
Da-wei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5578846/publications.pdf Version: 2024-02-01

DA-WEL WANC

#	Article	IF	CITATIONS
1	Graphene-Wrapped Fe ₃ O ₄ Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries. Chemistry of Materials, 2010, 22, 5306-5313.	3.2	1,773
2	3D Aperiodic Hierarchical Porous Graphitic Carbon Material for Highâ€Rate Electrochemical Capacitive Energy Storage. Angewandte Chemie - International Edition, 2008, 47, 373-376.	7.2	1,747
3	Fabrication of Graphene/Polyaniline Composite Paper <i>via In Situ</i> Anodic Electropolymerization for High-Performance Flexible Electrode. ACS Nano, 2009, 3, 1745-1752.	7.3	1,464
4	High-Energy MnO ₂ Nanowire/Graphene and Graphene Asymmetric Electrochemical Capacitors. ACS Nano, 2010, 4, 5835-5842.	7.3	1,448
5	More Reliable Lithiumâ€6ulfur Batteries: Status, Solutions and Prospects. Advanced Materials, 2017, 29, 1606823.	11.1	1,414
6	Anchoring Hydrous RuO ₂ on Graphene Sheets for Highâ€Performance Electrochemical Capacitors. Advanced Functional Materials, 2010, 20, 3595-3602.	7.8	1,122
7	Oxygen Bridges between NiO Nanosheets and Graphene for Improvement of Lithium Storage. ACS Nano, 2012, 6, 3214-3223.	7.3	977
8	Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy and Environmental Science, 2014, 7, 576.	15.6	922
9	A Graphene–Pure‧ulfur Sandwich Structure for Ultrafast, Longâ€Life Lithium–Sulfur Batteries. Advanced Materials, 2014, 26, 625-631.	11.1	908
10	Graphene–Cellulose Paper Flexible Supercapacitors. Advanced Energy Materials, 2011, 1, 917-922.	10.2	831
11	Carbon–sulfur composites for Li–S batteries: status and prospects. Journal of Materials Chemistry A, 2013, 1, 9382.	5.2	757
12	Fibrous Hybrid of Graphene and Sulfur Nanocrystals for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2013, 7, 5367-5375.	7.3	722
13	Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, Electron–Hole Puddle, Interfacial Charge Transfer, and Enhanced Visible Light Response. Journal of the American Chemical Society, 2012, 134, 4393-4397.	6.6	565
14	A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nature Communications, 2013, 4, .	5.8	555
15	A Flexible Sulfurâ€Grapheneâ€Polypropylene Separator Integrated Electrode for Advanced Li–S Batteries. Advanced Materials, 2015, 27, 641-647.	11.1	545
16	Synthesis and Electrochemical Property of Boron-Doped Mesoporous Carbon in Supercapacitor. Chemistry of Materials, 2008, 20, 7195-7200.	3.2	511
17	A flexible nanostructured sulphur–carbon nanotube cathode with high rate performance for Li-S batteries. Energy and Environmental Science, 2012, 5, 8901.	15.6	468
18	Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor. Journal of Power Sources, 2008, 185, 1563-1568.	4.0	439

#	Article	IF	CITATIONS
19	Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy and Environmental Science, 2017, 10, 370-376.	15.6	395
20	Nitrogenâ€Doped Carbon Monolith for Alkaline Supercapacitors and Understanding Nitrogenâ€Induced Redox Transitions. Chemistry - A European Journal, 2012, 18, 5345-5351.	1.7	358
21	Twoâ€Dimensional Porous Carbon: Synthesis and Ionâ€Transport Properties. Advanced Materials, 2015, 27, 5388-5395.	11.1	318
22	Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals. Journal of the American Chemical Society, 2009, 131, 697-703.	6.6	316
23	Unravelling the Structure of Electrocatalytically Active Fe–N Complexes in Carbon for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2014, 53, 10673-10677.	7.2	306
24	Safe and high-rate supercapacitors based on an "acetonitrile/water in salt―hybrid electrolyte. Energy and Environmental Science, 2018, 11, 3212-3219.	15.6	297
25	Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art. Energy Storage Materials, 2018, 10, 168-198.	9.5	294
26	Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nature Communications, 2019, 10, 725.	5.8	289
27	Electrospun Palladium Nanoparticleâ€Loaded Carbon Nanofibers and Their Electrocatalytic Activities towards Hydrogen Peroxide and NADH. Advanced Functional Materials, 2008, 18, 441-448.	7.8	281
28	A microporous–mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li–S batteries. Physical Chemistry Chemical Physics, 2012, 14, 8703.	1.3	273
29	Carbonâ€Based Metalâ€Free Catalysts for Key Reactions Involved in Energy Conversion and Storage. Advanced Materials, 2019, 31, e1801526.	11.1	273
30	Carbon for the oxygen reduction reaction: a defect mechanism. Journal of Materials Chemistry A, 2015, 3, 11736-11739.	5.2	261
31	Epitaxial Growth of Au–Pt–Ni Nanorods for Direct High Selectivity H ₂ O ₂ Production. Advanced Materials, 2016, 28, 9949-9955.	11.1	205
32	Comparison of the rate capability of nanostructured amorphous and anatase TiO ₂ for lithium insertion using anodic TiO ₂ nanotube arrays. Nanotechnology, 2009, 20, 225701.	1.3	194
33	Oriented and Interlinked Porous Carbon Nanosheets with an Extraordinary Capacitive Performance. Chemistry of Materials, 2014, 26, 6896-6903.	3.2	180
34	Amorphous TiO ₂ nanotube arrays for low-temperature oxygen sensors. Nanotechnology, 2008, 19, 405504.	1.3	178
35	Functional Carbons Remedy the Shuttling of Polysulfides in Lithium–Sulfur Batteries: Confining, Trapping, Blocking, and Breaking up. Advanced Functional Materials, 2018, 28, 1800508.	7.8	164
36	Electrochemical interfacial capacitance in multilayer graphene sheets: Dependence on number of stacking layers. Electrochemistry Communications, 2009, 11, 1729-1732.	2.3	160

#	Article	IF	CITATIONS
37	Controlled Electrochemical Charge Injection to Maximize the Energy Density of Supercapacitors. Angewandte Chemie - International Edition, 2013, 52, 3722-3725.	7.2	160
38	Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Materials, 2018, 10, 56-61.	9.5	157
39	A nanosized Fe2O3 decorated single-walled carbon nanotube membrane as a high-performance flexible anode for lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 17942.	6.7	153
40	Hierarchical mesoporous yolk–shell structured carbonaceous nanospheres for high performance electrochemical capacitive energy storage. Chemical Communications, 2015, 51, 2518-2521.	2.2	151
41	Ethers Illume Sodiumâ€Based Battery Chemistry: Uniqueness, Surprise, and Challenges. Advanced Energy Materials, 2018, 8, 1801361.	10.2	149
42	Graphene oxide: An emerging electromaterial for energy storage and conversion. Journal of Energy Chemistry, 2021, 55, 323-344.	7.1	146
43	Effect of Pore Packing Defects in 2-D Ordered Mesoporous Carbons on Ionic Transport. Journal of Physical Chemistry B, 2006, 110, 8570-8575.	1.2	144
44	Electron field emission of a nitrogen-doped TiO2nanotube array. Nanotechnology, 2008, 19, 025606.	1.3	127
45	Covalent fixing of sulfur in metal–sulfur batteries. Energy and Environmental Science, 2020, 13, 432-471.	15.6	118
46	A Discussion on the Activity Origin in Metalâ€Free Nitrogenâ€Doped Carbons For Oxygen Reduction Reaction and their Mechanisms. ChemSusChem, 2015, 8, 2772-2788.	3.6	111
47	Mesopore-Aspect-Ratio Dependence of Ion Transport in Rodtype Ordered Mesoporous Carbon. Journal of Physical Chemistry C, 2008, 112, 9950-9955.	1.5	98
48	Aligned Titania Nanotubes as an Intercalation Anode Material for Hybrid Electrochemical Energy Storage. Advanced Functional Materials, 2008, 18, 3787-3793.	7.8	97
49	Dense Graphene Monolith for High Volumetric Energy Density Li–S Batteries. Advanced Energy Materials, 2018, 8, 1703438.	10.2	97
50	Improved capacitance of SBA-15 templated mesoporous carbons after modification with nitric acid oxidation. New Carbon Materials, 2007, 22, 307-314.	2.9	95
51	A high-density graphene–sulfur assembly: a promising cathode for compact Li–S batteries. Nanoscale, 2015, 7, 5592-5597.	2.8	92
52	Reliable liquid electrolytes for lithium metal batteries. Energy Storage Materials, 2020, 30, 113-129.	9.5	92
53	Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene. Electrochemistry Communications, 2010, 12, 1423-1427.	2.3	90
54	Diameter-Selective Growth of Single-Walled Carbon Nanotubes with High Quality by Floating Catalyst Method. ACS Nano, 2008, 2, 1722-1728.	7.3	88

#	Article	IF	CITATIONS
55	Quantifying the Volumetric Performance Metrics of Supercapacitors. Advanced Energy Materials, 2019, 9, 1900079.	10.2	88
56	A gradient bi-functional graphene-based modified electrode for vanadium redox flow batteries. Energy Storage Materials, 2018, 13, 66-71.	9.5	84
57	Ultrafast high-volumetric sodium storage of folded-graphene electrodes through surface-induced redox reactions. Energy Storage Materials, 2015, 1, 112-118.	9.5	83
58	Armoring Graphene Cathodes for Highâ€Rate and Longâ€Life Lithium Ion Supercapacitors. Advanced Energy Materials, 2016, 6, 1502064.	10.2	83
59	Faceted Branched Nickel Nanoparticles with Tunable Branch Length for Highâ€Activity Electrocatalytic Oxidation of Biomass. Angewandte Chemie - International Edition, 2020, 59, 15487-15491.	7.2	83
60	Synthesis and dye separation performance of ferromagnetic hierarchical porous carbon. Carbon, 2008, 46, 1593-1599.	5.4	80
61	N,P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 14732-14742.	5.2	80
62	An Aqueous Metal-Ion Capacitor with Oxidized Carbon Nanotubes and Metallic Zinc Electrodes. Frontiers in Energy Research, 2016, 4, .	1.2	75
63	The Interplay of Oxygen Functional Groups and Folded Texture in Densified Graphene Electrodes for Compact Sodiumâ€ion Capacitors. Advanced Energy Materials, 2018, 8, 1702395.	10.2	75
64	Recent advancements in g-C ₃ N ₄ -based photocatalysts for photocatalytic CO ₂ reduction: a mini review. RSC Advances, 2020, 10, 29408-29418.	1.7	75
65	The examination of graphene oxide for rechargeable lithium storage as a novel cathode material. Journal of Materials Chemistry A, 2013, 1, 3607.	5.2	73
66	Electroactive cellulose-supported graphene oxide interlayers for Li–S batteries. Carbon, 2015, 93, 611-619.	5.4	71
67	Nanosize SnO2 confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage. Nanoscale, 2013, 5, 1576.	2.8	70
68	Tungsten Oxide/Carbide Surface Heterojunction Catalyst with High Hydrogen Evolution Activity. ACS Energy Letters, 2020, 5, 3560-3568.	8.8	70
69	Hollow carbon cage with nanocapsules of graphitic shell/nickel core as an anode material for high rate lithium ion batteries. Journal of Materials Chemistry, 2012, 22, 11252.	6.7	69
70	Evolution of the effect of sulfur confinement in graphene-based porous carbons for use in Li–S batteries. Nanoscale, 2016, 8, 4447-4451.	2.8	69
71	A water-dielectric capacitor using hydrated graphene oxide film. Journal of Materials Chemistry, 2012, 22, 21085.	6.7	68
72	Bimetal–organic frameworks for functionality optimization: MnFe-MOF-74 as a stable and efficient catalyst for the epoxidation of alkenes with H ₂ O ₂ . Nanoscale, 2018, 10, 1591-1597.	2.8	68

#	Article	IF	CITATIONS
73	Demystifying the catalysis in lithium–sulfur batteries: Characterization methods and techniques. SusMat, 2021, 1, 51-65.	7.8	68
74	Unusual High Oxygen Reduction Performance in All-Carbon Electrocatalysts. Scientific Reports, 2014, 4, 6289.	1.6	67
75	Superassembled Biocatalytic Porous Framework Micromotors with Reversible and Sensitive pHâ€Speed Regulation at Ultralow Physiological H ₂ O ₂ Concentration. Advanced Functional Materials, 2019, 29, 1808900.	7.8	66
76	Revisiting oxygen reduction reaction on oxidized and unzipped carbon nanotubes. Carbon, 2015, 81, 295-304.	5.4	64
77	Electrochemical determination of oxalic acid using palladium nanoparticle-loaded carbon nanofiber modified electrode. Analytical Methods, 2010, 2, 855.	1.3	62
78	Research and prospect on extraction of vanadium from vanadium slag by liquid oxidation technologies. Transactions of Nonferrous Metals Society of China, 2014, 24, 1273-1288.	1.7	62
79	Carboxymethyl cellulose binders enable high-rate capability of sulfurized polyacrylonitrile cathodes for Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 5460-5465.	5.2	62
80	Ultrahigh rate sodium ion storage with nitrogen-doped expanded graphite oxide in ether-based electrolyte. Journal of Materials Chemistry A, 2018, 6, 1582-1589.	5.2	60
81	Facile Synthesis of Dendritic Gold Nanostructures with Hyperbranched Architectures and Their Electrocatalytic Activity toward Ethanol Oxidation. ACS Applied Materials & Interfaces, 2013, 5, 9148-9154.	4.0	58
82	Structural Origin of the Activity in Mn ₃ O ₄ –Graphene Oxide Hybrid Electrocatalysts for the Oxygen Reduction Reaction. ChemSusChem, 2015, 8, 3331-3339.	3.6	56
83	Precise Regulation of Ga-Based Liquid Metal Oxidation. Accounts of Materials Research, 2021, 2, 1093-1103.	5.9	56
84	3D Aperiodic Hierarchical Porous Graphitic Carbon Material for Highâ€Rate Electrochemical Capacitive Energy Storage. Angewandte Chemie - International Edition, 2009, 48, 1525-1525.	7.2	55
85	An in-situ solidification strategy to block polysulfides in Lithium-Sulfur batteries. Energy Storage Materials, 2021, 37, 224-232.	9.5	55
86	Grapheneâ€Based Planar Microsupercapacitors: Recent Advances and Future Challenges. Advanced Materials Technologies, 2019, 4, 1800200.	3.0	54
87	High-performance hierarchical MnO2/CNT electrode for multifunctional supercapacitors. Carbon, 2021, 184, 504-513.	5.4	54
88	Liquid Metal Hybrid Platform-Mediated Ice–Fire Dual Noninvasive Conformable Melanoma Therapy. ACS Applied Materials & Interfaces, 2020, 12, 27984-27993.	4.0	51
89	In situ synthesis of Pt/carbon nanofiber nanocomposites with enhanced electrocatalytic activity toward methanol oxidation. Journal of Colloid and Interface Science, 2012, 367, 199-203.	5.0	50
90	Spherical Murray-Type Assembly of Co–N–C Nanoparticles as a High-Performance Trifunctional Electrocatalyst. ACS Applied Materials & Interfaces, 2019, 11, 9925-9933.	4.0	49

#	Article	IF	CITATIONS
91	Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium. Journal of Colloid and Interface Science, 2012, 367, 342-347.	5.0	48
92	Refilling Nitrogen to Oxygen Vacancies in Ultrafine Tungsten Oxide Clusters for Superior Lithium Storage. Advanced Energy Materials, 2019, 9, 1902148.	10.2	48
93	Superior removal of Hg (II) ions from wastewater using hierarchically porous, functionalized carbon. Journal of Hazardous Materials, 2019, 371, 33-41.	6.5	48
94	Field Emission and Cathodoluminescence of ZnS Hexagonal Pyramids of Zinc Blende Structured Single Crystals. Advanced Functional Materials, 2009, 19, 484-490.	7.8	47
95	Synthesis of Tin (II or IV) Oxide Coated Multiwall Carbon Nanotubes with Controlled Morphology. Journal of Physical Chemistry C, 2008, 112, 5790-5794.	1.5	46
96	Nanospace-confined formation of flattened Sn sheets in pre-seeded graphenes for lithium ion batteries. Nanoscale, 2014, 6, 9554-9558.	2.8	46
97	Dependence of LiNO 3 decomposition on cathode binders in Li–S batteries. Journal of Power Sources, 2015, 288, 13-19.	4.0	45
98	Membrane Permeability Rates of Vanadium Ions and Their Effects on Temperature Variation in Vanadium Redox Batteries. Energies, 2016, 9, 1058.	1.6	45
99	Anodic chlorine/nitrogen co-doping of reduced graphene oxide films at room temperature. Carbon, 2012, 50, 3333-3341.	5.4	44
100	A Li-ion sulfur full cell with ambient resistant Al-Li alloy anode. Energy Storage Materials, 2018, 15, 209-217.	9.5	44
101	Ultrafast growth of dendritic gold nanostructures and their applications in methanol electro-oxidation and surface-enhanced Raman scattering. Journal of Colloid and Interface Science, 2011, 354, 577-584.	5.0	43
102	Digital to analog resistive switching transition induced by graphene buffer layer in strontium titanate based devices. Journal of Colloid and Interface Science, 2018, 512, 767-774.	5.0	43
103	A vertical graphene enhanced Zn–MnO ₂ flexible battery towards wearable electronic devices. Journal of Materials Chemistry A, 2021, 9, 575-584.	5.2	43
104	Fabrication and supercapacitive properties of a thick electrode of carbon nanotube–RuO2 core–shell hybrid material with a high RuO2 loading. Nano Energy, 2013, 2, 1232-1241.	8.2	41
105	Platinum electrocatalysts with plasmonic nano-cores for photo-enhanced oxygen-reduction. Nano Energy, 2017, 41, 233-242.	8.2	41
106	Hybrid Solid Polymer Electrolytes with Twoâ€Dimensional Inorganic Nanofillers. Chemistry - A European Journal, 2018, 24, 18180-18203.	1.7	41
107	Reduction-induced surface amorphization enhances the oxygen evolution activity in Co3O4. RSC Advances, 2015, 5, 27823-27828.	1.7	40
108	Design Rationale and Device Configuration of Lithiumâ€lon Capacitors. Advanced Energy Materials, 2022, 12, .	10.2	40

#	Article	IF	CITATIONS
109	<i>In Situ</i> Assembly of Multi-Sheeted Buckybooks from Single-Walled Carbon Nanotubes. ACS Nano, 2009, 3, 707-713.	7.3	39
110	Magnetic liquid metal loaded nano-in-micro spheres as fully flexible theranostic agents for SMART embolization. Nanoscale, 2021, 13, 8817-8836.	2.8	39
111	Confined SnO2 quantum-dot clusters in graphene sheets as high-performance anodes for lithium-ion batteries. Scientific Reports, 2016, 6, 25829.	1.6	38
112	Effects of Surface Pretreatment of Glassy Carbon on the Electrochemical Behavior of V(IV)/V(V) Redox Reaction. Journal of the Electrochemical Society, 2016, 163, A1164-A1174.	1.3	37
113	Functions in cooperation for enhanced oxygen reduction reaction: the independent roles of oxygen and nitrogen sites in metal-free nanocarbon and their functional synergy. Journal of Materials Chemistry A, 2017, 5, 3239-3248.	5.2	37
114	High-Performance Microsupercapacitors Based on Bioinspired Graphene Microfibers. ACS Applied Materials & Interfaces, 2018, 10, 10157-10164.	4.0	37
115	Synergy of nanoconfinement and surface oxygen in recrystallization of sulfur melt in carbon nanocapsules and the related Li–S cathode properties. Journal of Materials Chemistry A, 2014, 2, 6439.	5.2	36
116	An Operando Mechanistic Evaluation of a Solarâ€Rechargeable Sodiumâ€Ion Intercalation Battery. Advanced Energy Materials, 2017, 7, 1700545.	10.2	36
117	Functional Electrocatalysts Derived from Prussian Blue and its Analogues for Metalâ€Air Batteries: Progress and Prospects. Batteries and Supercaps, 2019, 2, 290-310.	2.4	36
118	Large-Scale and Template-Free Growth of Free-Standing Single-Crystalline Dendritic Ag/Pd Alloy Nanostructure Arrays. Crystal Growth and Design, 2009, 9, 4351-4355.	1.4	35
119	The effect of carbon particle morphology on the electrochemical properties of nanocarbon/polyaniline composites in supercapacitors. New Carbon Materials, 2011, 26, 180-186.	2.9	34
120	Modification Based on MoO ₃ as Electrocatalysts for High Power Density Vanadium Redox Flow Batteries. ChemElectroChem, 2017, 4, 1836-1839.	1.7	34
121	A 2D Conductive Organic–Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal Swelling. Advanced Materials, 2018, 30, e1800400.	11.1	34
122	Versatile electrocatalytic processes realized by Ni, Co and Fe alloyed core coordinated carbon shells. Journal of Materials Chemistry A, 2019, 7, 12154-12165.	5.2	34
123	The smart era of electrochemical energy storage devices. Energy Storage Materials, 2016, 3, 66-68.	9.5	33
124	A Rechargeable Quasi-symmetrical MoS2 Battery. Joule, 2018, 2, 1278-1286.	11.7	33
125	Ternary MnO/CoMn alloy@N-doped graphitic composites derived from a bi-metallic pigment as bi-functional electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 20649-20657.	5.2	33
126	Long-chain solid organic polysulfide cathode for high-capacity secondary lithium batteries. Energy Storage Materials, 2018, 12, 30-36.	9.5	31

#	Article	IF	CITATIONS
127	Mitigating self-discharge of carbon-based electrochemical capacitors by modifying their electric-double layer to maximize energy efficiency. Journal of Energy Chemistry, 2019, 38, 214-218.	7.1	31
128	Solar Redox Flow Batteries: Mechanism, Design, and Measurement. Advanced Sustainable Systems, 2018, 2, 1800031.	2.7	29
129	A smart self-regenerative lithium ion supercapacitor with a real-time safety monitor. Energy Storage Materials, 2015, 1, 146-151.	9.5	28
130	Evidence for Fast Lithium-Ion Diffusion and Charge-Transfer Reactions in Amorphous TiO <i>_x</i> Nanotubes: Insights for High-Rate Electrochemical Energy Storage. ACS Applied Materials & Interfaces, 2018, 10, 42513-42523.	4.0	28
131	Improving new particle formation simulation by coupling a volatility-basis set (VBS) organic aerosol module in NAQPMS+APM. Atmospheric Environment, 2019, 204, 1-11.	1.9	28
132	Wurtzite P-Doped GaN Triangular Microtubes as Field Emitters. Journal of Physical Chemistry C, 2010, 114, 9627-9633.	1.5	27
133	Simulation on different response characteristics of aerosol particle number concentration and mass concentration to emission changes over mainland China. Science of the Total Environment, 2018, 643, 692-703.	3.9	27
134	Introducing Stacking Faults into Three-Dimensional Branched Nickel Nanoparticles for Improved Catalytic Activity. Journal of the American Chemical Society, 2022, 144, 11094-11098.	6.6	27
135	Order of Activity of Nitrogen, Iron Oxide, and FeN _{<i>x</i>} Complexes towards Oxygen Reduction in Alkaline Medium. ChemSusChem, 2015, 8, 4016-4021.	3.6	26
136	Core/Shell NiFe Nanoalloy with a Discrete Nâ€doped Graphitic Carbon Cover for Enhanced Water Oxidation. ChemElectroChem, 2018, 5, 732-736.	1.7	26
137	Enhanced visible/near-infrared light harvesting and superior charge separation via 0D/2D all-carbon hybrid architecture for photocatalytic oxygen evolution. Carbon, 2020, 167, 724-735.	5.4	26
138	Solution phase synthesis of halogenated graphene and the electrocatalytic activity for oxygen reduction reaction. Chinese Journal of Catalysis, 2014, 35, 884-890.	6.9	25
139	Suitability of representative electrochemical energy storage technologies for ramp-rate control of photovoltaic power. Journal of Power Sources, 2018, 384, 396-407.	4.0	25
140	Towards a reliable Li-metal-free LiNO ₃ -free Li-ion polysulphide full cell <i>via</i> parallel interface engineering. Energy and Environmental Science, 2018, 11, 2509-2520.	15.6	24
141	<i>In Situ</i> Sulfurized Carbon-Confined Cobalt for Long-Life Mg/S Batteries. ACS Applied Energy Materials, 2020, 3, 2516-2525.	2.5	23
142	Batteries: A Graphene–Pureâ€ 5 ulfur Sandwich Structure for Ultrafast, Longâ€Life Lithium–Sulfur Batteries (Adv. Mater. 4/2014). Advanced Materials, 2014, 26, 664-664.	11.1	21
143	Dispersible percolating carbon nano-electrodes for improvement of polysulfide utilization in Li–S batteries. Carbon, 2015, 93, 161-168.	5.4	20
144	Electron-beam writing of deoxygenated micro-patterns on graphene oxide film. Carbon, 2015, 95, 738-745.	5.4	20

#	Article	IF	CITATIONS
145	Light, Catalyst, Activation: Boosting Catalytic Oxygen Activation Using a Light Pretreatment Approach. ACS Catalysis, 2017, 7, 3644-3653.	5.5	20
146	Layered conductive polymer-inorganic anion network for high-performance ultra-loading capacitive electrodes. Energy Storage Materials, 2018, 14, 90-99.	9.5	20
147	A Desolvated Solid–Solid Interface for a Highâ€Capacitance Electric Double Layer. Advanced Energy Materials, 2019, 9, 1803715.	10.2	20
148	<i>In situ</i> modification of BiVO ₄ nanosheets on graphene for boosting photocatalytic water oxidation. Nanoscale, 2020, 12, 14853-14862.	2.8	20
149	An Extension to the Analytical Evaluation of the Oxygen Reduction Reaction Based On the Electrokinetics On a Rotating Ring–Disk Electrode. ChemElectroChem, 2016, 3, 622-628.	1.7	19
150	High yield electrooxidation of 5-hydroxymethyl furfural catalysed by unsaturated metal sites in CoFe Prussian Blue Analogue films. Green Chemistry, 2021, 23, 4333-4337.	4.6	19
151	Atomic insights of electronic states engineering of GaN nanowires by Cu cation substitution for highly efficient lithium ion battery. Journal of Energy Chemistry, 2022, 67, 46-54.	7.1	19
152	Three-dimensional aerogel based on in-situ growth of 1T-MoS2 on functionalized hierarchical porous carbon/reduced graphene oxide for energy storage. Applied Surface Science, 2020, 506, 144811.	3.1	18
153	High-performance graphene/disodium terephthalate electrodes with ether electrolyte for exceptional cooperative sodiation/desodiation. Nano Energy, 2020, 77, 105203.	8.2	16
154	Fabrication strategies for high-rate TiO2 nanotube anodes for Li ion energy storage. Journal of Power Sources, 2020, 463, 228205.	4.0	16
155	Mini/Micro/Nano Scale Liquid Metal Motors. Micromachines, 2021, 12, 280.	1.4	16
156	A new shape of gold nanocrystals: singly twinned squashed dodecahedron. CrystEngComm, 2010, 12, 4028.	1.3	15
157	The value of mixed conduction for oxygen electroreduction on graphene–chitosan composites. Carbon, 2014, 73, 234-243.	5.4	14
158	Monolithic Integration of Anodic Molybdenum Oxide Pseudocapacitive Electrodes on Screenâ€Printed Silicon Solar Cells for Hybrid Energy Harvestingâ€Storage Systems. Advanced Energy Materials, 2017, 7, 1602325.	10.2	14
159	Unlocking high-potential non-persistent radical chemistry for semi-aqueous redox batteries. Chemical Communications, 2019, 55, 2154-2157.	2.2	14
160	Carbon-supported layered double hydroxide nanodots for efficient oxygen evolution: Active site identification and activity enhancement. Nano Research, 2021, 14, 3329-3336.	5.8	14
161	High voltage aqueous Zn/LiCoO2 hybrid battery under mildly alkaline conditions. Energy Storage Materials, 2021, 43, 158-164.	9.5	14
162	Metal–Ligand Complexes as Molecular Metal-Ion Reservoirs for Highly Promoted Growth of β-Co(OH)2 Microplates. Crystal Growth and Design, 2016, 16, 8-11.	1.4	13

#	Article	IF	CITATIONS
163	Explaining the spatiotemporal variation of fine particle number concentrations over Beijing and surrounding areas in an air quality model with aerosol microphysics. Environmental Pollution, 2017, 231, 1302-1313.	3.7	13
164	High electrochemical cycling performance through accurately inheriting hierarchical porous structure from bagasse. Journal of Energy Storage, 2019, 22, 60-67.	3.9	13
165	Transport Patterns, Size Distributions, and Depolarization Characteristics of Dust Particles in East Asia in Spring 2018. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031752.	1.2	13
166	Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte. Nature Communications, 2021, 12, 5515.	5.8	13
167	Enhanced Electroactivity of Facet-Controlled Co3O4 Nanocrystals for Enzymeless Biosensing. Journal of Materials Science and Technology, 2016, 32, 24-27.	5.6	12
168	High-capacity pseudocapacitive Li storage on functional nanoporous carbons with parallel mesopores. Energy Storage Materials, 2016, 2, 14-20.	9.5	12
169	Nitrogen Doped Carbon Nanosheets Coupled Nickel–Carbon Pyramid Arrays Toward Efficient Evolution of Hydrogen. Advanced Sustainable Systems, 2017, 1, 1700032.	2.7	12
170	Dendritic Ag/Pd Alloy Nanostructure Arrays for Electrochemical CO 2 Reduction. ChemElectroChem, 2020, 7, 2608-2613.	1.7	12
171	Combined DFT and experiment: Stabilizing the electrochemical interfaces via boron Lewis acids. Journal of Energy Chemistry, 2021, 59, 100-107.	7.1	12
172	High-performance lithium–sulfur batteries enabled by regulating Li ₂ S deposition. Physical Chemistry Chemical Physics, 2021, 23, 21385-21398.	1.3	12
173	Hydrotalcite-wrapped Co–B alloy with enhanced oxygen evolution activity. Chinese Journal of Catalysis, 2017, 38, 1021-1027.	6.9	11
174	Highly cross-linked carbon sponge enables room-temperature long-life semi-liquid Na/polysulfide battery. Materials Today Energy, 2019, 14, 100342.	2.5	11
175	Binary graphene-based cathode structure for high-performance lithium-sulfur batteries. JPhys Energy, 2020, 2, 015003.	2.3	11
176	A comparative study on layered cobalt hydroxides in water oxidation. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 415-423.	0.8	10
177	Benchmarking the Oxygen Reduction Electroactivity of Firstâ€Row Transitionâ€Metal Oxide Clusters on Carbon Nanotubes. ChemElectroChem, 2018, 5, 1862-1867.	1.7	10
178	Assembly of 1T′-MoS ₂ based fibers for flexible energy storage. Nanoscale, 2020, 12, 6562-6570.	2.8	10
179	Chemical formation and source apportionment of PM2.5 at an urban site at the southern foot of the Taihang mountains. Journal of Environmental Sciences, 2021, 103, 20-32.	3.2	10
180	Universal Generating Function Based Probabilistic Production Simulation Approach Considering Wind Speed Correlation. Energies, 2017, 10, 1786.	1.6	9

#	Article	IF	CITATIONS
181	2D polyaniline with exchangeable interlayer fluid for fast and stable volumetric dual ion storage. Journal of Energy Chemistry, 2021, 54, 587-594.	7.1	9
182	Synergetic Nanoarchitectonics of Defects and Cocatalysts in Oxygen-Vacancy-Rich BiVO ₄ /reduced graphene oxide Mott–Schottky Heterostructures for Photocatalytic Water Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 12180-12192.	4.0	9
183	Influence of the morphological change in natural Asian dust during transport: A modeling study for a typical dust event over northern China. Science of the Total Environment, 2020, 739, 139791.	3.9	8
184	Rigid metal/liquid metal nanoparticles: Synthesis and application for locally ablative therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2022, 42, 102535.	1.7	8
185	Facile synthesis and electrochemical properties of octahedral gold nanocrystals. Journal of Nanoparticle Research, 2011, 13, 157-163.	0.8	7
186	Oxygen Electrocatalysis at Mn ^{III} –O <i>_x</i> –C Hybrid Heterojunction: An Electronic Synergy or Cooperative Catalysis?. ACS Applied Materials & Interfaces, 2019, 11, 706-713.	4.0	7
187	Numerical Simulation on Thermal Response of Laser-Irradiated Biological Tissues Embedded with Liquid Metal Nanoparticles. Journal of Thermal Science, 2022, 31, 1220-1235.	0.9	7
188	Integration of Electrochemical Capacitors on Silicon Photovoltaic Modules for Rapid-Response Power Buffering. , 2017, , .		6
189	Micro-Macroscopic Coupled Electrode Architecture for High-Energy-Density Lithium–Sulfur Batteries. ACS Applied Energy Materials, 2019, 2, 7393-7402.	2.5	6
190	Biofriendly micro/nanomotors operating on biocatalysis: from natural to biological environments. Biophysics Reports, 2020, 6, 179-192.	0.2	6
191	Ligandâ€Promoted Cooperative Electrochemical Oxidation of Bioâ€Alcohol on Distorted Cobalt Hydroxides for Bioâ€Hydrogen Extraction. ChemSusChem, 2021, 14, 2612-2620.	3.6	6
192	Energy Storing Plant Stem with Cytocompatibility for Supercapacitor Electrode. Advanced Functional Materials, 2021, 31, 2106787.	7.8	6
193	Redoxâ€mediated proton transport of twoâ€dimensional polyanilineâ€based nanochannels for fast capacitive performance. , 2022, 1, .		6
194	An integrated nanocarbon–cellulose membrane for solid-state supercapacitors. Science Bulletin, 2016, 61, 368-377.	4.3	5
195	Carbon: Two-Dimensional Porous Carbon: Synthesis and Ion-Transport Properties (Adv. Mater. 36/2015). Advanced Materials, 2015, 27, 5254-5254.	11.1	4
196	Li–S Batteries: A Flexible Sulfurâ€Grapheneâ€Polypropylene Separator Integrated Electrode for Advanced Li–S Batteries (Adv. Mater. 4/2015). Advanced Materials, 2015, 27, 590-590.	11.1	4
197	Porous yet dense metal-free electro-materials for compact energy storage. Science China Materials, 2016, 59, 4-5.	3.5	4
198	An integrated nanocarbon–cellulose membrane for solid-state supercapacitors. Science Bulletin, 2016, 61, 368-377.	4.3	4

#	Article	IF	CITATIONS
199	"Soft―graphene oxide-organopolysulfide nanocomposites for superior pseudocapacitive lithium storage. Chinese Chemical Letters, 2018, 29, 603-605.	4.8	4
200	High volumetric capacity nanoparticle electrodes enabled by nanofluidic fillers. Energy Storage Materials, 2021, 43, 202-211.	9.5	4
201	Electrochemical stability of graphene cathode for highâ€voltage lithium ion capacitors. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 407-414.	0.8	3
202	Electric Double Layer: A Desolvated Solid–Solid Interface for a Highâ€Capacitance Electric Double Layer (Adv. Energy Mater. 12/2019). Advanced Energy Materials, 2019, 9, 1970037.	10.2	3
203	Oxygen Nucleation of MoS ₂ Nanosheet Thin Film Supercapacitor Electrodes for Enhanced Electrochemical Energy Storage. ChemSusChem, 2021, 14, 2882-2891.	3.6	3
204	Wafer-scale quasi-layered tungstate-doped polypyrrole film with high volumetric capacitance. Nano Research, 2023, 16, 4895-4900.	5.8	3
205	Hydrogen-bonded quasi-layered polypyrrole-tungstate complex with exceptional electrochemical capacitance over 25000 cycles. Composites Part B: Engineering, 2022, 238, 109910.	5.9	3
206	A highly efficient flocculant for graphene oxide recycling and its applications. Nanotechnology, 2018, 29, 015401.	1.3	2
207	Future Energy Technology: Enabling New Science for a Sustainable Future. ChemPlusChem, 2018, 83, 890-892.	1.3	2
208	Hydrophilic tannic acid-modified WS ₂ nanosheets for enhanced polysulfide conversion in aqueous media. JPhys Energy, 2019, 1, 015005.	2.3	2
209	Materials, Chemistry, and Simulation for Future Energy Technology. ChemSusChem, 2015, 8, 2755-2756.	3.6	1
210	Nanorods: Epitaxial Growth of Au-Pt-Ni Nanorods for Direct High Selectivity H2 O2 Production (Adv.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
211	Batteries: An Operando Mechanistic Evaluation of a Solarâ€Rechargeable Sodiumâ€Ion Intercalation Battery (Adv. Energy Mater. 19/2017). Advanced Energy Materials, 2017, 7, .	10.2	1
212	Nanosizedâ€Zincâ€Mediated Selfâ€Gelation of Graphene Oxide under Ambient Conditions. ChemPlusChem, 2018, 83, 947-955.	1.3	1
213	Plastic three-dimensional nanocarbon-polyacrylic acid sponges with high volumetric capacitance for Li-ion capacitor. Sustainable Materials and Technologies, 2020, 26, e00223.	1.7	1
214	Dynamic single-site polysulfide immobilization in long-range disorder Cu-MOFs. Chemical Communications, 2020, 56, 10074-10077.	2.2	1
215	In-situ synthesized liquid metal microgels. , 2021, , .		1
01/	Sodium Ion Capacitors: The Interplay of Oxygen Functional Groups and Folded Texture in Densified Graphana Electrodes for Compact Sodium Ion Capacitors (Adv. Energy Mater, 11/2018). Advanced Energy	10.0	0

216 Graphene Electrodes for Compact Sódium-Íon Capacitors (Adv. Énergy Mater. 11/2018). Advanced Energy Materials, 2018, 8, 1870050.

10.2 0