randomised controlled trial. Lancet HIV,the, 2019, 6, e230-e239.	2.1	84
23	Characterization of HIV-1 Nucleoside-Modified mRNA Vaccines in Rabbits and Rhesus Macaques. Molecular Therapy - Nucleic Acids, 2019, 15, 36-47.	2.3	79
24	Most rhesus macaques infected with the CCR5-tropic SHIV _{AD8} generate cross-reactive antibodies that neutralize multiple HIV-1 strains. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19769-19774.	3.3	72
25	IL-12 DNA as molecular vaccine adjuvant increases the cytotoxic T cell responses and breadth of humoral immune responses in SIV DNA vaccinated macaques. Human Vaccines and Immunotherapeutics, 2012, 8, 1620-1629.	1.4	67
26	Immunogenicity in Rabbits of HIV-1 SOSIP Trimers from Clades A, B, and C, Given Individually, Sequentially, or in Combination. Journal of Virology, 2018, 92, .	1.5	66
27	Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes. Journal of Virology, 2019, 93, .	1.5	66
28	HIV-1 vaccination by needle-free oral injection induces strong mucosal immunity and protects against SHIV challenge. Nature Communications, 2019, 10, 798.	5.8	61
29	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2020, 16, e1008753.	2.1	61
30	Identification of an HIV-1 Clade A Envelope That Exhibits Broad Antigenicity and Neutralization Sensitivity and Elicits Antibodies Targeting Three Distinct Epitopes. Journal of Virology, 2013, 87, 5372-5383.	1.5	59
31	Mucosal B Cells Are Associated with Delayed SIV Acquisition in Vaccinated Female but Not Male Rhesus Macaques Following SIVmac251 Rectal Challenge. PLoS Pathogens, 2015, 11, e1005101.	2.1	59
32	Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers. Journal of Virology, 2017, 91, .	1.5	57
33	Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell, 2021, 184, 2955-2972.e25.	13.5	57
34	Achieving Potent Autologous Neutralizing Antibody Responses against Tier 2 HIV-1 Viruses by Strategic Selection of Envelope Immunogens. Journal of Immunology, 2016, 196, 3064-3078.	0.4	56
35	Neutralization-guided design of HIV-1 envelope trimers with high affinity for the unmutated common ancestor of CH235 lineage CD4bs broadly neutralizing antibodies. PLoS Pathogens, 2019, 15, e1008026.	2.1	56
36	Phenotypic Correlates of HIV-1 Macrophage Tropism. Journal of Virology, 2015, 89, 11294-11311.	1.5	54

#	Article	IF	CITATIONS
37	CD40L-Adjuvanted DNA/Modified Vaccinia Virus Ankara Simian Immunodeficiency Virus SIV239 Vaccine Enhances SIV-Specific Humoral and Cellular Immunity and Improves Protection against a Heterologous SIVE660 Mucosal Challenge. Journal of Virology, 2014, 88, 9579-9589.	1.5	53
38	A yeast-expressed RBD-based SARS-CoV-2 vaccine formulated with 3M-052-alum adjuvant promotes protective efficacy in non-human primates. Science Immunology, 2021, 6, .	5.6	53
39	DNA Vaccine Molecular Adjuvants SP-D-BAFF and SP-D-APRIL Enhance Anti-gp120 Immune Response and Increase HIV-1 Neutralizing Antibody Titers. Journal of Virology, 2015, 89, 4158-4169.	1.5	51
40	Codelivery of Envelope Protein in Alum with MVA Vaccine Induces CXCR3-Biased CXCR5+ and CXCR5â^' CD4 T Cell Responses in Rhesus Macaques. Journal of Immunology, 2015, 195, 994-1005.	0.4	50
41	Vaccine induction of antibodies and tissue-resident CD8+ T cells enhances protection against mucosal SHIV-infection in young macaques. JCI Insight, 2019, 4, .	2.3	50
42	Pathogenicity and Mucosal Transmissibility of the R5-Tropic Simian/Human Immunodeficiency Virus SHIV _{AD8} in Rhesus Macaques: Implications for Use in Vaccine Studies. Journal of Virology, 2012, 86, 8516-8526.	1.5	47
43	Selection of Unadapted, Pathogenic SHIVs Encoding Newly Transmitted HIV-1 Envelope Proteins. Cell Host and Microbe, 2014, 16, 412-418.	5.1	47
44	Partial efficacy of a broadly neutralizing antibody against cell-associated SHIV infection. Science Translational Medicine, 2017, 9, .	5.8	45
45	Co-immunization of DNA and Protein in the Same Anatomical Sites Induces Superior Protective Immune Responses against SHIV Challenge. Cell Reports, 2020, 31, 107624.	2.9	43
46	DNA and Protein Co-Immunization Improves the Magnitude and Longevity of Humoral Immune Responses in Macaques. PLoS ONE, 2014, 9, e91550.	1.1	42
47	Immunization with an SIV-based IDLV Expressing HIV-1 Env 1086 Clade C Elicits Durable Humoral and Cellular Responses in Rhesus Macaques. Molecular Therapy, 2016, 24, 2021-2032.	3.7	41
48	Stabilization of the gp120 V3 loop through hydrophobic interactions reduces the immunodominant V3-directed non-neutralizing response to HIV-1 envelope trimers. Journal of Biological Chemistry, 2018, 293, 1688-1701.	1.6	40
49	Optimization and validation of a neutralizing antibody assay for HIV-1 in A3R5 cells. Journal of Immunological Methods, 2014, 409, 147-160.	0.6	39
50	Control of Heterologous Simian Immunodeficiency Virus SIV _{smE660} Infection by DNA and Protein Coimmunization Regimens Combined with Different Toll-Like-Receptor-4-Based Adjuvants in Macaques. Journal of Virology, 2018, 92, .	1.5	39
51	Mucosal Immunization of Lactating Female Rhesus Monkeys with a Transmitted/Founder HIV-1 Envelope Induces Strong Env-Specific IgA Antibody Responses in Breast Milk. Journal of Virology, 2013, 87, 6986-6999.	1.5	38
52	Synthetic Three-Component HIV-1 V3 Glycopeptide Immunogens Induce Glycan-Dependent Antibody Responses. Cell Chemical Biology, 2017, 24, 1513-1522.e4.	2.5	38
53	Bridging Vaccine-Induced HIV-1 Neutralizing and Effector Antibody Responses in Rabbit and Rhesus Macaque Animal Models. Journal of Virology, 2019, 93, .	1.5	37
54	HIV-1 envelope glycan modifications that permit neutralization by germline-reverted VRC01-class broadly neutralizing antibodies. PLoS Pathogens, 2018, 14, e1007431.	2.1	36

#	Article	IF	CITATIONS
55	Head-to-Head Comparison of Poxvirus NYVAC and ALVAC Vectors Expressing Identical HIV-1 Clade C Immunogens in Prime-Boost Combination with Env Protein in Nonhuman Primates. Journal of Virology, 2015, 89, 8525-8539.	1.5	35
56	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nature Communications, 2021, 12, 4817.	5.8	35
57	Virus-Like Particles Displaying Trimeric Simian Immunodeficiency Virus (SIV) Envelope gp160 Enhance the Breadth of DNA/Modified Vaccinia Virus Ankara SIV Vaccine-Induced Antibody Responses in Rhesus Macaques. Journal of Virology, 2016, 90, 8842-8854.	1.5	34
58	Multivalent Antigen Presentation Enhances the Immunogenicity of a Synthetic Three-Component HIV-1 V3 Glycopeptide Vaccine. ACS Central Science, 2018, 4, 582-589.	5.3	34
59	Oligomannose Glycopeptide Conjugates Elicit Antibodies Targeting the Glycan Core Rather than Its Extremities. ACS Central Science, 2019, 5, 237-249.	5.3	33
60	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. Npj Vaccines, 2021, 6, 24.	2.9	33
61	Generation and Characterization of a Bivalent HIV-1 Subtype C gp120 Protein Boost for Proof-of-Concept HIV Vaccine Efficacy Trials in Southern Africa. PLoS ONE, 2016, 11, e0157391.	1.1	33
62	A Fusion Intermediate gp41 Immunogen Elicits Neutralizing Antibodies to HIV-1. Journal of Biological Chemistry, 2014, 289, 29912-29926.	1.6	32
63	CD40L-Adjuvanted DNA/Modified Vaccinia Virus Ankara Simian Immunodeficiency Virus (SIV) Vaccine Enhances Protection against Neutralization-Resistant Mucosal SIV Infection. Journal of Virology, 2015, 89, 4690-4695.	1.5	31
64	Lipid-based vaccine nanoparticles for induction of humoral immune responses against HIV-1 and SARS-CoV-2. Journal of Controlled Release, 2021, 330, 529-539.	4.8	31
65	A Trimeric HIV-1 Envelope gp120 Immunogen Induces Potent and Broad Anti-V1V2 Loop Antibodies against HIV-1 in Rabbits and Rhesus Macaques. Journal of Virology, 2018, 92, .	1.5	30
66	Impact of T _h 1 CD4 Follicular Helper T Cell Skewing on Antibody Responses to an HIV-1 Vaccine in Rhesus Macaques. Journal of Virology, 2020, 94, .	1.5	30
67	Superiority in Rhesus Macaques of Targeting HIV-1 Env gp140 to CD40 versus LOX-1 in Combination with Replication-Competent NYVAC-KC for Induction of Env-Specific Antibody and T Cell Responses. Journal of Virology, 2017, 91, .	1.5	29
68	Increased surface expression of HIV-1 envelope is associated with improved antibody response in vaccinia prime/protein boost immunization. Virology, 2018, 514, 106-117.	1.1	29
69	Infant transmitted/founder HIV-1 viruses from peripartum transmission are neutralization resistant to paired maternal plasma. PLoS Pathogens, 2018, 14, e1006944.	2.1	29
70	Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin. Journal of Virology, 2020, 94, .	1.5	29
71	Pharmacokinetics and Immunogenicity of Broadly Neutralizing HIV Monoclonal Antibodies in Macaques. PLoS ONE, 2015, 10, e0120451.	1.1	29
72	Design of an Escherichia coli Expressed HIV-1 gp120 Fragment Immunogen That Binds to b12 and Induces Broad and Potent Neutralizing Antibodies. Journal of Biological Chemistry, 2013, 288, 9815-9825.	1.6	28

#	Article	IF	CITATIONS
73	A single gp120 residue can affect HIV-1 tropism in macaques. PLoS Pathogens, 2017, 13, e1006572.	2.1	28
74	Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. PLoS Pathogens, 2018, 14, e1006986.	2.1	28
75	Comparison of intradermal and intramuscular delivery followed by in vivo electroporation of SIV Env DNA in macaques. Human Vaccines and Immunotherapeutics, 2013, 9, 2081-2094.	1.4	26
76	IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells. Communications Biology, 2018, 1, 134.	2.0	26
77	Overcoming Steric Restrictions of VRC01 HIV-1 Neutralizing Antibodies through Immunization. Cell Reports, 2019, 29, 3060-3072.e7.	2.9	26
78	Maternal Broadly Neutralizing Antibodies Can Select for Neutralization-Resistant, Infant-Transmitted/Founder HIV Variants. MBio, 2020, 11, .	1.8	25
79	Epitopes Immediately below the Base of the V3 Loop of gp120 as Targets for the Initial Autologous Neutralizing Antibody Response in Two HIV-1 Subtype B-Infected Individuals. Journal of Virology, 2011, 85, 9286-9299.	1.5	24
80	Combination Adenovirus and Protein Vaccines Prevent Infection or Reduce Viral Burden after Heterologous Clade C Simian-Human Immunodeficiency Virus Mucosal Challenge. Journal of Virology, 2018, 92, .	1.5	24
81	HIV-1 gp120 and Modified Vaccinia Virus Ankara (MVA) gp140 Boost Immunogens Increase Immunogenicity of a DNA/MVA HIV-1 Vaccine. Journal of Virology, 2017, 91, .	1.5	23
82	Panels of HIV-1 Subtype C Env Reference Strains for Standardized Neutralization Assessments. Journal of Virology, 2017, 91, .	1.5	23
83	Potential To Streamline Heterologous DNA Prime and NYVAC/Protein Boost HIV Vaccine Regimens in Rhesus Macaques by Employing Improved Antigens. Journal of Virology, 2016, 90, 4133-4149.	1.5	22
84	Improved killing of HIV-infected cells using three neutralizing and non-neutralizing antibodies. Journal of Clinical Investigation, 2020, 130, 5157-5170.	3.9	22
85	HIV-1 CD4-induced (CD4i) gp120 epitope vaccines promote B and T-cell responses that contribute to reduced viral loads in rhesus macaques. Virology, 2014, 471-473, 81-92.	1.1	21
86	Synthetic HIV V3 Glycopeptide Immunogen Carrying a N334 <i>N</i> -Glycan Induces Glycan-Dependent Antibodies with Promiscuous Site Recognition. Journal of Medicinal Chemistry, 2018, 61, 10116-10125.	2.9	21
87	Long antibody HCDR3s from HIV-naÃ ⁻ ve donors presented on a PG9 neutralizing antibody background mediate HIV neutralization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4446-4451.	3.3	20
88	Targeting HIV-1 Env gp140 to LOX-1 Elicits Immune Responses in Rhesus Macaques. PLoS ONE, 2016, 11, e0153484.	1.1	20
89	Eliciting neutralizing antibodies with gp120 outer domain constructs based on M-group consensus sequence. Virology, 2014, 462-463, 363-376.	1.1	19
90	Elite Control, Gut CD4 T Cell Sparing, and Enhanced Mucosal T Cell Responses in Macaca nemestrina Infected by a Simian Immunodeficiency Virus Lacking a gp41 Trafficking Motif. Journal of Virology, 2015, 89, 10156-10175.	1.5	19

#	Article	IF	CITATIONS
91	Toll-like receptor 3 adjuvant in combination with virus-like particles elicit a humoral response against HIV. Vaccine, 2016, 34, 5886-5894.	1.7	19
92	ALVAC-HIV B/C candidate HIV vaccine efficacy dependent on neutralization profile of challenge virus and adjuvant dose and type. PLoS Pathogens, 2019, 15, e1008121.	2.1	19
93	Structure-based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies. Journal of Biological Chemistry, 2017, 292, 278-291.	1.6	18
94	Antibody responses induced by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2021, 17, e1009736.	2.1	18
95	Antibody Fabâ€Fc properties outperform titer in predictive models of <scp>SIV</scp> vaccineâ€induced protection. Molecular Systems Biology, 2019, 15, e8747.	3.2	17
96	Glycopeptide epitope facilitates HIV-1 envelope specific humoral immune responses by eliciting T cell help. Nature Communications, 2020, 11, 2550.	5.8	17
97	High Doses of GM-CSF Inhibit Antibody Responses in Rectal Secretions and Diminish Modified Vaccinia Ankara/Simian Immunodeficiency Virus Vaccine Protection in TRIM5α-Restrictive Macaques. Journal of Immunology, 2016, 197, 3586-3596.	0.4	16
98	The high-affinity immunoglobulin receptor Fcl̂3RI potentiates HIV-1 neutralization via antibodies against the gp41 N-heptad repeat. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
99	Anti-V2 antibodies virus vulnerability revealed by envelope V1 deletion in HIV vaccine candidates. IScience, 2021, 24, 102047.	1.9	16
100	HIV-1-neutralizing antibody induced by simian adenovirus- and poxvirus MVA-vectored BG505 native-like envelope trimers. PLoS ONE, 2017, 12, e0181886.	1.1	16
101	Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine. Open Forum Infectious Diseases, 2016, 3, ofw034.	0.4	15
102	Polyclonal HIV envelope-specific breast milk antibodies limit founder SHIV acquisition and cell-associated virus loads in infant rhesus monkeys. Mucosal Immunology, 2018, 11, 1716-1726.	2.7	15
103	An Enhanced Synthetic Multiclade DNA Prime Induces Improved Cross-Clade-Reactive Functional Antibodies when Combined with an Adjuvanted Protein Boost in Nonhuman Primates. Journal of Virology, 2015, 89, 9154-9166.	1.5	14
104	Pathogenic Correlates of Simian Immunodeficiency Virus-Associated B Cell Dysfunction. Journal of Virology, 2017, 91, .	1.5	14
105	Generation and characterization of a bivalent protein boost for future clinical trials: HIV-1 subtypes CR01_AE and B gp120 antigens with a potent adjuvant. PLoS ONE, 2018, 13, e0194266.	1.1	14
106	Engagement of monocytes, NK cells, and CD4+ Th1 cells by ALVAC-SIV vaccination results in a decreased risk of SIVmac251 vaginal acquisition. PLoS Pathogens, 2020, 16, e1008377.	2.1	14
107	Induction of Heterologous Tier 2 HIV-1-Neutralizing and Cross-Reactive V1/V2-Specific Antibodies in Rabbits by Prime-Boost Immunization. Journal of Virology, 2016, 90, 8644-8660.	1.5	13
108	Isolation and Structure of an Antibody that Fully Neutralizes Isolate SIVmac239 Reveals Functional Similarity of SIV and HIV Glycan Shields. Immunity, 2019, 51, 724-734.e4.	6.6	13

CELIA C LABRANCHE

#	Article	IF	CITATIONS
109	An Engineered Biomimetic MPER Peptide Vaccine Induces Weakly HIV Neutralizing Antibodies in Mice. Annals of Biomedical Engineering, 2020, 48, 1991-2001.	1.3	13
110	The Glycan Hole Area of HIV-1 Envelope Trimers Contributes Prominently to the Induction of Autologous Neutralization. Journal of Virology, 2022, 96, JVI0155221.	1.5	13
111	High thermostability improves neutralizing antibody responses induced by native-like HIV-1 envelope trimers. Npj Vaccines, 2022, 7, 27.	2.9	13
112	Antibody Responses Elicited by Immunization with BG505 Trimer Immune Complexes. Journal of Virology, 2019, 93, .	1.5	12
113	Introduction of the YTE mutation into the non-immunogenic HIV bnAb PGT121 induces anti-drug antibodies in macaques. PLoS ONE, 2019, 14, e0212649.	1.1	12
114	Human Immunodeficiency Virus C.1086 Envelope gp140 Protein Boosts following DNA/Modified Vaccinia Virus Ankara Vaccination Fail To Enhance Heterologous Anti-V1V2 Antibody Response and Protection against Clade C Simian-Human Immunodeficiency Virus Challenge. Journal of Virology, 2019, 93, .	1.5	12
115	Therapeutic vaccination with IDLV-SIV-Gag results in durable viremia control in chronically SHIV-infected macaques. Npj Vaccines, 2020, 5, 36.	2.9	12
116	Antigenicity and Immunogenicity of a Trimeric Envelope Protein from an Indian Clade C HIV-1 Isolate. Journal of Biological Chemistry, 2015, 290, 9195-9208.	1.6	11
117	Breadth and magnitude of antigen-specific antibody responses in the control of plasma viremia in simian immunodeficiency virus infected macaques. Virology Journal, 2016, 13, 200.	1.4	11
118	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	1.5	11
119	Immunogenicity, safety, and efficacy of sequential immunizations with an SIV-based IDLV expressing CH505 Envs. Npj Vaccines, 2020, 5, 107.	2.9	11
120	Comparison of Neutralizing Antibody Responses Elicited from Highly Diverse Polyvalent Heterotrimeric HIV-1 gp140 Cocktail Immunogens versus a Monovalent Counterpart in Rhesus Macaques. PLoS ONE, 2014, 9, e114709.	1.1	11
121	Protection against SHIV Challenge by Subcutaneous Administration of the Plant-Derived PGT121 Broadly Neutralizing Antibody in Macaques. PLoS ONE, 2016, 11, e0152760.	1.1	11
122	Derivation and Characterization of a CD4-Independent, Non-CD4-Tropic Simian Immunodeficiency Virus. Journal of Virology, 2016, 90, 4966-4980.	1.5	9
123	Optimized Mucosal Modified Vaccinia Virus Ankara Prime/Soluble gp120 Boost HIV Vaccination Regimen Induces Antibody Responses Similar to Those of an Intramuscular Regimen. Journal of Virology, 2019, 93, .	1.5	9
124	Optimization and qualification of a functional anti-drug antibody assay for HIV-1 bnAbs. Journal of Immunological Methods, 2020, 479, 112736.	0.6	9
125	The Impact of Sustained Immunization Regimens on the Antibody Response to Oligomannose Glycans. ACS Chemical Biology, 2020, 15, 789-798.	1.6	9
126	Characterization of a Large Panel of Rabbit Monoclonal Antibodies against HIV-1 gp120 and Isolation of Novel Neutralizing Antibodies against the V3 Loop. PLoS ONE, 2015, 10, e0128823.	1.1	9

CELIA C LABRANCHE

#	Article	IF	CITATIONS
127	A Bivalent, Chimeric Rabies Virus Expressing Simian Immunodeficiency Virus Envelope Induces Multifunctional Antibody Responses. AIDS Research and Human Retroviruses, 2015, 31, 1126-1138.	O.5	8
128	An HIV Envelope gp120-Fc Fusion Protein Elicits Effector Antibody Responses in Rhesus Macaques. Vaccine Journal, 2017, 24, .	3.2	8
129	Characterization of the Transmitted Virus in an Ongoing HIV-1 Epidemic Driven by Injecting Drug Use. AIDS Research and Human Retroviruses, 2018, 34, 867-878.	0.5	8
130	Virus Control in Vaccinated Rhesus Macaques Is Associated with Neutralizing and Capturing Antibodies against the SHIV Challenge Virus but Not with V1V2 Vaccine–Induced Anti-V2 Antibodies Alone. Journal of Immunology, 2021, 206, 1266-1283.	0.4	8
131	A Derivative of the D5 Monoclonal Antibody That Targets the gp41 N-Heptad Repeat of HIV-1 with Broad Tier-2-Neutralizing Activity. Journal of Virology, 2021, 95, e0235020.	1.5	8
132	A Prime/Boost Vaccine Regimen Alters the Rectal Microbiome and Impacts Immune Responses and Viremia Control Post-Simian Immunodeficiency Virus Infection in Male and Female Rhesus Macaques. Journal of Virology, 2020, 94, .	1.5	7
133	CTLA-4 Blockade, during HIV Virus-Like Particles Immunization, Alters HIV-Specific B-Cell Responses. Vaccines, 2020, 8, 284.	2.1	7
134	Structure-guided changes at the V2 apex of HIV-1 clade C trimer enhance elicitation of autologous neutralizing and broad V1V2-scaffold antibodies. Cell Reports, 2022, 38, 110436.	2.9	6
135	Immunization of Rabbits with Highly Purified, Soluble, Trimeric Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Induces a Vigorous B Cell Response and Broadly Cross-Reactive Neutralization. PLoS ONE, 2014, 9, e98060.	1.1	5
136	Engineering Recombinant Reoviruses To Display gp41 Membrane-Proximal External-Region Epitopes from HIV-1. MSphere, 2016, 1, .	1.3	5
137	Cross-Linking of a CD4-Mimetic Miniprotein with HIV-1 Env gp140 Alters Kinetics and Specificities of Antibody Responses against HIV-1 Env in Macaques. Journal of Virology, 2017, 91, .	1.5	5
138	Priming with DNA Expressing Trimeric HIV V1V2 Alters the Immune Hierarchy Favoring the Development of V2-Specific Antibodies in Rhesus Macaques. Journal of Virology, 2020, 95, .	1.5	5
139	Bispecific Anti-HIV Immunoadhesins That Bind Gp120 and Gp41 Have Broad and Potent HIV-Neutralizing Activity. Vaccines, 2021, 9, 774.	2.1	5
140	Frequent Development of Broadly Neutralizing Antibodies in Early Life in a Large Cohort of Children With Human Immunodeficiency Virus. Journal of Infectious Diseases, 2022, 225, 1731-1740.	1.9	5
141	Boosting of HIV-1 Neutralizing Antibody Responses by a Distally Related Retroviral Envelope Protein. Journal of Immunology, 2014, 192, 5802-5812.	0.4	4
142	Parallel Induction of CH505 B Cell Ontogeny-Guided Neutralizing Antibodies and tHIVconsvX Conserved Mosaic-Specific T Cells against HIV-1. Molecular Therapy - Methods and Clinical Development, 2019, 14, 148-160.	1.8	4
143	Immunologic and Virologic Mechanisms for Partial Protection from Intravenous Challenge by an Integration-Defective SIV Vaccine. Viruses, 2017, 9, 135.	1.5	3
144	Novel Strategy To Adapt Simian-Human Immunodeficiency Virus E1 Carrying <i>env</i> from an RV144 Volunteer to Rhesus Macaques: Coreceptor Switch and Final Recovery of a Pathogenic Virus with Exclusive R5 Tropism. Journal of Virology, 2018, 92, .	1.5	3

CELIA C LABRANCHE

#	Article	IF	CITATIONS
145	Polyclonal Broadly Neutralizing Antibody Activity Characterized by CD4 Binding Site and V3-Glycan Antibodies in a Subset of HIV-1 Virus Controllers. Frontiers in Immunology, 2021, 12, 670561.	2.2	3
146	Soluble Envelope Glycoprotein Trimers from a CD4-Independent HIV-1 Elicit Antibody-Dependent Cellular Cytotoxicity-Mediating Antibodies in Guinea Pigs. Journal of Virology, 2015, 89, 10707-10711.	1.5	2
147	Structural and genetic convergence of HIV-1 neutralizing antibodies in vaccinated non-human primates. PLoS Pathogens, 2021, 17, e1009624.	2.1	2
148	SIV infection duration largely determines broadening of neutralizing antibody response in macaques. Journal of Clinical Investigation, 2020, 130, 5413-5424.	3.9	2
149	E4orf1 Suppresses E1B-Deleted Adenovirus Vaccine-Induced Immune Responses. Vaccines, 2022, 10, 295.	2.1	2
150	Persistent immunogenicity of integrase defective lentiviral vectors delivering membrane-tethered native-like HIV-1 envelope trimers. Npj Vaccines, 2022, 7, 44.	2.9	2
151	Vertical HIV-1 Transmission in the Setting of Maternal Broad and Potent Antibody Responses. Journal of Virology, 2022, 96, e0023122.	1.5	2
152	An Efficient Microwave-Mediated Synthesis of Hexavalent Sialic Acid Sulfoglycodendrimers as Potential Anti-HIV Agents. ACS Applied Polymer Materials, 2020, 2, 4345-4351.	2.0	1
153	The Immunological Impact of Adenovirus Early Genes on Vaccine-Induced Responses in Mice and Nonhuman Primates. Journal of Virology, 2021, 95, .	1.5	1
154	Correction for Chakrabarti et al., Robust Neutralizing Antibodies Elicited by HIV-1 JRFL Envelope Glycoprotein Trimers in Nonhuman Primates. Journal of Virology, 2015, 89, 887-887.	1.5	0
155	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		Ο
156	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
157	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
158	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0