Cheng-Wu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5578448/publications.pdf

Version: 2024-02-01

567281 794594 1,525 20 15 19 citations h-index g-index papers 22 22 22 2060 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The Root Hair "Infectome―of <i>Medicago truncatula</i> Uncovers Changes in Cell Cycle Genes and Reveals a Requirement for Auxin Signaling in Rhizobial Infection. Plant Cell, 2014, 26, 4680-4701.	6.6	313
2	The Role of Flavonoids in Nodulation Host-Range Specificity: An Update. Plants, 2016, 5, 33.	3.5	221
3	A comprehensive draft genome sequence for lupin (<i>Lupinus angustifolius</i>), an emerging health food: insights into plant–microbe interactions and legume evolution. Plant Biotechnology Journal, 2017, 15, 318-330.	8.3	153
4	A H+-ATPase That Energizes Nutrient Uptake during Mycorrhizal Symbioses in Rice and <i>Medicago truncatula</i> Â Â Â. Plant Cell, 2014, 26, 1818-1830.	6.6	131
5	NIN Acts as a Network Hub Controlling a Growth Module Required for Rhizobial Infection. Plant Physiology, 2019, 179, 1704-1722.	4.8	106
6	Floral Patterning in Lotus japonicus. Plant Physiology, 2005, 137, 1272-1282.	4.8	101
7	Rhizobial Infection Is Associated with the Development of Peripheral Vasculature in Nodules of <i>Medicago truncatula</i> À Â Â. Plant Physiology, 2013, 162, 107-115.	4.8	92
8	A protein complex required for polar growth of rhizobial infection threads. Nature Communications, 2019, 10, 2848.	12.8	72
9	MtLAX2, a Functional Homologue of the Arabidopsis Auxin Influx Transporter AUX1, Is Required for Nodule Organogenesis. Plant Physiology, 2017, 174, 326-338.	4.8	56
10	A <i>Medicago truncatula</i> Cystathionine- \hat{l}^2 -Synthase-like Domain-Containing Protein Is Required for Rhizobial Infection and Symbiotic Nitrogen Fixation. Plant Physiology, 2016, 170, 2204-2217.	4.8	55
11	Nitrogen sensing in legumes. Journal of Experimental Botany, 2017, 68, erw405.	4.8	43
12	Signaling at the Root Surface: The Role of Cutin Monomers in Mycorrhization. Molecular Plant, 2013, 6, 1381-1383.	8.3	36
13	SUI-family genes encode phosphatidylserine synthases and regulate stem development in rice. Planta, 2013, 237, 15-27.	3.2	33
14	Identification of a core set of rhizobial infection genes using data from single cell-types. Frontiers in Plant Science, 2015, 6, 575.	3.6	30
15	<i>PHOSPHATIDYLSERINE SYNTHASE1</i> is Required for Inflorescence Meristem and Organ Development in <i>Arabidopsis</i> Journal of Integrative Plant Biology, 2013, 55, 682-695.	8.5	26
16	Cytokinin responses counterpoint auxin signaling during rhizobial infection. Plant Signaling and Behavior, 2015, 10, e1019982.	2.4	16
17	MtNPF6.5 mediates chloride uptake and nitrate preference in Medicago roots. EMBO Journal, 2021, 40, e106847.	7.8	14
18	Three Common Symbiotic ABC Subfamily B Transporters in <i>Medicago truncatula</i> Are Regulated by a NIN-Independent Branch of the Symbiosis Signaling Pathway. Molecular Plant-Microbe Interactions, 2021, 34, 939-951.	2.6	12

CHENG-Wu Liu

#	Article	IF	CITATIONS
19	Nodule Inception Is Not Required for Arbuscular Mycorrhizal Colonization of Medicago truncatula. Plants, 2020, 9, 71.	3.5	8
20	<i>KEEL LOSS1</i> Regulates Petal Number Along the Floral Dorsoventral Axis in <i>Lotus Japonicus</i> and <i>Pisum Sativum</i> . SSRN Electronic Journal, 0, , .	0.4	1