Luis M Botana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5577715/publications.pdf

Version: 2024-02-01

274 papers 14,025 citations

45 h-index 27406 106 g-index

292 all docs $\begin{array}{c} 292 \\ \\ \text{docs citations} \end{array}$

times ranked

292

19790 citing authors

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy (4th) Tj ETQq0 0 0 rgBT /Overlock	10 Jf 50 7	02 ₁ 7d (edition
3	KIT mutation in mast cells and other bone marrow hematopoietic cell lineages in systemic mast cell disorders: a prospective study of the Spanish Network on Mastocytosis (REMA) in a series of 113 patients. Blood, 2006, 108, 2366-2372.	1.4	447
4	First Toxicity Report of Tetrodotoxin and 5,6,11-TrideoxyTTX in the Trumpet Shell Charonia lampas lampas in Europe. Analytical Chemistry, 2008, 80, 5622-5629.	6.5	141
5	From Marine Origin to Therapeutics: The Antitumor Potential of Marine Algae-Derived Compounds. Frontiers in Pharmacology, 2018, 9, 777.	3.5	138
6	First Detection of Tetrodotoxin in Greek Shellfish by UPLC-MS/MS Potentially Linked to the Presence of the Dinoflagellate Prorocentrum minimum. Toxins, 2015, 7, 1779-1807.	3.4	131
7	First Toxin Profile of Ciguateric Fish in Madeira Arquipelago (Europe). Analytical Chemistry, 2010, 82, 6032-6039.	6.5	121
8	Modulation of cytosolic calcium levels of human lymphocytes by yessotoxin, a novel marine phycotoxina~†. Biochemical Pharmacology, 2001, 61, 827-833.	4.4	109
9	Yessotoxin, a novel phycotoxin, activates phosphodiesterase activity. Biochemical Pharmacology, 2003, 65, 193-208.	4.4	109
10	Human Poisoning from Marine Toxins: Unknowns for Optimal Consumer Protection. Toxins, 2018, 10, 324.	3.4	104
11	Paralytic Shellfish Poisoning Detection by Surface Plasmon Resonance-Based Biosensors in Shellfish Matrixes. Analytical Chemistry, 2007, 79, 6303-6311.	6.5	98
12	Sustainable production of biologically active molecules of marine based origin. New Biotechnology, 2013, 30, 839-850.	4.4	92
13	New Gastropod Vectors and Tetrodotoxin Potential Expansion in Temperate Waters of the Atlantic Ocean. Marine Drugs, 2012, 10, 712-726.	4.6	90
14	Modified mass action law-based model to correlate the solubility of solids and liquids in entrained supercritical carbon dioxide. Journal of Chromatography A, 2001, 910, 119-125.	3.7	80
15	Development of a novel immunobiosensor method for the rapid detection of okadaic acid contamination in shellfish extracts. Analytical and Bioanalytical Chemistry, 2007, 389, 581-587.	3.7	77
16	Liquid chromatography–mass spectrometry method to detect Tetrodotoxin and Its analogues in the puffer fish Lagocephalus sceleratus (Gmelin, 1789) from European waters. Food Chemistry, 2012, 132, 1103-1111.	8.2	75
17	Characterization of F-actin depolymerization as a major toxic event induced by pectenotoxin-6 in neuroblastoma cells. Biochemical Pharmacology, 2002, 63, 1979-1988.	4.4	74
18	Marine toxins and the cytoskeleton: okadaic acid and dinophysistoxins. FEBS Journal, 2008, 275, 6060-6066.	4.7	74

#	Article	IF	CITATIONS
19	Azaspiracid-1, a potent, nonapoptotic new phycotoxin with several cell targets. Cellular Signalling, 2002, 14, 703-716.	3.6	72
20	Detection of Gymnodimine-A and 13-Desmethyl C Spirolide Phycotoxins by Fluorescence Polarization. Analytical Chemistry, 2009, 81, 2708-2714.	6.5	68
21	In Vitro and in Vivo Evaluation of Paralytic Shellfish Poisoning Toxin Potency and the Influence of the pH of Extraction. Analytical Chemistry, 2008, 80, 1770-1776.	6.5	67
22	Single Laboratory Validation of a Surface Plasmon Resonance Biosensor Screening method for Paralytic Shellfish Poisoning Toxins. Analytical Chemistry, 2010, 82, 2977-2988.	6.5	67
23	A European perspective on progress in moving away from the mouse bioassay for marine-toxin analysis. TrAC - Trends in Analytical Chemistry, 2011 , 30 , $239-253$.	11.4	63
24	Design and Synthesis of Skeletal Analogues of Gambierol: Attenuation of Amyloid- \hat{l}^2 and Tau Pathology with Voltage-Gated Potassium Channel and <i>N</i> -Methyl- <scp>d</scp> -aspartate Receptor Implications. Journal of the American Chemical Society, 2012, 134, 7467-7479.	13.7	62
25	Gambierone, a Ladder-Shaped Polyether from the Dinoflagellate <i>Gambierdiscus belizeanus</i> Organic Letters, 2015, 17, 2392-2395.	4.6	60
26	Effects of Azaspiracid-1, A Potent Cytotoxic Agent, on Primary Neuronal Cultures. A Structureâ ⁻ Activity Relationship Study. Journal of Medicinal Chemistry, 2007, 50, 356-363.	6.4	58
27	Toxicological Perspective on Climate Change: Aquatic Toxins. Chemical Research in Toxicology, 2016, 29, 619-625.	3.3	58
28	Marine invasive macroalgae: Turning a real threat into a major opportunity - the biotechnological potential of Sargassum muticum and Asparagopsis armata. Algal Research, 2018, 34, 217-234.	4.6	58
29	A QuEChERS based extraction procedure coupled to UPLC-MS/MS detection for mycotoxins analysis in beer. Food Chemistry, 2019, 275, 703-710.	8.2	58
30	Cell Growth Inhibition and Actin Cytoskeleton Disorganization Induced by Azaspiracid-1 Structureâ ⁻ 'Activity Studies. Chemical Research in Toxicology, 2006, 19, 1459-1466.	3.3	57
31	Azaspiracid-4 inhibits Ca2+ entry by stored operated channels in human T lymphocytes. Biochemical Pharmacology, 2005, 69, 1627-1636.	4.4	55
32	Gracilins: Spongionella-derived promising compounds for Alzheimer disease. Neuropharmacology, 2015, 93, 285-293.	4.1	54
33	13-Desmethyl spirolide-C is neuroprotective and reduces intracellular $\hat{Al^2}$ and hyperphosphorylated tau in vitro. Neurochemistry International, 2011, 59, 1056-1065.	3.8	52
34	Protein Synthesis Inhibition and Oxidative Stress Induced by Cylindrospermopsin Elicit Apoptosis in Primary Rat Hepatocytes. Chemical Research in Toxicology, 2013, 26, 203-212.	3.3	52
35	"Fluorescent glycogen―formation with sensibility for in vivo and in vitro detection. Glycoconjugate Journal, 2008, 25, 503-510.	2.7	51
36	First Report of Ciguatoxins in Two Starfish Species: Ophidiaster ophidianus and Marthasterias glacialis. Toxins, 2015, 7, 3740-3757.	3.4	51

#	Article	IF	CITATIONS
37	Derivation of toxicity equivalency factors for marine biotoxins associated with Bivalve Molluscs. Trends in Food Science and Technology, 2017, 59, 15-24.	15.1	50
38	Specific and dynamic detection of palytoxins by in vitro microplate assay with human neuroblastoma cells. Bioscience Reports, 2009, 29, 13-23.	2.4	49
39	A Fluorimetric Microplate Assay for Detection and Quantitation of Toxins Causing Paralytic Shellfish Poisoning. Chemical Research in Toxicology, 2003, 16, 433-438.	3.3	48
40	Maitotoxin-induced calcium entry in human lymphocytes. Cellular Signalling, 2001, 13, 711-716.	3.6	47
41	Biological methods for marine toxin detection. Analytical and Bioanalytical Chemistry, 2010, 397, 1673-1681.	3.7	47
42	Additional bioactive guanidine alkaloids from the Mediterranean sponge Crambe crambe. RSC Advances, 2012, 2, 2828.	3.6	47
43	Multidetection of Paralytic, Diarrheic, and Amnesic Shellfish Toxins by an Inhibition Immunoassay Using a Microsphere-Flow Cytometry System. Analytical Chemistry, 2013, 85, 7794-7802.	6.5	47
44	Effects of Azaspiracids 2 and 3 on Intracellular cAMP, [Ca2+], and pH. Chemical Research in Toxicology, 2004, 17, 1338-1349.	3.3	46
45	Surface Plasmon Resonance Biosensor Screening Method for Paralytic Shellfish Poisoning Toxins: A Pilot Interlaboratory Study. Analytical Chemistry, 2011, 83, 4206-4213.	6.5	46
46	Benefit of 13-desmethyl Spirolide C Treatment in Triple Transgenic Mouse Model of Alzheimer Disease: Beta-Amyloid and Neuronal Markers Improvement. Current Alzheimer Research, 2013, 10, 279-289.	1.4	46
47	Resonant mirror biosensor detection method based on yessotoxin–phosphodiesterase interactions. Analytical Biochemistry, 2004, 335, 112-118.	2.4	45
48	The Sodium Channel of Human Excitable Cells is a Target for Gambierol. Cellular Physiology and Biochemistry, 2006, 17, 257-268.	1.6	45
49	The Cholinergic Antagonist Gymnodimine Improves Aβ and Tau Neuropathology in an <i>in Vitro</i> Model of Alzheimer Disease. Cellular Physiology and Biochemistry, 2011, 27, 783-794.	1.6	45
50	Simplified immunosuppressive and neuroprotective agents based on gracilin A. Nature Chemistry, 2019, 11, 342-350.	13.6	45
51	Synthesis and antiallergic activity of pyridothienopyrimidines. Bioorganic and Medicinal Chemistry, 1998, 6, 1911-1925.	3.0	44
52	Acute Oral Toxicity of Tetrodotoxin in Mice: Determination of Lethal Dose 50 (LD50) and No Observed Adverse Effect Level (NOAEL). Toxins, 2017, 9, 75.	3.4	43
53	The problem of toxicity equivalent factors in developing alternative methods to animal bioassays for marine-toxin detection. TrAC - Trends in Analytical Chemistry, 2010, 29, 1316-1325.	11.4	42
54	The methyl ester of okadaic acid is more potent than okadaic acid in disrupting the actin cytoskeleton and metabolism of primary cultured hepatocytes. British Journal of Pharmacology, 2010, 159, 337-344.	5.4	42

#	Article	IF	CITATIONS
55	Human Muscarinic Acetylcholine Receptors Are a Target of the Marine Toxin 13-Desmethyl C Spirolide. Chemical Research in Toxicology, 2010, 23, 1753-1761.	3.3	42
56	Pharmacokinetic and toxicological data of spirolides after oral and intraperitoneal administration. Food and Chemical Toxicology, 2012, 50, 232-237.	3.6	42
57	The association of bacterial C9-based TTX-like compounds with Prorocentrum minimum opens new uncertainties about shellfish seafood safety. Scientific Reports, 2017, 7, 40880.	3.3	42
58	Lactone Ring of Pectenotoxins: a Key Factor for their Activity on Cytoskeletal Dynamics. Cellular Physiology and Biochemistry, 2007, 19, 283-292.	1.6	41
59	A single run UPLC-MS/MS method for detection of all EU-regulated marine toxins. Talanta, 2018, 189, 622-628.	5. 5	41
60	Multianalyte method for the determination of regulated, emerging and modified mycotoxins in milk: QuEChERS extraction followed by UHPLC–MS/MS analysis. Food Chemistry, 2021, 356, 129647.	8.2	40
61	Quantification of yessotoxin using the fluorescence polarization technique and study of the adequate extraction procedure. Analytical Biochemistry, 2005, 344, 266-274.	2.4	39
62	Kinetic Analysis of the Interaction between Yessotoxin and Analogues and Immobilized Phosphodiesterases Using a Resonant Mirror Optical Biosensor. Chemical Research in Toxicology, 2005, 18, 1155-1160.	3.3	39
63	Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins. Sensors, 2009, 9, 9414-9443.	3.8	39
64	Feasibility of gymnodimine and 13-desmethyl C spirolide detection by fluorescence polarization using a receptor-based assay in shellfish matrixes. Analytica Chimica Acta, 2010, 657, 75-82.	5.4	39
65	Decrease of marine toxin content in bivalves by industrial processes. Toxicon, 2010, 55, 235-243.	1.6	39
66	Innovative detection methods for aquatic algal toxins and their presence in the food chain. Analytical and Bioanalytical Chemistry, 2013, 405, 7719-7732.	3.7	39
67	Structure Elucidation and Biological Evaluation of Maitotoxin-3, a Homologue of Gambierone, from Gambierdiscus belizeanus. Toxins, 2019, 11, 79.	3.4	39
68	Irreversible cytoskeletal disarrangement is independent of caspase activation during in vitro azaspiracid toxicity in human neuroblastoma cells. Biochemical Pharmacology, 2007, 74, 327-335.	4.4	38
69	Functional assays for marine toxins as an alternative, high-throughput-screening solution to animal tests. TrAC - Trends in Analytical Chemistry, 2009, 28, 603-611.	11.4	38
70	Differential Effects of Crambescins and Crambescidin 816 in Voltage-Gated Sodium, Potassium and Calcium Channels in Neurons. Chemical Research in Toxicology, 2013, 26, 169-178.	3.3	38
71	Effects of environmental regimens on the toxin profile of <i>Alexandrium ostenfeldii</i> Environmental Toxicology and Chemistry, 2010, 29, 301-310.	4.3	37
72	Evaluation of toxicity equivalent factors of paralytic shellfish poisoning toxins in seven human sodium channels types by an automated high throughput electrophysiology system. Archives of Toxicology, 2016, 90, 479-488.	4.2	37

#	Article	IF	Citations
73	Synthesis, antihistaminic and cytotoxic activity of pyridothieno- and pyridodithienotriazines. European Journal of Medicinal Chemistry, 1998, 33, 887-897.	5.5	36
74	Azaspiracids modulate intracellular pH levels in human lymphocytes. Biochemical and Biophysical Research Communications, 2006, 346, 1091-1099.	2.1	36
75	Modulation of calcium entry and glutamate release in cultured cerebellar granule cells by palytoxin. Journal of Neuroscience Research, 2006, 83, 1393-1406.	2.9	36
76	Profile for Amyloid- \hat{l}^2 and Tau Expression in Primary Cortical Cultures from 3xTg-AD Mice. Cellular and Molecular Neurobiology, 2010, 30, 577-590.	3.3	36
77	Effect of Uncontrolled Factors in a Validated Liquid Chromatography–Tandem Mass Spectrometry Method Question Its Use As a Reference Method for Marine Toxins: Major Causes for Concern. Analytical Chemistry, 2011, 83, 5903-5911.	6.5	36
78	Palytoxins and cytoskeleton: An overview. Toxicon, 2011, 57, 460-469.	1.6	36
79	Development of a Solid-Phase Receptor-Based Assay for the Detection of Cyclic Imines Using a Microsphere-Flow Cytometry System. Analytical Chemistry, 2013, 85, 2340-2347.	6.5	36
80	Spongionella Secondary Metabolites Protect Mitochondrial Function in Cortical Neurons against Oxidative Stress. Marine Drugs, 2014, 12, 700-718.	4.6	36
81	Yessotoxin, a Promising Therapeutic Tool. Marine Drugs, 2016, 14, 30.	4.6	36
82	Effect of ion composition on the changes in membrane potential induced with several stimuli in rat mast cells. Journal of Cellular Physiology, 1994, 158, 309-316.	4.1	35
83	Detection of Paralytic Shellfish Toxins by a Solid-Phase Inhibition Immunoassay Using a Microsphere-Flow Cytometry System. Analytical Chemistry, 2012, 84, 4350-4356.	6.5	35
84	Diarrhetic effect of okadaic acid could be related with its neuronal action: Changes in neuropeptide Y. Toxicology Letters, 2015, 237, 151-160.	0.8	35
85	Coupling the <i>Torpedo</i> Microplate-Receptor Binding Assay with Mass Spectrometry to Detect Cyclic Imine Neurotoxins. Analytical Chemistry, 2012, 84, 10445-10453.	6.5	34
86	Marine guanidine alkaloids crambescidins inhibit tumor growth and activate intrinsic apoptotic signaling inducing tumor regression in a colorectal carcinoma zebrafish xenograft model. Oncotarget, 2016, 7, 83071-83087.	1.8	34
87	Study of the Interaction between Different Phosphodiesterases and Yessotoxin Using a Resonant Mirror Biosensor. Chemical Research in Toxicology, 2006, 19, 794-800.	3.3	33
88	Oral Toxicity of Okadaic Acid in Mice: Study of Lethality, Organ Damage, Distribution and Effects on Detoxifying Gene Expression. Toxins, 2013, 5, 2093-2108.	3.4	33
89	Emergent Toxins in North Atlantic Temperate Waters: A Challenge for Monitoring Programs and Legislation. Toxins, 2015, 7, 859-885.	3.4	33
90	Feasibility of using a surface plasmon resonance-based biosensor to detect and quantify yessotoxin. Analytica Chimica Acta, 2008, 617, 167-170.	5.4	32

#	Article	IF	CITATIONS
91	First direct fluorescence polarization assay for the detection and quantification of spirolides in mussel samples. Analytica Chimica Acta, 2011, 701, 200-208.	5.4	32
92	Experimental Basis for the High Oral Toxicity of Dinophysistoxin 1: A Comparative Study of DSP. Toxins, 2014, 6, 211-228.	3.4	32
93	Liquid Chromatography with a Fluorimetric Detection Method for Analysis of Paralytic Shellfish Toxins and Tetrodotoxin Based on a Porous Graphitic Carbon Column. Toxins, 2016, 8, 196.	3.4	32
94	Detoxification agents based on magnetic nanostructured particles as a novel strategy for mycotoxin mitigation in food. Food Chemistry, 2019, 294, 60-66.	8.2	32
95	Pyrazolopyrimidines: synthesis, effect on histamine release from rat peritoneal mast cells and cytotoxic activity. European Journal of Medicinal Chemistry, 2001, 36, 321-332.	5. 5	31
96	Determination of Toxicity Equivalent Factors for Paralytic Shellfish Toxins by Electrophysiological Measurements in Cultured Neurons. Chemical Research in Toxicology, 2011, 24, 1153-1157.	3.3	31
97	A Comparative Study of the Effect of Ciguatoxins on Voltage-Dependent Na ⁺ and K ⁺ Channels in Cerebellar Neurons. Chemical Research in Toxicology, 2011, 24, 587-596.	3.3	31
98	New Invertebrate Vectors for PST, Spirolides and Okadaic Acid in the North Atlantic. Marine Drugs, 2013, 11, 1936-1960.	4.6	31
99	Mitigation of ROS Insults by Streptomyces Secondary Metabolites in Primary Cortical Neurons. ACS Chemical Neuroscience, 2014, 5, 71-80.	3.5	31
100	A rapid microplate fluorescence method to detect yessotoxins based on their capacity to activate phosphodiesterases. Analytical Biochemistry, 2004, 326, 93-99.	2.4	30
101	The c-Jun-N-Terminal Kinase is Involved in the Neurotoxic Effect of Azaspiracid-1. Cellular Physiology and Biochemistry, 2007, 20, 957-966.	1.6	30
102	Detection of 13,19-didesmethyl C spirolide by fluorescence polarization using Torpedo electrocyte membranes. Analytical Biochemistry, 2010, 403, 102-107.	2.4	30
103	Cell Volume Decrease as a Link between Azaspiracid-Induced Cytotoxicity and c-Jun-N-Terminal Kinase Activation in Cultured Neurons. Toxicological Sciences, 2010, 113, 158-168.	3.1	30
104	Toxic Action Reevaluation of Okadaic Acid, Dinophysistoxin-1 and Dinophysistoxin-2: Toxicity Equivalency Factors Based on the Oral Toxicity Study. Cellular Physiology and Biochemistry, 2018, 49, 743-757.	1.6	30
105	Differential Effects of Ciguatoxin and Maitotoxin in Primary Cultures of Cortical Neurons. Chemical Research in Toxicology, 2014, 27, 1387-1400.	3.3	29
106	Acute Cardiotoxicity Evaluation of the Marine Biotoxins OA, DTX-1 and YTX. Toxins, 2015, 7, 1030-1047.	3.4	29
107	Effects of the marine phycotoxin palytoxin on neuronal pH in primary cultures of cerebellar granule cells. Journal of Neuroscience Research, 2007, 85, 90-98.	2.9	28
108	Evaluation of Various pH and Temperature Conditions on the Stability of Azaspiracids and Their Importance in Preparative Isolation and Toxicological Studies. Analytical Chemistry, 2008, 80, 9672-9680.	6.5	28

#	Article	IF	Citations
109	Crambescidin-816 Acts as a Fungicidal with More Potency than Crambescidin-800 and -830, Inducing Cell Cycle Arrest, Increased Cell Size and Apoptosis in Saccharomyces cerevisiae. Marine Drugs, 2013, 11, 4419-4434.	4.6	28
110	LC–MS/MS Analysis of the Emerging Toxin Pinnatoxin-G and High Levels of Esterified OA Group Toxins in Galician Commercial Mussels. Toxins, 2019, 11, 394.	3.4	28
111	Caniferolide A, a Macrolide from <i>Streptomyces caniferus</i> , Attenuates Neuroinflammation, Oxidative Stress, Amyloid-Beta, and Tau Pathology in Vitro. Molecular Pharmaceutics, 2019, 16, 1456-1466.	4.6	28
112	Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors. Analytical and Bioanalytical Chemistry, 2010, 397, 1695-1704.	3.7	27
113	Translocation of PKC by Yessotoxin in an in Vitro Model of Alzheimer's Disease with Improvement of Tau and β-Amyloid Pathology. ACS Chemical Neuroscience, 2013, 4, 1062-1070.	3 . 5	27
114	Detection of Anatoxin-a and Three Analogs in Anabaena spp. Cultures: New Fluorescence Polarization Assay and Toxin Profile by LC-MS/MS. Toxins, 2014, 6, 402-415.	3.4	27
115	The cytoskeleton, a structure that is susceptible to the toxic mechanism activated by palytoxins in human excitable cells. FEBS Journal, 2007, 274, 1991-2004.	4.7	26
116	Effect of Gambierol and Its Tetracyclic and Heptacyclic Analogues in Cultured Cerebellar Neurons: A Structure–Activity Relationships Study. Chemical Research in Toxicology, 2012, 25, 1929-1937.	3.3	26
117	Hapalindoles from the Cyanobacterium <i>Fischerella</i> : Potential Sodium Channel Modulators. Chemical Research in Toxicology, 2014, 27, 1696-1706.	3.3	26
118	Rapid analysis of paralytic shellfish toxins and tetrodotoxins by liquid chromatography-tandem mass spectrometry using a porous graphitic carbon column. Food Chemistry, 2018, 269, 166-172.	8.2	26
119	Cytotoxic effect of palytoxin on mussel. Toxicon, 2010, 56, 842-847.	1.6	25
120	In vivo arrhythmogenicity of the marine biotoxin azaspiracid-2 in rats. Archives of Toxicology, 2014, 88, 425-434.	4.2	25
121	Multi-detection method for five common microalgal toxins based on the use of microspheres coupled to a flow-cytometry system. Analytica Chimica Acta, 2014, 850, 57-64.	5.4	25
122	Analytical challenges for regulated marine toxins. Detection methods. Current Opinion in Food Science, 2017, 18, 29-36.	8.0	25
123	Purification of five azaspiracids from mussel samples contaminated with DSP toxins and azaspiracids. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 865, 133-140.	2.3	24
124	Solid-Phase Receptor-Based Assay for the Detection of Cyclic Imines by Chemiluminescence, Fluorescence, or Colorimetry. Analytical Chemistry, 2011, 83, 5857-5863.	6.5	24
125	Studies of the intracellular Ca2+ levels in human adult skin mast cells activated by the ligand for the human c-kit receptor and anti-lgE. Biochemical Pharmacology, 1994, 47, 2137-2145.	4.4	23
126	Development and validation of a high-performance liquid chromatographic method using fluorimetric detection for the determination of the diarrhetic shellfish poisoning toxin okadaic acid without chlorinated solvents. Journal of Chromatography A, 2000, 876, 117-125.	3.7	23

#	Article	IF	CITATIONS
127	Differential effects of cAMP-elevating drugs on stimulus-induced cytosolic calcium changes in human basophils. Journal of Leukocyte Biology, 1994, 55, 798-804.	3.3	22
128	Production of Functionally Active Palytoxin-like Compounds by Mediterranean <i>Ostreopsis cf. siamensis</i> . Cellular Physiology and Biochemistry, 2009, 23, 431-440.	1.6	22
129	13-Desmethyl spirolide-c and 13,19-didesmethyl spirolide-c trans-epithelial permeabilities: Human intestinal permeability modelling. Toxicology, 2011, 287, 69-75.	4.2	22
130	Indole alkaloids from the Marquesan plant Rauvolfia nukuhivensis and their effects on ion channels. Phytochemistry, 2015, 109, 84-95.	2.9	22
131	Subacute Cardiovascular Toxicity of the Marine Phycotoxin Azaspiracid-1 in Rats. Toxicological Sciences, 2016, 151, 104-114.	3.1	22
132	Tetrodotoxins Occurrence in Non-Traditional Vectors of the North Atlantic Waters (Portuguese) Tj ETQq0 0 0 rgB	T <u> O</u> verloo	ck 10 Tf 50 5
133	Study of solid phase adsorption of paralytic shellfish poisoning toxins (PSP) onto different resins. Harmful Algae, 2011, 10, 447-455.	4.8	21
134	The kinetic, mechanistic and cytomorphological effects of palytoxin in human intestinal cells (<scp>C</scp> acoâ€2) explain its lowerâ€thanâ€parenteral oral toxicity. FEBS Journal, 2013, 280, 3906-3919.	4.7	21
135	Monitoring of freshwater toxins in European environmental waters by using novel multiâ€detection methods. Environmental Toxicology and Chemistry, 2017, 36, 645-654.	4.3	21
136	Structure and biological evaluation of new cyclic and acyclic laxaphycin-A type peptides. Bioorganic and Medicinal Chemistry, 2019, 27, 1966-1980.	3.0	21
137	Functional characterization of the Na+-H+ echanger in rat mast cells: crosstalks between different kinase pathways. European Journal of Pharmacology, 1994, 267, 289-296.	2.6	20
138	Effects of a Synthetic Analog of Polycavernoside A on Human Neuroblastoma Cells. Cellular Physiology and Biochemistry, 2007, 19, 185-194.	1.6	20
139	How Safe Is Safe for Marine Toxins Monitoring?. Toxins, 2016, 8, 208.	3.4	20
140	Confocal microscopy study of the different patterns of 2-NBDG uptake in rabbit enterocytes in the apical and basal zone. Pflugers Archiv European Journal of Physiology, 2001, 443, 234-239.	2.8	19
141	Induction of actin cytoskeleton rearrangement by methyl okadaate – comparison with okadaic acid. FEBS Journal, 2008, 275, 926-934.	4.7	19
142	Azaspiracid Substituent at C1 Is Relevant to in Vitro Toxicity. Chemical Research in Toxicology, 2008, 21, 1823-1831.	3.3	19
143	The marine polyether gambierol enhances muscle contraction and blocks a transient K+ current in skeletal muscle cells. Toxicon, 2010, 56, 785-791.	1.6	19
144	A Perspective on the Toxicology of Marine Toxins. Chemical Research in Toxicology, 2012, 25, 1800-1804.	3.3	19

#	Article	IF	CITATIONS
145	Evolving to the optoelectronic mouse for phycotoxin analysis in shellfish. Analytical and Bioanalytical Chemistry, 2014, 406, 6867-6881.	3.7	19
146	Characterization of the dinophysistoxin-2 acute oral toxicity in mice to define the Toxicity Equivalency Factor. Food and Chemical Toxicology, 2017, 102, 166-175.	3.6	19
147	Evaluation of the Protective Effects of Sarains on H2O2-Induced Mitochondrial Dysfunction and Oxidative Stress in SH-SY5Y Neuroblastoma Cells. Neurotoxicity Research, 2017, 32, 368-380.	2.7	19
148	Current Trends and New Challenges in Marine Phycotoxins. Marine Drugs, 2022, 20, 198.	4.6	19
149	Basis for a New Procedure To Eliminate Diarrheic Shellfish Toxins from a Contaminated Matrix. Journal of Agricultural and Food Chemistry, 2002, 50, 400-405.	5.2	18
150	Cytotoxic effect of azaspiracidâ€2 and azaspiracidâ€2â€methyl ester in cultured neurons: Involvement of the câ€Jun Nâ€terminal kinase. Journal of Neuroscience Research, 2008, 86, 2952-2962.	2.9	18
151	Impact of the Pectenotoxin C-43 Oxidation Degree on Its Cytotoxic Effect on Rat Hepatocytes. Chemical Research in Toxicology, 2010, 23, 504-515.	3.3	18
152	Modulation of thapsigargin-induced calcium mobilisation by cyclic AMP-elevating agents in human lymphocytes is insensitive to the action of the protein kinase A inhibitor H-89. Cellular Signalling, 2001, 13, 441-449.	3.6	17
153	Cyclic Imines: An Insight into this Emerging Group of Bioactive Marine Toxins., 0,, 319-335.		17
154	Microsphere-based immunoassay for the detection of azaspiracids. Analytical Biochemistry, 2014, 447, 58-63.	2.4	17
155	Cytotoxicity of goniodomin A and B in non contractile cells. Toxicology Letters, 2016, 250-251, 10-20.	0.8	17
156	Detection of new emerging type-A trichothecenes by untargeted mass spectrometry. Talanta, 2018, 178, 37-42.	5.5	17
157	Zoanthamine Alkaloids from the Zoantharian Zoanthus cf. pulchellus and Their Effects in Neuroinflammation. Marine Drugs, 2018, 16, 242.	4.6	17
158	High Serum Cyclophilin C levels as a risk factor marker for Coronary Artery Disease. Scientific Reports, 2019, 9, 10576.	3.3	17
159	Role of HCOâ^'3lons in Cytosolic pH Regulation in Rat Mast Cells: Evidence for a New Na+-Independent, HCOâ^'3-Dependent Alkalinizing Mechanism. Biochemical and Biophysical Research Communications, 1998, 253, 320-324.	2.1	16
160	PKC and cAMP positively modulate alkaline-induced exocytosis in the human mast cell line HMC-1. Journal of Cellular Biochemistry, 2006, 99, 1651-1663.	2.6	16
161	Surface Plasmon Resonance Biosensor Method for Palytoxin Detection Based on Na+,K+-ATPase Affinity. Toxins, 2014, 6, 96-107.	3.4	16
162	InÂvitro chronic effects on hERG channel caused by the marine biotoxin azaspiracid-2. Toxicon, 2014, 91, 69-75.	1.6	16

#	Article	IF	Citations
163	Evaluation of the intestinal permeability and cytotoxic effects of cylindrospermopsin. Toxicon, 2014, 91, 23-34.	1.6	16
164	Spongionella Secondary Metabolites Regulate Store Operated Calcium Entry Modulating Mitochondrial Functioning in SH-SY5Y Neuroblastoma Cells. Cellular Physiology and Biochemistry, 2015, 37, 779-792.	1.6	16
165	Chronic Ciguatoxin Treatment Induces Synaptic Scaling through Voltage Gated Sodium Channels in Cortical Neurons. Chemical Research in Toxicology, 2015, 28, 1109-1119.	3.3	16
166	Synthetic Ciguatoxin CTX 3C Induces a Rapid Imbalance in Neuronal Excitability. Chemical Research in Toxicology, 2015, 28, 1095-1108.	3.3	16
167	Evaluation of the Antioxidant Activity of the Marine Pyrroloiminoquinone Makaluvamines. Marine Drugs, 2016, 14, 197.	4.6	16
168	The Marine Guanidine Alkaloid Crambescidin 816 Induces Calcium Influx and Cytotoxicity in Primary Cultures of Cortical Neurons through Glutamate Receptors. ACS Chemical Neuroscience, 2017, 8, 1609-1617.	3.5	16
169	Role of the plasma membrane calcium adenosine triphosphatase on domoate-induced intracellular acidification in primary cultures of cerebelar granule cells. Journal of Neuroscience Research, 2006, 84, 326-337.	2.9	15
170	New protocol to obtain spirolides from <i>Alexandrium ostenfeldii</i> cultures with high recovery and purity. Biomedical Chromatography, 2010, 24, 878-886.	1.7	15
171	Role of yessotoxin in calcium and cAMPâ€crosstalks in primary and Kâ€562 human lymphocytes: The effect is mediated by Anchor kinase a mitochondrial proteins. Journal of Cellular Biochemistry, 2012, 113, 3752-3761.	2.6	15
172	Identification of Spongionella compounds as cyclosporine A mimics. Pharmacological Research, 2016, 107, 407-414.	7.1	15
173	Tetracyclic Truncated Analogue of the Marine Toxin Gambierol Modifies NMDA, Tau, and Amyloid \hat{l}^2 Expression in Mice Brains: Implications in AD Pathology. ACS Chemical Neuroscience, 2017, 8, 1358-1367.	3.5	15
174	Paralytic Shellfish Toxins Occurrence in Non-Traditional Invertebrate Vectors from North Atlantic Waters (Azores, Madeira, and Morocco). Toxins, 2018, 10, 362.	3.4	15
175	Detection of Cyclic Imine Toxins in Dietary Supplements of Green Lipped Mussels (Perna canaliculus) and in Shellfish Mytilus chilensis. Toxins, 2020, 12, 613.	3.4	15
176	Improvement on sample clean-up for high-performance liquid chromatographic–fluorimetric determination of diarrhetic shellfish toxins using 1-bromoacetylpyrene. Journal of Chromatography A, 1998, 793, 63-70.	3.7	14
177	High-throughput receptor-based assay for the detection of spirolides by chemiluminescence. Toxicon, 2013, 75, 35-43.	1.6	14
178	Absorption and Effect of Azaspiracid-1 Over the Human Intestinal Barrier. Cellular Physiology and Biochemistry, 2017, 43, 136-146.	1.6	14
179	Streptocyclinones A and B ameliorate Alzheimer's disease pathological processes in vitro. Neuropharmacology, 2018, 141, 283-295.	4.1	14
180	Gracilin A Derivatives Target Early Events in Alzheimer's Disease: in Vitro Effects on Neuroinflammation and Oxidative Stress. ACS Chemical Neuroscience, 2019, 10, 4102-4111.	3.5	14

#	Article	IF	Citations
181	Magnetic nanostructures for marine and freshwater toxins removal. Chemosphere, 2020, 256, 127019.	8.2	14
182	Futunamine, a Pyrrole–Imidazole Alkaloid from the Sponge <i>Stylissa</i> aff. <i>carteri</i> Collected off the Futuna Islands. Journal of Natural Products, 2020, 83, 2299-2304.	3.0	14
183	Single and combined effects of regulated and emerging mycotoxins on viability and mitochondrial function of SH-SY5Y cells. Food and Chemical Toxicology, 2021, 154, 112308.	3.6	14
184	Membrane potential changes associated with calcium signals in human lymphocytes and rat mast cells. Life Sciences, 1999, 64, 681-696.	4.3	13
185	Modulatory Effect of HCOâ 3 on Rat Mast Cell Exocytosis: Cross-Talks between Bicarbonate and Calcium. Biochemical and Biophysical Research Communications, 1999, 260, 71-79.	2.1	13
186	Ostreocin-D Impact on Globular Actin of Intact Cells. Chemical Research in Toxicology, 2009, 22, 374-381.	3.3	13
187	Subacute Cardiotoxicity of Yessotoxin: <i>In Vitro</i> and <i>in Vivo</i> Studies. Chemical Research in Toxicology, 2016, 29, 981-990.	3.3	13
188	Detection of palytoxin-like compounds by a flow cytometry-based immunoassay supported by functional and analytical methods. Analytica Chimica Acta, 2016, 903, 1-12.	5.4	13
189	Biological Activities of Cyclic and Acyclic B-Type Laxaphycins in SH-SY5Y Human Neuroblastoma Cells. Marine Drugs, 2020, 18, 364.	4.6	13
190	Crosstalk between cyclophilins and T lymphocytes in coronary artery disease. Experimental Cell Research, 2021, 400, 112514.	2.6	13
191	Yessotoxin, a Marine Toxin, Exhibits Anti-Allergic and Anti-Tumoural Activities Inhibiting Melanoma Tumour Growth in a Preclinical Model. PLoS ONE, 2016, 11, e0167572.	2.5	13
192	Current situation on analysis of marine toxins. Reviews in Analytical Chemistry, 2013, 32, 15-34.	3.2	12
193	Study of Adsorption and Flocculation Properties of Natural Clays to Remove Prorocentrum lima. Toxins, 2015, 7, 3977-3988.	3.4	12
194	Heart Alterations after Domoic Acid Administration in Rats. Toxins, 2016, 8, 68.	3.4	12
195	UPLC–MS–IT–TOF Identification of Circumdatins Produced by <i>Aspergillus ochraceus</i> Agricultural and Food Chemistry, 2017, 65, 4843-4852.	5.2	12
196	Oral Chronic Toxicity of the Safe Tetrodotoxin Dose Proposed by the European Food Safety Authority and Its Additive Effect with Saxitoxin. Toxins, 2020, 12, 312.	3.4	12
197	Multi-detection method for mycotoxins with a modified QuEChERS extraction in feed and development of a simple detoxification procedure. Animal Feed Science and Technology, 2021, 272, 114745.	2.2	12
198	Cyclophilins A, B, and C Role in Human T Lymphocytes Upon Inflammatory Conditions. Frontiers in Immunology, 2021, 12, 609196.	4.8	12

#	Article	IF	CITATIONS
199	Determination of the toxicity equivalency factors for ciguatoxins using human sodium channels. Food and Chemical Toxicology, 2022, 160, 112812.	3.6	12
200	Crambescin C1 Exerts a Cytoprotective Effect on HepG2 Cells through Metallothionein Induction. Marine Drugs, 2015, 13, 4633-4653.	4.6	11
201	Influence of Different Shellfish Matrices on the Separation of PSP Toxins Using a Postcolumn Oxidation Liquid Chromatography Method. Toxins, 2015, 7, 1324-1340.	3.4	11
202	Spongionella Secondary Metabolites, Promising Modulators of Immune Response through CD147 Receptor Modulation. Frontiers in Immunology, 2016, 7, 452.	4.8	11
203	Quantification of PSP toxins in toxic shellfish matrices using post-column oxidation liquid chromatography and pre-column oxidation liquid chromatography methods suggests post-column oxidation liquid chromatography as a good monitoring method of choice. Toxicon, 2017, 129, 28-35.	1.6	11
204	Acute Toxicity Assessment: Macroscopic and Ultrastructural Effects in Mice Treated with Oral Tetrodotoxin. Toxins, 2019, 11, 305.	3.4	11
205	Gracilin-Derivatives as Lead Compounds for Anti-inflammatory Effects. Cellular and Molecular Neurobiology, 2020, 40, 603-615.	3.3	11
206	Pectenotoxins. , 0, , 159-186.		10
207	First Identification of Palytoxin-Like Molecules in the Atlantic Coral Species <i>Palythoa canariensis</i> . Analytical Chemistry, 2017, 89, 7438-7446.	6.5	10
208	Transcriptomic Analysis of Ciguatoxin-Induced Changes in Gene Expression in Primary Cultures of Mice Cortical Neurons. Toxins, 2018, 10, 192.	3.4	10
209	Sphaerococcus coronopifolius bromoterpenes as potential cancer stem cell-targeting agents. Biomedicine and Pharmacotherapy, 2020, 128, 110275.	5.6	10
210	Targeting Chloride Ion Channels: New Insights into the Mechanism of Action of the Marine Toxin Azaspiracid. Chemical Research in Toxicology, 2021, 34, 865-879.	3.3	10
211	Amiloride-dependent transport is the main mechanism implicated in sodium iinflux regulation in rat mast cells. Journal of Cellular Physiology, 1993, 156, 567-570.	4.1	9
212	Biochemistry of Palytoxins and Ostreocins., 0,, 95-118.		9
213	Autumnalamide, a Prenylated Cyclic Peptide from the Cyanobacterium <i>Phormidium autumnale </i> , Acts on SH-SY5Y Cells at the Mitochondrial Level. Journal of Natural Products, 2014, 77, 2196-2205.	3.0	9
214	Bromotryptamine and Bromotyramine Derivatives from the Tropical Southwestern Pacific Sponge Narrabeena nigra. Marine Drugs, 2019, 17, 319.	4.6	9
215	First report of Fusarium foetens as a mycotoxin producer. Mycotoxin Research, 2019, 35, 177-186.	2.3	9
216	Serotonin involvement in okadaic acid-induced diarrhoea in vivo. Archives of Toxicology, 2021, 95, 2797-2813.	4.2	9

#	Article	IF	CITATIONS
217	Occurrence of mycotoxins and mycotoxigenic fungi in silage from the north of Portugal at feed-out. International Journal of Food Microbiology, 2022, 365, 109556.	4.7	9
218	Câ€kit mutations and PKC crosstalks: PKC translocates to nucleous only in cells HMC ^{560,816} . Journal of Cellular Biochemistry, 2011, 112, 2637-2651.	2.6	8
219	New Invertebrate Vectors of Okadaic Acid from the North Atlantic Waters—Portugal (Azores and) Tj ETQq1 1 0).784314 ı 3.4	rgBT /Overloc
220	Evaluation of the Impact of Mild Steaming and Heat Treatment on the Concentration of Okadaic Acid, Dinophysistoxin-2 and Dinophysistoxin-3 in Mussels. Toxins, 2016, 8, 175.	3.4	8
221	Subacute immunotoxicity of the marine phycotoxin yessotoxin in rats. Toxicon, 2017, 129, 74-80.	1.6	8
222	In vivo cardiomyocyte response to YTX- and AZA-1-induced damage: autophagy versus apoptosis. Archives of Toxicology, 2017, 91, 1859-1870.	4.2	8
223	In Vitro Effects of Chronic Spirolide Treatment on Human Neuronal Stem Cell Differentiation and Cholinergic System Development. ACS Chemical Neuroscience, 2018, 9, 1441-1452.	3.5	8
224	Salenâ€'manganese complexes for controlling ROS damage: Neuroprotective effects, antioxidant activity and kinetic studies. Journal of Inorganic Biochemistry, 2020, 203, 110918.	3.5	8
225	In Vivo Evaluation of the Chronic Oral Toxicity of the Marine Toxin Palytoxin. Toxins, 2020, 12, 489.	3.4	8
226	Reevaluation of the acute toxicity of palytoxin in mice: Determination of lethal dose 50 (LD50) and No-observed-adverse-effect level (NOAEL). Toxicon, 2020, 177, 16-24.	1.6	8
227	STI571 (Glivec®) affects histamine release and intracellular pH after alkalinisation in HMCâ€1 ^{560, 816 < sup > 1.5 sup > 1.5}	2.6	7
228	Influence of the tyrosine kinase inhibitors STI571 (Glivec®), lavendustin A and genistein on human mast cell line (HMCâ€1 ⁵⁶⁰) activation. Journal of Cellular Biochemistry, 2008, 103, 1076-1088.	2.6	7
229	The Mechanistic Complexities of Phycotoxins. Advances in Molecular Toxicology, 2014, 8, 1-33.	0.4	7
230	Neuroprotective Effects of Appleâ€Derived Drinks in a Mice Model of Inflammation. Molecular Nutrition and Food Research, 2020, 64, e1901017.	3.3	7
231	Partial Blockade of Human Voltage-Dependent Sodium Channels by the Marine Toxins Azaspiracids. Chemical Research in Toxicology, 2020, 33, 2593-2604.	3.3	7
232	DSP Toxin Distribution across Organs in Mice after Acute Oral Administration. Marine Drugs, 2021, 19, 23.	4.6	7
233	Anhydroexfoliamycin, a <i>Streptomyces</i> Secondary Metabolite, Mitigates Microglia-Driven Inflammation. ACS Chemical Neuroscience, 2021, 12, 2336-2346.	3.5	7
234	Calcium-pH Crosstalks in the human mast cell line HMC-1: Intracellular alkalinization activates calcium extrusion through the plasma membrane Ca2+-ATPase. Journal of Cellular Biochemistry, 2006, 99, 1397-1408.	2.6	6

#	Article	lF	CITATIONS
235	Chemistry, Origins, and Distribution of Yessotoxin and its Analogues. , 0, , 187-202.		6
236	Lipophilic toxins occurrence in non-traditional invertebrate vectors from North Atlantic Waters (Azores, Madeira, and Morocco): Update on geographical tendencies and new challenges for monitoring routines. Marine Pollution Bulletin, 2020, 161, 111725.	5.0	6
237	Tavarua Deoxyriboside A and Jasplakinolide as Potential Neuroprotective Agents: Effects on Cellular Models of Oxidative Stress and Neuroinflammation. ACS Chemical Neuroscience, 2021, 12, 150-162.	3.5	6
238	Protein Kinase C Modulates Aurora-kinase Inhibition Induced by CCT129202 in HMC-1560,816 Cell Line. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2013, 12, 265-276.	1,1	6
239	PKC potentiates tyrosine kinase inhibitors STI571 and dasatinib cytotoxic effect. Anticancer Research, 2014, 34, 3347-56.	1.1	6
240	Inhibition of Na+/K+ ATPase under hypertonic conditions in rat mast cells. Life Sciences, 1998, 63, 1227-1237.	4.3	5
241	HCO3â^ ions modify the role of PKC isoforms in the modulation of rat mast cell functions. Cellular Signalling, 2001, 13, 177-190.	3.6	5
242	Chemistry of Diarrhetic Shellfish Poisoning Toxins., 0,, 211-221.		5
243	Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines. Frontiers in Pharmacology, 2015, 6, 124.	3.5	5
244	Yessotoxin activates cell death pathways independent of Protein Kinase C in K-562 human leukemic cell line. Toxicology in Vitro, 2015, 29, 1545-1554.	2.4	5
245	Cross-talks between c-Kit and PKC isoforms in HMC-1560 and HMC-1560,816 cells. Different role of PKCδ in each cellular line. Cellular Immunology, 2015, 293, 104-112.	3.0	5
246	Molecular detection of harmful cyanobacteria and expression of their toxin genes in Dutch lakes using multi-probe RNA chips. Harmful Algae, 2018, 72, 25-35.	4.8	5
247	Synergistic Effect of Transient Receptor Potential Antagonist and Amiloride against Maitotoxin Induced Calcium Increase and Cytotoxicity in Human Neuronal Stem Cells. ACS Chemical Neuroscience, 2018, 9, 2667-2678.	3 . 5	5
248	Pharmacology of Yessotoxni., 0,, 203-209.		4
249	Biochemistry of Azaspiracid Poisoning Toxins. , 0, , 311-318.		4
250	Response to Comments on "Effect of Uncontrolled Factors in a Validated Liquid Chromatography–Tandem Mass Spectrometry Method Question Its Use as a Reference Method for Marine Toxins: Major Causes for Concern― Analytical Chemistry, 2012, 84, 481-483.	6.5	4
251	C-kit mutations determine dasatinib mechanism of action in HMC-1 neoplastic mast cells: dasatinib differently regulates PKCÎ translocation in HMC-1560and HMC-1560,816cell lines. Immunopharmacology and Immunotoxicology, 2015, 37, 380-387.	2.4	4
252	Gambierol Potently Increases Evoked Quantal Transmitter Release and Reverses Pre- and Post-Synaptic Blockade at Vertebrate Neuromuscular Junctions. Neuroscience, 2020, 439, 106-116.	2.3	4

#	Article	IF	Citations
253	The Clâ^'HCO3â^' exchanger slows the recovery of acute pHi changes in rat mast cells. Biochemical Pharmacology, 2003, 65, 389-396.	4.4	3
254	Evidence of Methylobacterium spp. and Hyphomicrobium sp. in azaspiracid toxin contaminated mussel tissues and assessment of the effect of Aazaspiracid on their growth. Toxicon, 2011, 58, 619-622.	1.6	3
255	Disruption of the Actin Cytoskeleton Induces Fluorescent Glucose Accumulation on the Rat Hepatocytes Clone 9. Cellular Physiology and Biochemistry, 2011, 27, 653-660.	1.6	3
256	Different Role of cAMP Pathway on the Human Mast Cells HMCâ€1 ⁵⁶⁰ and HMCâ€1 ^{560,816} Activation. Journal of Cellular Biochemistry, 2014, 115, 896-909.	2.6	3
257	13. From science to policy: dynamic adaptation of legal regulations on aquatic biotoxins. , 2015, , 441-482.		3
258	Autumnalamide targeted proteins of the immunophilin family. Immunobiology, 2017, 222, 241-250.	1.9	3
259	Analysis of natural toxins by liquid chromatography. , 2017, , 479-514.		3
260	Cytotoxic Mechanism of Sphaerodactylomelol, an Uncommon Bromoditerpene Isolated from Sphaerococcus coronopifolius. Molecules, 2021, 26, 1374.	3.8	3
261	Response: The Complexity of the Cellular Effects of Azaspiracid Prevents to Highlight Only One Candidate as the Target of the Toxin. Toxicological Sciences, 2010, 115, 611-611.	3.1	2
262	Bioengineered protein phosphatase 2A. Bioengineered, 2013, 4, 72-77.	3.2	2
263	8. Isolation, characterization, and identification of mycotoxin-producing fungi., 2018,, 202-245.		2
264	Crambescin C1 Acts as A Possible Substrate of iNOS and eNOS Increasing Nitric Oxide Production and Inducing In Vivo Hypotensive Effect. Frontiers in Pharmacology, 2021, 12, 694639.	3.5	2
265	Guide to Phycotoxin Monitoring of Bivalve Mollusk-Harvesting Areas. , 2014, , 39-56.		2
266	8 Considerations about international mycotoxin legislation, food security, and climate change. , 2015, , 153-180.		2
267	HCOâ^3 lons Increase Mast Cell Sensitivity to Thapsigargin-Induced Ca2+ Entry. Biochemical and Biophysical Research Communications, 2001, 280, 518-521.	2.1	1
268	Biochemistry of Maitotoxin. , 0, , 55-73.		1
269	The effect of rottlerin in calcium regulation in HMCâ€1 ⁵⁶⁰ cells is mediated by a PKCâ€Î´ independent effect. Journal of Cellular Biochemistry, 2008, 105, 255-261.	2.6	1
270	Toxins: Neurotoxins., 2018,,.		1

#	Article	IF	CITATIONS
271	Use of Biosensors as Alternatives to Current Regulatory Methods for Marine Biotoxins. Springer Protocols, 2012, , 219-242.	0.3	1
272	In vivo subchronic effects of ciguatoxin-related compounds, reevaluation of their toxicity. Archives of Toxicology, $0, , .$	4.2	1
273	12. Effects on world food production and security. , 2015, , 417-440.		0
274	NeuroTorp, a lateral flow test based on toxin-receptor affinity for in-situ early detection of cyclic imine toxins. Analytica Chimica Acta, 2022, 1221, 339941.	5.4	O