## Christiano J S De Matos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/557782/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Unusual Angular Dependence of the Raman Response in Black Phosphorus. ACS Nano, 2015, 9, 4270-4276.                                                                                                              | 14.6 | 301       |
| 2  | Random Fiber Laser. Physical Review Letters, 2007, 99, 153903.                                                                                                                                                   | 7.8  | 251       |
| 3  | Characterization of the second- and third-order nonlinear optical susceptibilities of monolayer MoS <sub>2</sub> using multiphoton microscopy. 2D Materials, 2017, 4, 011006.                                    | 4.4  | 147       |
| 4  | Lateral access to the holes of photonic crystal fibers – selective filling and sensing applications.<br>Optics Express, 2006, 14, 8403.                                                                          | 3.4  | 132       |
| 5  | Supercontinuum generation in a water-core photonic crystal fiber. Optics Express, 2008, 16, 9671.                                                                                                                | 3.4  | 123       |
| 6  | Raman spectroscopy in black phosphorus. Journal of Raman Spectroscopy, 2018, 49, 76-90.                                                                                                                          | 2.5  | 115       |
| 7  | All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber. Optics Express, 2003, 11, 2832.                                                                                   | 3.4  | 97        |
| 8  | Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source.<br>Optics Express, 2004, 12, 5287.                                                                               | 3.4  | 91        |
| 9  | Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber. Optics<br>Letters, 2004, 29, 983.                                                                                     | 3.3  | 86        |
| 10 | Fiber Bragg grating (FBG) characterization and shaping by local pressure. Journal of Lightwave Technology, 2001, 19, 1206-1211.                                                                                  | 4.6  | 72        |
| 11 | Edge phonons in black phosphorus. Nature Communications, 2016, 7, 12191.                                                                                                                                         | 12.8 | 70        |
| 12 | Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre<br>microstructure and single-mode liquid-core fibre. Measurement Science and Technology, 2007, 18,<br>3075-3081. | 2.6  | 69        |
| 13 | Resonantly Increased Optical Frequency Conversion in Atomically Thin Black Phosphorus. Advanced<br>Materials, 2016, 28, 10693-10700.                                                                             | 21.0 | 64        |
| 14 | Liquid-core, liquid-cladding photonic crystal fibers. Optics Express, 2007, 15, 11207.                                                                                                                           | 3.4  | 59        |
| 15 | Graphene Based Waveguide Polarizers: In-Depth Physical Analysis and Relevant Parameters. Scientific<br>Reports, 2015, 5, 16949.                                                                                  | 3.3  | 57        |
| 16 | Spontaneous chemical functionalization via coordination of Au single atoms on monolayer MoS<br><sub>2</sub> . Science Advances, 2020, 6, .                                                                       | 10.3 | 56        |
| 17 | All-Fiber Format Compression of Frequency Chirped Pulses in Air-Guiding Photonic Crystal Fibers.<br>Physical Review Letters, 2004, 93, 103901.                                                                   | 7.8  | 51        |
| 18 | Temporal and noise characteristics of continuous-wave-pumped continuum generation in holey fibers<br>around 1300nm. Applied Physics Letters, 2004, 85, 2706-2708.                                                | 3.3  | 42        |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | All-fiber high repetition rate microfluidic dye laser. Optica, 2015, 2, 186.                                                                                                                                 | 9.3 | 41        |
| 20 | Graphene Oxide/Gold Nanorod Nanocomposite for Stable Surface-Enhanced Raman Spectroscopy. ACS Photonics, 2016, 3, 1027-1035.                                                                                 | 6.6 | 40        |
| 21 | All-fiber devices based on photonic crystal fibers with integrated electrodes. Optics Express, 2009, 17, 1660.                                                                                               | 3.4 | 38        |
| 22 | Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train. Optics Letters, 2002, 27, 915.                                    | 3.3 | 36        |
| 23 | Efficient and short-range light coupling to index-matched liquid-filled hole in a solid-core photonic crystal fiber. Optics Express, 2011, 19, 24687.                                                        | 3.4 | 34        |
| 24 | Nonlinear Optical Interactions and Relaxation in 2D Layered Transition Metal Dichalcogenides Probed by Optical and Photoacoustic Z-Scan Methods. ACS Photonics, 2020, 7, 3440-3447.                          | 6.6 | 34        |
| 25 | Raman-assisted fiber optical parametric amplifier and wavelength converter in highly nonlinear fiber.<br>Journal of the Optical Society of America B: Optical Physics, 2002, 19, 1901.                       | 2.1 | 32        |
| 26 | Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40� pulse compression<br>using air-core fiber and conventional erbium-doped fiber amplifier. Optics Express, 2004, 12, 405. | 3.4 | 32        |
| 27 | Temperature Sensing Using Colloidal-Core Photonic Crystal Fiber. IEEE Sensors Journal, 2012, 12, 195-200.                                                                                                    | 4.7 | 30        |
| 28 | Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 [micro sign]m.<br>Electronics Letters, 2001, 37, 825.                                                                             | 1.0 | 29        |
| 29 | Continuous-wave-pumped Raman-assisted fiber optical parametric amplifier and wavelength converter in conventional dispersion-shifted fiber. Optics Letters, 2001, 26, 1583.                                  | 3.3 | 27        |
| 30 | Short-pulse, all-fiber, Raman laser with dispersion compensation in a holey fiber. Optics Letters, 2003, 28, 1891.                                                                                           | 3.3 | 27        |
| 31 | Single-design-parameter microstructured optical fiber for chromatic dispersion tailoring and evanescent field enhancement. Optics Letters, 2007, 32, 3324.                                                   | 3.3 | 27        |
| 32 | Femtosecond Nonlinear Optical Properties of 2D Metallic NbS <sub>2</sub> in the Near Infrared.<br>Journal of Physical Chemistry C, 2020, 124, 15425-15433.                                                   | 3.1 | 27        |
| 33 | 20-kW peak power all-fiber 157-µm source based on compression in air-core photonic bandgap fiber, its<br>frequency doubling, and broadband generation from 430 to 1450 nm. Optics Letters, 2005, 30, 436.    | 3.3 | 26        |
| 34 | Probing Polaritons in 2D Materials with Synchrotron Infrared Nanospectroscopy. Advanced Optical<br>Materials, 2020, 8, 1901091.                                                                              | 7.3 | 26        |
| 35 | Tunable repetition-rate multiplication of a 10 GHz pulse train using linear and nonlinear fiber propagation. Applied Physics Letters, 2003, 83, 5356-5358.                                                   | 3.3 | 25        |
| 36 | Experimental characterisation of Raman gain efficiency of holey fibre. Electronics Letters, 2003, 39, 424.                                                                                                   | 1.0 | 23        |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Yb^3+, Tm^3+ and Ho^3+ triply-doped tellurite core-cladding optical fiber for white light generation.<br>Optical Materials Express, 2011, 1, 1515.                          | 3.0 | 23        |
| 38 | In-fiber modal Mach-Zehnder interferometer based on the locally post-processed core of a photonic crystal fiber. Optics Express, 2011, 19, 3124.                            | 3.4 | 22        |
| 39 | Edge phonons in layered orthorhombic GeS and GeSe monochalcogenides. Physical Review B, 2019, 100,                                                                          | 3.2 | 22        |
| 40 | Dual wavelength pumped L- and U-band Raman amplifier. Electronics Letters, 2001, 37, 883.                                                                                   | 1.0 | 21        |
| 41 | Microsecond switching of plasmonic nanorods in an all-fiber optofluidic component. Optica, 2017, 4, 864.                                                                    | 9.3 | 20        |
| 42 | Copropagating and counterpropagating pumps in second-order-pumped discrete fiber Raman amplifiers. Optics Letters, 2002, 27, 1708.                                          | 3.3 | 17        |
| 43 | Pressure Sensing Based on Nonconventional Air-Guiding Transmission Windows in Hollow-Core<br>Photonic Crystal Fibers. Journal of Lightwave Technology, 2009, 27, 1605-1609. | 4.6 | 17        |
| 44 | Oxygen impact on the electronic and vibrational properties of black phosphorus probed by synchrotron infrared nanospectroscopy. 2D Materials, 2017, 4, 035028.              | 4.4 | 16        |
| 45 | Direct dry transfer of CVD graphene to an optical substrate by in situ photo-polymerization. Applied<br>Surface Science, 2018, 440, 55-60.                                  | 6.1 | 15        |
| 46 | Second-harmonic generation enhancement in monolayer transition-metal dichalcogenides by using an epsilon-near-zero substrate. Nanoscale Advances, 2021, 3, 272-278.         | 4.6 | 15        |
| 47 | 4× repetition-rate multiplication and Raman compression of pulses in the same optical fiber. Optics<br>Letters, 2002, 27, 1262.                                             | 3.3 | 14        |
| 48 | Novel Sealing Technique for Practical Liquid-Core Photonic Crystal Fibers. IEEE Photonics Technology<br>Letters, 2012, 24, 191-193.                                         | 2.5 | 14        |
| 49 | CNT Film Fabrication for Mode-Locked Er-Doped Fiber Lasers: The Droplet Method. IEEE Photonics<br>Technology Letters, 2013, 25, 1007-1010.                                  | 2.5 | 14        |
| 50 | Fabrication and Optical Characterization of Silica Optical Fibers Containing Gold Nanoparticles. ACS<br>Applied Materials & Interfaces, 2015, 7, 370-375.                   | 8.0 | 14        |
| 51 | Femtosecond nonlinear refraction of 2D semi-metallic redox exfoliated ZrTe2 at 800 nm. Applied<br>Physics Letters, 2021, 118, .                                             | 3.3 | 13        |
| 52 | Making graphene visible on transparent dielectric substrates: Brewster angle imaging. 2D Materials,<br>2015, 2, 035017.                                                     | 4.4 | 12        |
| 53 | Exploring the structural and optoelectronic properties of natural insulating phlogopite in van der<br>Waals heterostructures. 2D Materials, 2022, 9, 035007.                | 4.4 | 12        |
| 54 | All-fibre Brillouin laser based on holey fibre yielding comb-like spectra. Optics Communications, 2004, 238, 185-189.                                                       | 2.1 | 11        |

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Chirped pulse Raman amplification with compression in air-core photonic bandgap fiber. Optics Express, 2005, 13, 2828.                                                                                           | 3.4 | 11        |
| 56 | Quasi-phase-matched second harmonic generation in silicon nitride ring resonators controlled by static electric field. Optics Express, 2013, 21, 32690.                                                          | 3.4 | 11        |
| 57 | Real-time optofluidic surface-enhanced Raman spectroscopy based on a graphene oxide/gold nanorod nanocomposite. Optics Express, 2018, 26, 22698.                                                                 | 3.4 | 11        |
| 58 | Charge emission in thermal poling of glasses with carbon film anode. Journal of Non-Crystalline<br>Solids, 2000, 273, 25-29.                                                                                     | 3.1 | 10        |
| 59 | One-step deposition and in-situ reduction of graphene oxide in photonic crystal fiber for all-fiber<br>laser mode locking. Optics and Laser Technology, 2020, 121, 105838.                                       | 4.6 | 10        |
| 60 | Selectively coupling core pairs in multicore photonic crystal fibers: optical couplers, filters and polarization splitters for space-division-multiplexed transmission systems. Optics Express, 2012, 20, 28981. | 3.4 | 7         |
| 61 | Distributed Pressure Sensing Using an Embedded-Core Capillary Fiber and Optical Frequency Domain<br>Reflectometry. IEEE Sensors Journal, 2021, 21, 360-365.                                                      | 4.7 | 7         |
| 62 | Long-term environmental stability of nitrogen-healed black phosphorus. Applied Surface Science, 2021,<br>564, 150450.                                                                                            | 6.1 | 7         |
| 63 | CVD growth and optical characterization of homo and heterobilayer TMDs. Journal of Applied Physics, 2022, 132, .                                                                                                 | 2.5 | 7         |
| 64 | Wavelength- and duration-tunable soliton source based on a 20-GHz Mach–Zehnder modulator and adiabatic Raman compression. Applied Physics Letters, 2002, 81, 2932-2934.                                          | 3.3 | 6         |
| 65 | Temperature response of an all-solid photonic bandgap fiber for sensing applications. Applied Optics, 2013, 52, 1461.                                                                                            | 1.8 | 6         |
| 66 | Hyper–Rayleigh scattering in 2D redox exfoliated semi-metallic ZrTe <sub>2</sub> transition metal dichalcogenide. Physical Chemistry Chemical Physics, 2020, 22, 27845-27849.                                    | 2.8 | 6         |
| 67 | Visible transmission windows in infrared hollow-core photonic bandgap fiber: characterization and response to pressure. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 977.             | 2.1 | 5         |
| 68 | Interfacial electronic coupling and band alignment of P3HT and exfoliated black phosphorous van der<br>Waals heterojunctions. Applied Surface Science, 2021, 541, 148455.                                        | 6.1 | 5         |
| 69 | 3d transition metal coordination on monolayer MoS <sub>2</sub> : a facile doping method to functionalize surfaces. Nanoscale, 2022, 14, 10801-10815.                                                             | 5.6 | 5         |
| 70 | Random Laser Action in the Core of a Photonic Crystal Fiber. Optics and Photonics News, 2008, 19, 27.                                                                                                            | 0.5 | 4         |
| 71 | Integrated polarizers based on tapered highly birefringent photonic crystal fibers. Optics Express, 2014, 22, 17769.                                                                                             | 3.4 | 4         |
| 72 | Simultaneous generation and wavelength conversion of a pulse train from multi-wave mixing in an optical fibre. Optics Communications, 2007, 269, 94-97.                                                          | 2.1 | 3         |

| #  | Article                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Sealed liquid-core photonic crystal fibers for practical nonlinear optics, nanophotonics, and sensing applications. , 2010, , .                                                  |     | 3         |
| 74 | Electrically Controlled Silicon Nitride Ring Resonator for Quasi-phase Matched Second-harmonic Generation. , 2012, , .                                                           |     | 3         |
| 75 | Simultaneous pulse train generation and wavelength conversion in a highly nonlinear fibre due to multiwave mixing. , 2005, , .                                                   |     | 3         |
| 76 | Continuous-wave 1664.7 nm fiber source utilizing four-wave mixing and stimulated Raman scattering.<br>Applied Physics Letters, 2002, 81, 1390-1392.                              | 3.3 | 2         |
| 77 | Use of an electroabsorption modulator and an autocorrelator for fibre chromatic dispersion measurement at 1550 nm. Optics Communications, 2003, 226, 221-225.                    | 2.1 | 2         |
| 78 | Optical time-domain reflectometry of discrete fiber Raman amplifiers. IEEE Photonics Technology<br>Letters, 2003, 15, 1064-1066.                                                 | 2.5 | 2         |
| 79 | Measurement of raman gain efficiency in a DCF and its application in optical amplification for the O-band. , 2007, , .                                                           |     | 2         |
| 80 | Evaporation in Water-Core Photonic Crystal Fibers. AIP Conference Proceedings, 2008, , .                                                                                         | 0.4 | 2         |
| 81 | Creating and fixing a metal nanoparticle layer on the holes of microstructured fibers for plasmonic applications. , 2008, , .                                                    |     | 2         |
| 82 | Corrections to "Temperature Sensing Using Colloidal-Core Photonic Crystal Fiber" [Jan 12 195-200].<br>IEEE Sensors Journal, 2012, 12, 832-832.                                   | 4.7 | 2         |
| 83 | Surface Plasmon Resonance Platforms for Chemical and Bio Sensing. , 2021, , .                                                                                                    |     | 2         |
| 84 | Optical fibre modulator based on electrostatic attraction. Optics Communications, 2001, 190, 135-139.                                                                            | 2.1 | 1         |
| 85 | All-fiber integrated â^1⁄410kW peak power ultrashort optical pulse source based on compression in aircore photonic band gap fiber. Applied Physics Letters, 2004, 85, 5541-5543. | 3.3 | 1         |
| 86 | Multiple, polarization diverse, idler wave generation in fibers from competing four-wave mixing processes. Optics Communications, 2006, 259, 856-860.                            | 2.1 | 1         |
| 87 | Random Laser Action inside a Photonic Crystal Fiber. , 2007, , .                                                                                                                 |     | 1         |
| 88 | Analysis of raman amplification in a practical, low-loss, photonic crystal fiber. , 2007, , .                                                                                    |     | 1         |
| 89 | Loss Mechanisms and Fluorescence in Photonic Crystal Fibers Filled with Liquids and Polymers. AIP<br>Conference Proceedings, 2008, , .                                           | 0.4 | 1         |
| 90 | Modeling Long-Pass Filters Based on Fundamental-Mode Cutoff in Photonic Crystal Fibers. IEEE<br>Photonics Technology Letters, 2009, 21, 112-114.                                 | 2.5 | 1         |

| #   | Article                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Response to pressure of a hollow core photonic crystal fiber for sensing applications. , 2009, , .                                                                           |      | 1         |
| 92  | Colloidal-core photonic crystal fiber incorporating CdSe quantum dots for temperature sensing.<br>Proceedings of SPIE, 2010, , .                                             | 0.8  | 1         |
| 93  | Experimental comparison of Raman gain efficiency of a dispersion compensating fiber in C and Oâ€bands.<br>Microwave and Optical Technology Letters, 2010, 52, 151-154.       | 1.4  | 1         |
| 94  | Black Phosphorus: Resonantly Increased Optical Frequency Conversion in Atomically Thin Black<br>Phosphorus (Adv. Mater. 48/2016). Advanced Materials, 2016, 28, 10692-10692. | 21.0 | 1         |
| 95  | Fabrication and characterization of silicon nitride waveguides for mid-infrared applications. , 2019, , .                                                                    |      | 1         |
| 96  | Nonlinear Absorption and Optical Limiting Effect in Redox Exfoliated Layered Transition Metal Dichalcogenides. , 2018, , .                                                   |      | 1         |
| 97  | Analysis and Optimization of Graphene Based Waveguide Polarizers. , 2016, , .                                                                                                |      | 1         |
| 98  | High efficiency, dual-wavelength fibre Raman pump laser for U-band fibre Raman amplifiers. Optical and<br>Quantum Electronics, 2002, 34, 1025-1030.                          | 3.3  | 0         |
| 99  | All-fiber CW Raman continuum light source for ultrahigh resolution optical coherence tomography. , 2005, , .                                                                 |      | Ο         |
| 100 | Analysis of the signal polarization evolution with pump power in a fibre optical parametric amplifier. ,<br>0, , .                                                           |      | 0         |
| 101 | Index-Guiding, Single-Mode, Liquid-Core, Liquid-Cladding Photonic Crystal Fibers. , 2007, , .                                                                                |      | Ο         |
| 102 | Random laser action inside a photonic crystal fiber. , 2007, , .                                                                                                             |      | 0         |
| 103 | All-fiber Devices Based on Photonic Crystal Fibers with Integrated Electrodes. AIP Conference Proceedings, 2008, , .                                                         | 0.4  | Ο         |
| 104 | Simple and Temperature-Insensitive Pressure Sensing Based on a Hollow-Core Photonic Crystal Fiber.<br>AIP Conference Proceedings, 2008, , .                                  | 0.4  | 0         |
| 105 | Theoretical and experimental study of supercontinuum generation in a water-core PCF. AIP<br>Conference Proceedings, 2008, , .                                                | 0.4  | Ο         |
| 106 | Visible to near-infrared continuum generation in a water-core photonic crystal fiber. AIP Conference<br>Proceedings, 2008, , .                                               | 0.4  | 0         |
| 107 | Large hollow-core fiber random dye laser. , 2009, , .                                                                                                                        |      | 0         |
| 108 | Numerical modeling of a birefringent photonic crystal fiber for discrete and distributed pressure sensing. , 2010, , .                                                       |      | 0         |

| #   | Article                                                                                                                       | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Efficient coupling between core and fluidic channel in a solid-core photonic crystal fiber.<br>Proceedings of SPIE, 2010, , . | 0.8 | 0         |
| 110 | Post-processing multicore photonic crystal fibers for locally coupling selected core pairs. , 2011, , .                       |     | 0         |
| 111 | All-fiber setup for temperature sensing based on a polymeric-core PCF with semiconductor nanocrystals. , 2013, , .            |     | 0         |
| 112 | Modification of a photonic crystal fiber by selective collapse of the microstructure holes. , 2013, , .                       |     | 0         |
| 113 | Generation of Polarizing Sections in Highly Birefringent Photonic Crystal Fibers via Post-Processing. , 2013, , .             |     | 0         |
| 114 | Synthesis and Characterization of MoS2/WS2 Heterostructures by Second Harmonic Generation. , 2019, , .                        |     | 0         |
| 115 | Fabrication and Electro-Optical Characterization of Aluminum Silicate Fiber Doped with Gold Nanoparticles. , 2013, , .        |     | 0         |
| 116 | GLASSY MATERIALS AND LIGHT: PART 1. Quimica Nova, 2016, , .                                                                   | 0.3 | 0         |
| 117 | Photonics with Special Optical Fibers and Nanoparticles. , 2016, , .                                                          |     | 0         |
| 118 | GLASSY MATERIALS AND LIGHT: PART 2. Quimica Nova, 2016, , .                                                                   | 0.3 | 0         |
| 119 | Linear and Nonlinear Optics in Two-Dimensional Materials and Nanocomposites. , 2016, , .                                      |     | 0         |
| 120 | Optofluidic SERS in a Microcapillary Coated with a Graphene Oxide/Gold Nanorod Nanocomposite. , 2018, , .                     |     | 0         |
| 121 | Enhancement of the SHG in monolayer MoS2 by an epsilon-near-zero substrate. , 2020, , .                                       |     | 0         |