List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5578614/publications.pdf Version: 2024-02-01

FDIN THDRITT

#	Article	IF	CITATIONS
1	Decision-making about genetic health information among family dyads: a systematic literature review. Health Psychology Review, 2022, 16, 412-429.	8.6	8
2	Genetic testing decisions in non-western cultures: an opportunity for intergenerational decision making. European Journal of Human Genetics, 2022, 30, 391-391.	2.8	2
3	Preferences for and acceptability of receiving pharmacogenomic results by mail: A focus group study with a primarily Africanâ€American cohort. Journal of Genetic Counseling, 2021, 30, 1582-1590.	1.6	2
4	Engagement and return of results preferences among a primarily African American genomic sequencing research cohort. American Journal of Human Genetics, 2021, 108, 894-902.	6.2	11
5	Dyadic concordance and associations of beliefs with intentions to learn carrier results from genomic sequencing. Journal of Behavioral Medicine, 2021, 44, 860-866.	2.1	2
6	Parent clinical trial priorities for fragile X syndrome: a best–worst scaling. European Journal of Human Genetics, 2021, 29, 1245-1251.	2.8	4
7	Advancing precision public health using human genomics: examples from the field and future research opportunities. Genome Medicine, 2021, 13, 97.	8.2	26
8	Enrolling Children in Clinical Trials for Genetic Neurodevelopmental Conditions: Ethics, Parental Decisions, and Children's Identities. Ethics & Human Research, 2021, 43, 27-36.	0.9	0
9	Uptake of Genetic Testing Among Patients with Cancer At Risk for Lynch Syndrome in the National Health Interview Survey. Cancer Prevention Research, 2021, 14, 927-932.	1.5	6
10	A primer in genomics for social and behavioral investigators. Translational Behavioral Medicine, 2020, 10, 451-456.	2.4	4
11	Perceptions of uncertainties about carrier results identified by exome sequencing in a randomized controlled trial. Translational Behavioral Medicine, 2020, 10, 441-450.	2.4	2
12	Molecular phylogenetic analysis of New Zealand mosquito species. New Zealand Journal of Zoology, 2020, 47, 324-349.	1.1	4
13	Parental decision making about clinical trial enrollment: A survey of parents of children with Fragile X syndrome Health Psychology, 2020, 39, 1070-1077.	1.6	2
14	Perspectives From Early Career Investigators Who Are "Staying in the Game―of Precision Public Health Research. American Journal of Public Health, 2019, 109, 1186-1187.	2.7	5
15	Early career investigators and precision public health. Lancet, The, 2019, 394, 382-383.	13.7	6
16	Australians' views and experience of personal genomic testing: survey findings from the Genioz study. European Journal of Human Genetics, 2019, 27, 711-720.	2.8	14
17	Judgment and Decision Making in Genome Sequencing. , 2019, , 57-73.		1
18	Psychosocial, attitudinal, and demographic correlates of cancer-related germline genetic testing in the 2017 Health Information National Trends Survey. Journal of Community Genetics, 2019, 10, 453-459.	1.2	8

#	Article	IF	CITATIONS
19	Managing the need to tell: Triggers and strategic disclosure of thalassemia major in Singapore. American Journal of Medical Genetics, Part A, 2019, 179, 762-769.	1.2	7
20	Genetic counseling, genetic testing, and risk perceptions for breast and colorectal cancer: Results from the 2015 National Health Interview Survey. Preventive Medicine, 2019, 123, 12-19.	3.4	13
21	Fragile X syndrome clinical trials: exploring parental decisionâ€making. Journal of Intellectual Disability Research, 2019, 63, 926-935.	2.0	10
22	Ethnic identity and engagement with genome sequencing research. Genetics in Medicine, 2019, 21, 1735-1743.	2.4	9
23	Australians' perspectives on support around use of personal genomic testing: Findings from the Genioz study. European Journal of Medical Genetics, 2019, 62, 290-299.	1.3	17
24	A randomized controlled study of a consent intervention for participating in an NIH genome sequencing study. European Journal of Human Genetics, 2018, 26, 622-630.	2.8	12
25	Intentions to share exome sequencing results with family members: exploring spousal beliefs and attitudes. European Journal of Human Genetics, 2018, 26, 735-739.	2.8	10
26	Web Platform vs In-Person Genetic Counselor for Return of Carrier Results From Exome Sequencing. JAMA Internal Medicine, 2018, 178, 338.	5.1	64
27	What proportion of paediatric specialist referrals originates from general practitioners?. Journal of Paediatrics and Child Health, 2018, 54, 183-187.	0.8	2
28	Feasibility of Coping Effectiveness Training for Caregivers of Children with Autism Spectrum Disorder: a Genetic Counseling Intervention. Journal of Genetic Counseling, 2018, 27, 252-262.	1.6	7
29	Adaptation of couples living with a high risk of breast/ovarian cancer and the association with risk-reducing surgery. Familial Cancer, 2018, 17, 485-493.	1.9	5
30	General practitioner referrals to paediatric specialist outpatient clinics: referral goals and parental influence. Journal of Primary Health Care, 2018, 10, 76.	0.6	6
31	Australians' views on personal genomic testing: focus group findings from the Genioz study. European Journal of Human Genetics, 2018, 26, 1101-1112.	2.8	14
32	Evaluation of Recipients of Positive and Negative Secondary Findings Evaluations in a Hybrid CLIA-Research Sequencing Pilot. American Journal of Human Genetics, 2018, 103, 358-366.	6.2	29
33	Paediatrician perceptions of patient referral and discharge. Australian Health Review, 2017, 41, 561.	1.1	2
34	Defining personal utility in genomics: A Delphi study. Clinical Genetics, 2017, 92, 290-297.	2.0	75
35	Public or private care: where do specialists spend their time?. Australian Health Review, 2017, 41, 541.	1.1	10
36	Personal utility in genomic testing: a systematic literature review. European Journal of Human Genetics, 2017, 25, 662-668.	2.8	122

#	Article	lF	CITATIONS
37	Children referred for specialty care: Parental perspectives and preferences on referral, followâ€up and primary care. Journal of Paediatrics and Child Health, 2017, 53, 18-25.	0.8	9
38	Perspectives of Australian general practitioners on shared care for paediatric patients. Australian Journal of Primary Health, 2017, 23, 147.	0.9	4
39	Parental preferences for paediatric specialty follow-up care. Australian Health Review, 2017, 41, 401.	1.1	2
40	Motivators and barriers for paediatricians discharging patients. Australian Journal of Primary Health, 2017, 23, 284.	0.9	4
41	Parent perspectives and reasons for lower urgency paediatric presentations to emergency departments. EMA - Emergency Medicine Australasia, 2016, 28, 211-215.	1.1	8
42	Regular source of primary care and emergency department use of children in <scp>V</scp> ictoria. Journal of Paediatrics and Child Health, 2016, 52, 303-307.	0.8	7
43	Lower urgency paediatric injuries: Parent preferences for emergency department or general practitioner care. EMA - Emergency Medicine Australasia, 2016, 28, 564-568.	1.1	9
44	Paediatric emergency department referrals from primary care. Australian Health Review, 2016, 40, 691.	1.1	2
45	General practitioner perspectives on referrals to paediatric public specialty clinics. Australian Family Physician, 2016, 45, 747-753.	0.5	5
46	Use of a telenursing triage service by <scp>V</scp> ictorian parents attending the emergency department for their child's lower urgency condition. EMA - Emergency Medicine Australasia, 2015, 27, 558-562.	1.1	7
47	Evidence linking FMR1 mRNA and attentional demands of stepping and postural control in women with the premutation. Neurobiology of Aging, 2015, 36, 1400-1408.	3.1	10
48	Novel methylation markers of the dysexecutive-psychiatric phenotype in <i>FMR1</i> premutation women. Neurology, 2015, 84, 1631-1638.	1.1	32
49	Preferences for results from genomic microarrays: comparing parents and health care providers. Clinical Genetics, 2015, 87, 21-29.	2.0	18
50	Availability of treatment drives decisions of genetic health professionals about disclosure of incidental findings. European Journal of Human Genetics, 2014, 22, 1225-1228.	2.8	13
51	Considerations for Reporting Genome Results to Patients. Journal of Paediatrics and Child Health, 2013, 49, 82-82.	0.8	Ο
52	Key Informants' Perspectives of Implementing Chromosomal Microarrays Into Clinical Practice in Australia. Twin Research and Human Genetics, 2013, 16, 833-839.	0.6	10
53	A multi-exon deletion within WWOX is associated with a 46,XY disorder of sex development. European Journal of Human Genetics, 2012, 20, 348-351.	2.8	48
54	CITED2 mutations potentially cause idiopathic premature ovarian failure. Translational Research, 2012, 160, 384-388.	5.0	15

#	Article	IF	Citations
55	SRY mutation analysis by next generation (deep) sequencing in a cohort of chromosomal Disorders of Sex Development (DSD) patients with a mosaic karyotype. BMC Medical Genetics, 2012, 13, 108.	2.1	15
56	The Many Faces of MLPA. Methods in Molecular Biology, 2011, 687, 193-205.	0.9	8
57	Characterization ofEscherichia coliO157:H7 in New Zealand using multiple-locus variable-number tandem-repeat analysis. Epidemiology and Infection, 2011, 139, 464-471.	2.1	8
58	Multiple-locus variable-number tandem-repeat analysis for discriminating within <i>Salmonella enterica</i> serovar Typhimurium definitive types and investigation of outbreaks. Epidemiology and Infection, 2011, 139, 1050-1059.	2.1	9
59	Identification of SOX3 as an XX male sex reversal gene in mice and humans. Journal of Clinical Investigation, 2011, 121, 328-341.	8.2	234
60	Copy Number Variation in Patients with Disorders of Sex Development Due to 46,XY Gonadal Dysgenesis. PLoS ONE, 2011, 6, e17793.	2.5	116
61	Using a Participatory Approach to Develop Research Priorities for Future Leaders in Cancer-Related Precision Public Health. Frontiers in Genetics, 0, 13, .	2.3	2