Luis Liz-MarzÃ;n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5576786/publications.pdf

Version: 2024-02-01

579	71,207	136	245
papers	citations	h-index	g-index
611	611	611	55418
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
2	Directed Self-Assembly of Nanoparticles. ACS Nano, 2010, 4, 3591-3605.	7.3	1,938
3	Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 2005, 249, 1870-1901.	9.5	1,867
4	Synthesis of Nanosized Goldâ^'Silica Coreâ^'Shell Particles. Langmuir, 1996, 12, 4329-4335.	1.6	1,766
5	Shape control in gold nanoparticle synthesis. Chemical Society Reviews, 2008, 37, 1783.	18.7	1,749
6	Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir, 2006, 22, 32-41.	1.6	1,462
7	Modelling the optical response of gold nanoparticles. Chemical Society Reviews, 2008, 37, 1792.	18.7	1,072
8	Oleylamine in Nanoparticle Synthesis. Chemistry of Materials, 2013, 25, 1465-1476.	3.2	982
9	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7. 3	976
10	Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chemical Society Reviews, 2012, 41, 5577.	18.7	966
11	Mapping surface plasmons on a single metallic nanoparticle. Nature Physics, 2007, 3, 348-353.	6.5	908
12	LSPR-based nanobiosensors. Nano Today, 2009, 4, 244-251.	6.2	882
13	Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials. Advanced Materials, 2010, 22, 1182-1195.	11.1	687
14	Synthesis of Silver Nanoprisms in DMF. Nano Letters, 2002, 2, 903-905.	4.5	652
15	High-yield synthesis and optical response of gold nanostars. Nanotechnology, 2008, 19, 015606.	1.3	602
16	Optical Properties of Thin Films of Au@SiO2Particles. Journal of Physical Chemistry B, 2001, 105, 3441-3452.	1.2	573
17	Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions. Advanced Functional Materials, 2004, 14, 571-579.	7.8	540
18	Formation of PVP-Protected Metal Nanoparticles in DMF. Langmuir, 2002, 18, 2888-2894.	1.6	536

#	Article	IF	Citations
19	Zeptomol Detection Through Controlled Ultrasensitive Surface-Enhanced Raman Scattering. Journal of the American Chemical Society, 2009, 131, 4616-4618.	6.6	520
20	Formation and Stabilization of Silver Nanoparticles through Reduction byN,N-Dimethylformamide. Langmuir, 1999, 15, 948-951.	1.6	501
21	Monodisperse Gold Nanotriangles: Size Control, Large-Scale Self-Assembly, and Performance in Surface-Enhanced Raman Scattering. ACS Nano, 2014, 8, 5833-5842.	7.3	496
22	Nanometals. Materials Today, 2004, 7, 26-31.	8.3	487
23	Tuning Size and Sensing Properties in Colloidal Gold Nanostars. Langmuir, 2010, 26, 14943-14950.	1.6	447
24	Controlled Method for Silica Coating of Silver Colloids. Influence of Coating on the Rate of Chemical Reactions. Langmuir, 1998, 14, 3740-3748.	1.6	415
25	Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chemical Society Reviews, 2017, 46, 3866-3885.	18.7	415
26	Gold nanorods 3D-supercrystals as surface enhanced Raman scattering spectroscopy substrates for the rapid detection of scrambled prions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8157-8161.	3.3	412
27	Silica encapsulation of quantum dots and metal clusters. Journal of Materials Chemistry, 2000, 10, 1259-1270.	6.7	409
28	Layer-by-Layer Assembled Mixed Spherical and Planar Gold Nanoparticles:Â Control of Interparticle Interactions. Langmuir, 2002, 18, 3694-3697.	1.6	404
29	Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nature Materials, 2012, 11, 604-607.	13.3	395
30	SERSâ€Based Diagnosis and Biodetection. Small, 2010, 6, 604-610.	5.2	393
31	Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods. Chemistry of Materials, 2006, 18, 2465-2467.	3.2	379
32	Colloidal silver nanoplates. State of the art and future challenges. Journal of Materials Chemistry, 2008, 18, 1724.	6.7	376
33	Multilayer Assemblies of Silica-Encapsulated Gold Nanoparticles on Decomposable Colloid Templates. Advanced Materials, 2001, 13, 1090-1094.	11.1	366
34	Composite Silica Spheres with Magnetic and Luminescent Functionalities. Advanced Functional Materials, 2006, 16, 509-514.	7.8	364
35	Nanostars shine bright for you. Current Opinion in Colloid and Interface Science, 2011, 16, 118-127.	3.4	364
36	<i>N</i> , <i>N</i> ,êÐimethylformamide as a Reaction Medium for Metal Nanoparticle Synthesis. Advanced Functional Materials, 2009, 19, 679-688.	7.8	357

#	Article	IF	CITATIONS
37	A "Tips and Tricks―Practical Guide to the Synthesis of Gold Nanorods. Journal of Physical Chemistry Letters, 2015, 6, 4270-4279.	2.1	356
38	Seeded Growth of Submicron Au Colloids with Quadrupole Plasmon Resonance Modes. Langmuir, 2006, 22, 7007-7010.	1.6	349
39	Anisotropic Noble Metal Nanocrystal Growth: The Role of Halides. Chemistry of Materials, 2014, 26, 34-43.	3.2	340
40	Stimuli-responsive self-assembly of nanoparticles. Chemical Society Reviews, 2019, 48, 1342-1361.	18.7	339
41	Hydrophobic Interactions Modulate Self-Assembly of Nanoparticles. ACS Nano, 2012, 6, 11059-11065.	7.3	338
42	Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating. Chemistry of Materials, 2001, 13, 1630-1633.	3.2	331
43	Intense Optical Activity from Threeâ€Dimensional Chiral Ordering of Plasmonic Nanoantennas. Angewandte Chemie - International Edition, 2011, 50, 5499-5503.	7.2	331
44	One-Pot Synthesis of Ag@TiO2Coreâ^'Shell Nanoparticles and Their Layer-by-Layer Assembly. Langmuir, 2000, 16, 2731-2735.	1.6	323
45	Spatially-Directed Oxidation of Gold Nanoparticles by Au(III)â^'CTAB Complexes. Journal of Physical Chemistry B, 2005, 109, 14257-14261.	1.2	321
46	Alignment of Carbon Nanotubes under Low Magnetic Fields through Attachment of Magnetic Nanoparticles. Journal of Physical Chemistry B, 2005, 109, 19060-19063.	1.2	315
47	Silica coating of silver nanoparticles using a modified Stöber method. Journal of Colloid and Interface Science, 2005, 283, 392-396.	5.0	314
48	Reduction and Stabilization of Silver Nanoparticles in Ethanol by Nonionic Surfactants. Langmuir, 1996, 12, 3585-3589.	1.6	309
49	Stabilization of CdS semiconductor nanoparticles against photodegradation by a silica coating procedure. Chemical Physics Letters, 1998, 286, 497-501.	1.2	307
50	Size Tunable Au@Ag Core–Shell Nanoparticles: Synthesis and Surface-Enhanced Raman Scattering Properties. Langmuir, 2013, 29, 15076-15082.	1.6	303
51	Atomic-scale determination of surface facets in gold nanorods. Nature Materials, 2012, 11, 930-935.	13.3	299
52	High-Yield Seeded Growth of Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning. Journal of the American Chemical Society, 2017, 139, 107-110.	6.6	296
53	On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Physical Chemistry Chemical Physics, 2006, 8, 814-821.	1.3	292
54	Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Accounts of Chemical Research, 2018, 51, 2305-2313.	7.6	292

#	Article	IF	CITATIONS
55	Direct observation of chemical reactions in silica-coated gold and silver nanoparticles. Advanced Materials, 1997, 9, 570-575.	11.1	291
56	Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles. Nature Materials, 2008, 7, 120-124.	13.3	290
57	Light Concentration at the Nanometer Scale. Journal of Physical Chemistry Letters, 2010, 1, 2428-2434.	2.1	290
58	Traps and cages for universal SERS detection. Chemical Society Reviews, 2012, 41, 43-51.	18.7	290
59	Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nature Materials, 2016, 15, 1203-1211.	13.3	290
60	Au@pNIPAM Colloids as Molecular Traps for Surfaceâ€Enhanced, Spectroscopic, Ultraâ€Sensitive Analysis. Angewandte Chemie - International Edition, 2009, 48, 138-143.	7.2	286
61	<i>In vivo</i> formation of protein corona on gold nanoparticles. The effect of their size and shape. Nanoscale, 2018, 10, 1256-1264.	2.8	286
62	From individual to collective chirality in metal nanoparticles. Nano Today, 2011, 6, 381-400.	6.2	284
63	The Assembly of Coated Nanocrystalsâ€. Journal of Physical Chemistry B, 2003, 107, 7312-7326.	1.2	269
64	Allâ€inâ€One Optical Heaterâ€Thermometer Nanoplatform Operative From 300 to 2000 K Based on Er ³⁺ Emission and Blackbody Radiation. Advanced Materials, 2013, 25, 4868-4874.	11.1	264
65	Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. Journal of Physical Chemistry B, 2004, 108, 15461-15469.	1.2	263
66	Preparation and Properties of Silica-Coated Cobalt Nanoparticlesâ€. Journal of Physical Chemistry B, 2003, 107, 7420-7425.	1.2	260
67	Optical Control and Patterning of Gold-Nanorod-Poly(vinyl alcohol) Nanocomposite Films. Advanced Functional Materials, 2005, 15, 1065-1071.	7.8	254
68	Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale, 2011, 3, 1304.	2.8	253
69	Recent approaches toward creation of hot spots for SERS detection. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 21, 2-25.	5.6	252
70	Nanorod-Coated PNIPAM Microgels: Thermoresponsive Optical Properties. Small, 2007, 3, 1222-1229.	5.2	250
71	Inorganic nanoparticles for biomedicine: where materials scientists meet medical research. Materials Today, 2016, 19, 19-28.	8.3	249
72	Encapsulation and Growth of Gold Nanoparticles in Thermoresponsive Microgels. Advanced Materials, 2008, 20, 1666-1670.	11.1	247

#	Article	IF	CITATIONS
73	SERS Detection of Small Inorganic Molecules and Ions. Angewandte Chemie - International Edition, 2012, 51, 11214-11223.	7.2	247
74	Guiding Rules for Selecting a Nanothermometer. Nano Today, 2018, 19, 126-145.	6.2	247
75	Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates. ACS Nano, 2018, 12, 8531-8539.	7.3	239
76	Binary cooperative complementary nanoscale interfacial materials. Reduction of silver nanoparticles in DMF. Formation of monolayers and stable colloids. Pure and Applied Chemistry, 2000, 72, 83-90.	0.9	238
77	Stable hydrosols of metallic and bimetallic nanoparticles immobilized on imogolite fibers. The Journal of Physical Chemistry, 1995, 99, 15120-15128.	2.9	235
78	Formation of Silver Nanoprisms with Surface Plasmons at Communication Wavelengths. Advanced Functional Materials, 2006, 16, 766-773.	7.8	235
79	Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science, 2017, 358, 640-644.	6.0	233
80	Towards low-cost flexible substrates for nanoplasmonic sensing. Physical Chemistry Chemical Physics, 2013, 15, 5288.	1.3	232
81	Aligning Au Nanorods by Using Carbon Nanotubes as Templates. Angewandte Chemie - International Edition, 2005, 44, 4375-4378.	7.2	231
82	Surface Enhanced Raman Scattering Using Star-Shaped Gold Colloidal Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 7336-7340.	1.5	224
83	Synthesis and Characterization of Iron/Iron Oxide Core/Shell Nanocubes. Advanced Functional Materials, 2007, 17, 3870-3876.	7.8	216
84	Opto-thermoelectric nanotweezers. Nature Photonics, 2018, 12, 195-201.	15.6	216
85	The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges. ACS Nano, 2012, 6, 8468-8483.	7.3	211
86	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	7.3	211
87	Geminiâ€Surfactantâ€Directed Selfâ€Assembly of Monodisperse Gold Nanorods into Standing Superlattices. Angewandte Chemie - International Edition, 2009, 48, 9484-9488.	7.2	210
88	Modern Applications of Plasmonic Nanoparticles: From Energy to Health. Advanced Optical Materials, 2015, 3, 602-617.	3.6	209
89	Detection of amyloid fibrils in Parkinson's disease using plasmonic chirality. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3225-3230.	3.3	209
90	Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science, 2020, 368, 1472-1477.	6.0	205

#	Article	IF	CITATIONS
91	Fingers Crossed: Optical Activity of a Chiral Dimer of Plasmonic Nanorods. Journal of Physical Chemistry Letters, 2011, 2, 846-851.	2.1	204
92	Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. Journal of Materials Chemistry C, 2014, 2, 7460.	2.7	201
93	Highly Controlled Silica Coating of PEG-Capped Metal Nanoparticles and Preparation of SERS-Encoded Particles. Langmuir, 2009, 25, 13894-13899.	1.6	200
94	Sensing using plasmonic nanostructures and nanoparticles. Nanotechnology, 2015, 26, 322001.	1.3	199
95	Multicolor Luminescence Patterning by Photoactivation of Semiconductor Nanoparticle Films. Journal of the American Chemical Society, 2003, 125, 2830-2831.	6.6	195
96	Size Effects in ZnO: The Cluster to Quantum Dot Transition. Australian Journal of Chemistry, 2003, 56, 1051.	0.5	193
97	Reshaping, Fragmentation, and Assembly of Gold Nanoparticles Assisted by Pulse Lasers. Accounts of Chemical Research, 2016, 49, 678-686.	7.6	192
98	Quantitative Determination of the Size Dependence of Surface Plasmon Resonance Damping in Single Ag@SiO ₂ Nanoparticles. Nano Letters, 2009, 9, 3463-3469.	4.5	190
99	Plasmonic polymer nanocomposites. Nature Reviews Materials, 2018, 3, 375-391.	23.3	187
100	Magnetic (Hyper)Thermia or Photothermia? Progressive Comparison of Iron Oxide and Gold Nanoparticles Heating in Water, in Cells, and In Vivo. Advanced Functional Materials, 2018, 28, 1803660.	7.8	187
101	Penâ€onâ€Paper Approach Toward the Design of Universal Surface Enhanced Raman Scattering Substrates. Small, 2014, 10, 3065-3071.	5.2	185
102	Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. Journal of the Royal Society Interface, 2010, 7, S435-50.	1.5	180
103	Direct coating of gold nanoparticles with silica by a seeded polymerization technique. Journal of Colloid and Interface Science, 2003, 264, 385-390.	5.0	179
104	Evidence of an aggregative mechanism during the formation of silver nanowires in N,N-dimethylformamide. Journal of Materials Chemistry, 2004, 14, 607-610.	6.7	178
105	Surfactant (Bi)Layers on Gold Nanorods. Langmuir, 2012, 28, 1453-1459.	1.6	176
106	Tuning Gold Nanorod Synthesis through Prereduction with Salicylic Acid. Chemistry of Materials, 2013, 25, 4232-4238.	3.2	175
107	Size-Dependent Surface Plasmon Resonance Broadening in Nonspherical Nanoparticles: Single Gold Nanorods. Nano Letters, 2013, 13, 2234-2240.	4.5	175
108	Identification of the Optimal Spectral Region for Plasmonic and Nanoplasmonic Sensing. ACS Nano, 2010, 4, 349-357.	7.3	174

#	Article	IF	CITATIONS
109	Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Transactions, 2015, 44, 9709-9717.	1.6	174
110	Control of Packing Order of Self-Assembled Monolayers of Magnetite Nanoparticles with and without SiO2Coating by Microwave Irradiation. Langmuir, 1998, 14, 6430-6435.	1.6	172
111	Synthesis of Flexible, Ultrathin Gold Nanowires in Organic Media. Langmuir, 2008, 24, 9855-9860.	1.6	170
112	Gold nanoparticle-loaded filter paper: a recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. Chemical Communications, 2015, 51, 4572-4575.	2.2	170
113	Gold nanoparticle thin films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202, 119-126.	2.3	168
114	Reduced Graphene Oxide-Supported Gold Nanostars for Improved SERS Sensing and Drug Delivery. ACS Applied Materials & Drug Delivery. ACS	4.0	168
115	Catalysis by Au@pNIPAM Nanocomposites: Effect of the Cross-Linking Density. Chemistry of Materials, 2010, 22, 3051-3059.	3.2	167
116	Redox Catalysis Using Ag@SiO2Colloids. Journal of Physical Chemistry B, 1999, 103, 6770-6773.	1.2	161
117	Silicaâ€Coated Plasmonic Metal Nanoparticles in Action. Advanced Materials, 2018, 30, e1707003.	11.1	161
118	Environmental applications of plasmon assisted Raman scattering. Energy and Environmental Science, 2010, 3, 1011.	15.6	155
119	Organized Plasmonic Clusters with High Coordination Number and Extraordinary Enhancement in Surfaceâ€Enhanced Raman Scattering (SERS). Angewandte Chemie - International Edition, 2012, 51, 12688-12693.	7.2	154
120	Carbon nanotubes as templates for one-dimensional nanoparticle assemblies. Journal of Materials Chemistry, 2006, 16, 22-25.	6.7	152
121	SERS-Active Gold Lace Nanoshells with Built-in Hotspots. Nano Letters, 2010, 10, 4013-4019.	4.5	151
122	Drastic Surface Plasmon Mode Shifts in Gold Nanorods Due to Electron Charging. Plasmonics, 2006, 1, 61-66.	1.8	150
123	Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Crossâ€linking, Overall Dimensions, and Core Growth. Advanced Functional Materials, 2009, 19, 3070-3076.	7.8	148
124	Aerobic Synthesis of Cu Nanoplates with Intense Plasmon Resonances. Small, 2009, 5, 440-443.	5.2	147
125	Surface Enhanced Raman Scattering Encoded Gold Nanostars for Multiplexed Cell Discrimination. Chemistry of Materials, 2016, 28, 6779-6790.	3.2	147
126	Homogeneous silica coating of vitreophobic colloids. Chemical Communications, 1996, , 731-732.	2.2	146

#	Article	IF	CITATIONS
127	Theoretical Description of the Role of Halides, Silver, and Surfactants on the Structure of Gold Nanorods. Nano Letters, 2014, 14, 871-875.	4.5	146
128	The Crystalline Structure of Gold Nanorods Revisited: Evidence for Higherâ€Index Lateral Facets. Angewandte Chemie - International Edition, 2010, 49, 9397-9400.	7.2	145
129	Solution processed polydimethylsiloxane/gold nanostar flexible substrates for plasmonic sensing. Nanoscale, 2014, 6, 9817-9823.	2.8	145
130	Janus plasmonic–magnetic gold–iron oxide nanoparticles as contrast agents for multimodal imaging. Nanoscale, 2017, 9, 9467-9480.	2.8	145
131	Design of SERS-Encoded, Submicron, Hollow Particles Through Confined Growth of Encapsulated Metal Nanoparticles. Journal of the American Chemical Society, 2009, 131, 2699-2705.	6.6	144
132	Unveiling Nanometer Scale Extinction and Scattering Phenomena through Combined Electron Energy Loss Spectroscopy and Cathodoluminescence Measurements. Nano Letters, 2015, 15, 1229-1237.	4.5	143
133	Influence of the Medium Refractive Index on the Optical Properties of Single Gold Triangular Prisms on a Substrate. Journal of Physical Chemistry C, 2008, 112, 3-7.	1.5	142
134	Encapsulation of Single Plasmonic Nanoparticles within ZIFâ€8 and SERS Analysis of the MOF Flexibility. Small, 2016, 12, 3935-3943.	5.2	142
135	A Versatile Approach for the Preparation of Thermosensitive PNIPAM Core–Shell Microgels with Nanoparticle Cores. ChemPhysChem, 2006, 7, 2298-2301.	1.0	141
136	Water-Based Ferrofluids from FexPt1-xNanoparticles Synthesized in Organic Media. Langmuir, 2004, 20, 6946-6950.	1.6	140
137	Layer-by-Layer Assembly of Multiwall Carbon Nanotubes on Spherical Colloids. Chemistry of Materials, 2005, 17, 3268-3272.	3.2	140
138	Plasmon Spectroscopy and Imaging of Individual Gold Nanodecahedra: A Combined Optical Microscopy, Cathodoluminescence, and Electron Energy-Loss Spectroscopy Study. Nano Letters, 2012, 12, 4172-4180.	4.5	139
139	Solâ^'Gel Processing of Silica-Coated Gold Nanoparticles. Langmuir, 2001, 17, 6375-6379.	1.6	138
140	Physicochemical Properties of Proteinâ€Coated Gold Nanoparticles in Biological Fluids and Cells before and after Proteolytic Digestion. Angewandte Chemie - International Edition, 2013, 52, 4179-4183.	7.2	138
141	Au@Ag Nanoparticles: Halides Stabilize {100} Facets. Journal of Physical Chemistry Letters, 2013, 4, 2209-2216.	2.1	138
142	Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis. ACS Nano, 2016, 10, 9659-9668.	7.3	138
143	Hierarchical Self-Assembly of Gold Nanoparticles into Patterned Plasmonic Nanostructures. ACS Nano, 2014, 8, 10694-10703.	7.3	137
144	Universal analytical modeling of plasmonic nanoparticles. Chemical Society Reviews, 2017, 46, 6710-6724.	18.7	137

#	Article	IF	CITATIONS
145	Monitoring Galvanic Replacement Through Three-Dimensional Morphological and Chemical Mapping. Nano Letters, 2014, 14, 3220-3226.	4.5	136
146	Optimization of Nanoparticle-Based SERS Substrates through Large-Scale Realistic Simulations. ACS Photonics, 2017, 4, 329-337.	3.2	135
147	Toward Ultimate Nanoplasmonics Modeling. ACS Nano, 2014, 8, 7559-7570.	7.3	132
148	Rabi Splitting in Photoluminescence Spectra of Hybrid Systems of Gold Nanorods and J-Aggregates. Journal of Physical Chemistry Letters, 2016, 7, 354-362.	2.1	132
149	Modulation of Localized Surface Plasmons and SERS Response in Gold Dumbbells through Silver Coating. Journal of Physical Chemistry C, 2010, 114, 10417-10423.	1.5	128
150	Nanoscale chirality in metal and semiconductor nanoparticles. Chemical Communications, 2016, 52, 12555-12569.	2.2	128
151	Chemical Sharpening of Gold Nanorods: The Rodâ€ŧoâ€Octahedron Transition. Angewandte Chemie - International Edition, 2007, 46, 8983-8987.	7.2	127
152	Highly uniform SERS substrates formed by wrinkle-confined drying of gold colloids. Chemical Science, 2010, 1, 174.	3.7	127
153	Intracellular mapping with SERS-encoded gold nanostars. Integrative Biology (United Kingdom), 2011, 3, 922.	0.6	127
154	MicroRNAâ€Directed Intracellular Selfâ€Assembly of Chiral Nanorod Dimers. Angewandte Chemie - International Edition, 2018, 57, 10544-10548.	7.2	127
155	High-Yield Preparation of Exfoliated 1T-MoS ₂ with SERS Activity. Chemistry of Materials, 2019, 31, 5725-5734.	3.2	126
156	Influence of Iodide Ions on the Growth of Gold Nanorods: Tuning Tip Curvature and Surface Plasmon Resonance. Advanced Functional Materials, 2008, 18, 3780-3786.	7.8	124
157	The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Physical Chemistry Chemical Physics, 2009, 11, 5909.	1.3	124
158	Templated Growth of Surface Enhanced Raman Scattering-Active Branched Gold Nanoparticles within Radial Mesoporous Silica Shells. ACS Nano, 2015, 9, 10489-10497.	7.3	124
159	Cancer Cell Internalization of Gold Nanostars Impacts Their Photothermal Efficiency In Vitro and In Vivo: Toward a Plasmonic Thermal Fingerprint in Tumoral Environment. Advanced Healthcare Materials, 2016, 5, 1040-1048.	3.9	124
160	Metal Nanoparticles and Supramolecular Macrocycles: A Tale of Synergy. Chemistry - A European Journal, 2014, 20, 10874-10883.	1.7	123
161	Controlled Living Nanowire Growth: Precise Control over the Morphology and Optical Properties of AgAuAg Bimetallic Nanowires. Nano Letters, 2015, 15, 5427-5437.	4.5	122
162	Coated Colloids with Tailored Optical Properties. Journal of Physical Chemistry B, 2003, 107, 10990-10994.	1.2	121

#	Article	IF	Citations
163	Optical Properties of Platinum-Coated Gold Nanorods. Journal of Physical Chemistry C, 2007, 111, 6183-6188.	1.5	121
164	Gold nanoparticle conjugates: recent advances toward clinical applications. Expert Opinion on Drug Delivery, 2014, 11, 741-752.	2.4	121
165	Influence of silver ions on the growth mode of platinum on gold nanorods. Journal of Materials Chemistry, 2006, 16, 3946-3951.	6.7	120
166	Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science, 2017, 358, 514-518.	6.0	120
167	Plasmon Coupling in Layer-by-Layer Assembled Gold Nanorod Films. Langmuir, 2007, 23, 4606-4611.	1.6	119
168	A General Method for Solvent Exchange of Plasmonic Nanoparticles and Self-Assembly into SERS-Active Monolayers. Langmuir, 2015, 31, 9205-9213.	1.6	119
169	Binary Selfâ€Assembly of Gold Nanowires with Nanospheres and Nanorods. Angewandte Chemie - International Edition, 2010, 49, 9985-9989.	7.2	118
170	Loading of Exponentially Grown LBL Films with Silver Nanoparticles and Their Application to Generalized SERS Detection. Angewandte Chemie - International Edition, 2009, 48, 5326-5329.	7.2	117
171	The relevance of light in the formation of colloidal metal nanoparticles. Chemical Society Reviews, 2014, 43, 2089-2097.	18.7	117
172	Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method. Advanced Materials, 2008, 20, 4288-4293.	11.1	116
173	Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures. Nanoscale, 2017, 9, 16645-16651.	2.8	116
174	Environmentally responsive plasmonic nanoassemblies for biosensing. Chemical Society Reviews, 2018, 47, 4677-4696.	18.7	116
175	Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations. Applied Physics Letters, 2004, 84, 4938-4940.	1.5	114
176	Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach. Physical Chemistry Chemical Physics, 2004, 6, 5056-5060.	1.3	114
177	Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance. Langmuir, 2009, 25, 3163-3167.	1.6	114
178	Dynamic Light Scattering of Short Au Rods with Low Aspect Ratios. Journal of Physical Chemistry C, 2007, 111, 5020-5025.	1.5	113
179	Disconnecting Symmetry Breaking from Seeded Growth for the Reproducible Synthesis of High Quality Gold Nanorods. ACS Nano, 2019, 13, 4424-4435.	7.3	113
180	Enzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection. Nanoscale, 2014, 6, 7405-7409.	2.8	112

#	Article	IF	CITATIONS
181	Protein/Polymerâ€Based Dualâ€Responsive Gold Nanoparticles with pHâ€Dependent Thermal Sensitivity. Advanced Functional Materials, 2012, 22, 1436-1444.	7.8	111
182	Surface-Enhanced Raman Scattering Tags for Three-Dimensional Bioimaging and Biomarker Detection. ACS Sensors, 2019, 4, 1126-1137.	4.0	111
183	Measuring Lattice Strain in Three Dimensions through Electron Microscopy. Nano Letters, 2015, 15, 6996-7001.	4.5	110
184	Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today, 2010, 5, 21-27.	6.2	109
185	Highly Transparent and Conductive Films of Densely Aligned Ultrathin Au Nanowire Monolayers. Nano Letters, 2012, 12, 6066-6070.	4.5	109
186	Reshaping and LSPR tuning of Au nanostars in the presence of CTAB. Journal of Materials Chemistry, 2011, 21, 11544.	6.7	108
187	Multiwalled Carbon Nanotubes Drive the Activity of Metal@oxide Core–Shell Catalysts in Modular Nanocomposites. Journal of the American Chemical Society, 2012, 134, 11760-11766.	6.6	107
188	Nanoplasmonics. Chemical Society Reviews, 2014, 43, 3820.	18.7	107
189	Magnetic and optical tunable microspheres with a magnetite/gold nanoparticle shell. Journal of Materials Chemistry, 2005, 15, 2095.	6.7	106
190	Environmental Optical Sensitivity of Gold Nanodecahedra. Advanced Functional Materials, 2007, 17, 1443-1450.	7.8	106
191	Femtosecond Laser-Controlled Tip-to-Tip Assembly and Welding of Gold Nanorods. Nano Letters, 2015, 15, 8282-8288.	4.5	105
192	Two-Dimensional Quasistatic Stationary Short Range Surface Plasmons in Flat Nanoprisms. Nano Letters, 2010, 10, 902-907.	4.5	103
193	Three-Dimensional Elemental Mapping at the Atomic Scale in Bimetallic Nanocrystals. Nano Letters, 2013, 13, 4236-4241.	4.5	101
194	Selfâ€Assembly of Au@Ag Nanorods Mediated by Gemini Surfactants for Highly Efficient SERSâ€Active Supercrystals. Advanced Optical Materials, 2013, 1, 477-481.	3.6	101
195	Low-Fouling Poly(<i>N</i> -vinyl pyrrolidone) Capsules with Engineered Degradable Properties. Biomacromolecules, 2009, 10, 2839-2846.	2.6	100
196	Highly Catalytic Single-Crystal Dendritic Pt Nanostructures Supported on Carbon Nanotubes. Chemistry of Materials, 2009, 21, 1531-1535.	3.2	100
197	Recyclable Molecular Trapping and SERS Detection in Silver-Loaded Agarose Gels with Dynamic Hot Spots. Analytical Chemistry, 2009, 81, 9233-9238.	3.2	99
198	Colloidal Gold-Catalyzed Reduction of Ferrocyanate (III) by Borohydride Ions: A Model System for Redox Catalysis. Langmuir, 2010, 26, 1271-1277.	1.6	99

#	Article	IF	CITATIONS
199	Discrete metal nanoparticles with plasmonic chirality. Chemical Society Reviews, 2021, 50, 3738-3754.	18.7	99
200	Shape control of iron oxide nanoparticles. Physical Chemistry Chemical Physics, 2009, 11, 3762.	1.3	98
201	Label-free SERS detection of relevant bioanalytes on silver-coated carbon nanotubes: The case of cocaine. Nanoscale, 2009, 1, 153.	2.8	98
202	Glycans as Biofunctional Ligands for Gold Nanorods: Stability and Targeting in Protein-Rich Media. Journal of the American Chemical Society, 2015, 137, 3686-3692.	6.6	97
203	The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres. Journal of Physical Chemistry C, 2007, 111, 13361-13366.	1.5	96
204	Heating rate influence on the synthesis of iron oxide nanoparticles: the case of decanoic acid. Chemical Communications, 2010, 46, 6108.	2.2	96
205	Multifunctional Microgel Magnetic/Optical Traps for SERS Ultradetection. Langmuir, 2011, 27, 4520-4525.	1.6	96
206	Molecular Thinking for Nanoplasmonic Design. ACS Nano, 2012, 6, 3655-3662.	7.3	95
207	Three-Dimensional Quantification of the Facet Evolution of Pt Nanoparticles in a Variable Gaseous Environment. Nano Letters, 2019, 19, 477-481.	4.5	93
208	XPS Characterization of Au (Core)/SiO2(Shell) Nanoparticles. Journal of Physical Chemistry B, 2005, 109, 7597-7600.	1.2	92
209	Steric Hindrance Induces crosslike Self-Assembly of Gold Nanodumbbells. Nano Letters, 2012, 12, 4380-4384.	4.5	91
210	Solvent-Assisted Self-Assembly of Gold Nanorods into Hierarchically Organized Plasmonic Mesostructures. ACS Applied Materials & Interfaces, 2019, 11, 11763-11771.	4.0	90
211	Physical aging of polystyrene/gold nanocomposites and its relation to the calorimetric Tg depression. Soft Matter, 2011, 7, 3607.	1.2	89
212	Chiral and Achiral Nanodumbbell Dimers: The Effect of Geometry on Plasmonic Properties. ACS Nano, 2016, 10, 6180-6188.	7.3	88
213	Tunable Fano Resonance and Plasmon–Exciton Coupling in Single Au Nanotriangles on Monolayer WS ₂ at Room Temperature. Advanced Materials, 2018, 30, e1705779.	11.1	88
214	Synthetic Opals Based on Silica-Coated Gold Nanoparticles. Langmuir, 2002, 18, 4519-4522.	1.6	87
215	Simultaneous SERS detection of copper and cobalt at ultratrace levels. Nanoscale, 2013, 5, 5841.	2.8	87
216	Subtissue Plasmonic Heating Monitored with CaF ₂ :Nd ³⁺ ,Y ³⁺ Nanothermometers in the Second Biological Window. Chemistry of Materials, 2018, 30, 2819-2828.	3.2	87

#	Article	IF	CITATIONS
217	Synthesis and Optical Properties of Gold-Labeled Silica Particles. Journal of Colloid and Interface Science, 1995, 176, 459-466.	5.0	86
218	Optical Response of Individual Au–Ag@SiO ₂ Heterodimers. ACS Nano, 2013, 7, 2522-2531.	7.3	86
219	Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection. RSC Advances, 2014, 4, 3690-3698.	1.7	86
220	Gold nanoparticles for regulation of cell function and behavior. Nano Today, 2017, 13, 40-60.	6.2	86
221	Quantum Dot Thermometry Evaluation of Geometry Dependent Heating Efficiency in Gold Nanoparticles. Langmuir, 2014, 30, 1650-1658.	1.6	85
222	Janus Magneticâ€Plasmonic Nanoparticles for Magnetically Guided and Thermally Activated Cancer Therapy. Small, 2020, 16, e1904960.	5.2	84
223	Rapid Epitaxial Growth of Ag on Au Nanoparticles: From Au Nanorods to Core–Shell Au@Ag Octahedrons. Chemistry - A European Journal, 2010, 16, 5558-5563.	1.7	83
224	Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles. Journal of the American Chemical Society, 2016, 138, 11453-11456.	6.6	83
225	Silica gels with tailored, gold nanorod-driven optical functionalities. Applied Surface Science, 2004, 226, 137-143.	3.1	82
226	Growing Au/Ag Nanoparticles within Microgel Colloids for Improved Surfaceâ€Enhanced Raman Scattering Detection. Chemistry - A European Journal, 2010, 16, 9462-9467.	1.7	82
227	Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System. Journal of Physical Chemistry Letters, 2015, 6, 230-238.	2.1	82
228	Evidence for Hydrogen-Bonding-Directed Assembly of Gold Nanorods in Aqueous Solution. Journal of Physical Chemistry Letters, 2010, 1, 1181-1185.	2.1	81
229	Ordered Arrays of Gold Nanostructures from Interfacially Assembled Au@PNIPAM Hybrid Nanoparticles. Langmuir, 2012, 28, 8985-8993.	1.6	81
230	Metallic Janus and Patchy Particles. Particle and Particle Systems Characterization, 2013, 30, 46-60.	1,2	81
231	Heat dissipation in gold–silica core-shell nanoparticles. Chemical Physics Letters, 2003, 372, 767-772.	1.2	80
232	AuAg bimetallic nanoparticles: formation, silica-coating and selective etching. Faraday Discussions, 2004, 125, 133-144.	1.6	79
233	Recent Advances in Chiral Plasmonics â€" Towards Biomedical Applications. Bulletin of the Chemical Society of Japan, 2019, 92, 30-37.	2.0	79
234	SiO2-Coated CdTe Nanowires:Â Bristled Nano Centipedes. Nano Letters, 2004, 4, 225-231.	4.5	78

#	Article	IF	Citations
235	Large-Scale Plasmonic Pyramidal Supercrystals via Templated Self-Assembly of Monodisperse Gold Nanospheres. Journal of Physical Chemistry C, 2017, 121, 10899-10906.	1.5	78
236	Current Challenges toward In Vitro Cellular Validation of Inorganic Nanoparticles. Bioconjugate Chemistry, 2017, 28, 212-221.	1.8	78
237	Direct imaging of surface plasmon resonances on single triangular silver nanoprisms at optical wavelength using low-loss EFTEM imaging. Optics Letters, 2009, 34, 1003.	1.7	77
238	Reversible assembly of metal nanoparticles induced by penicillamine. Dynamic formation of SERS hot spots. Journal of Materials Chemistry, 2011, 21, 16880.	6.7	77
239	Synthesis of Multifunctional Composite Microgels <i>via</i> of Ni Growth on pNIPAM-Coated Au Nanoparticles. ACS Nano, 2009, 3, 3184-3190.	7.3	76
240	Quantitative Surface-Enhanced Raman Scattering Ultradetection of Atomic Inorganic Ions: The Case of Chloride. ACS Nano, 2011, 5, 7539-7546.	7.3	75
241	Collective Plasmonic Properties in Few-Layer Gold Nanorod Supercrystals. ACS Photonics, 2015, 2, 1482-1488.	3.2	75
242	Growing anisotropic crystals at the nanoscale. Science, 2017, 356, 1120-1121.	6.0	75
243	Growth of Sharp Tips on Gold Nanowires Leads to Increased Surface-Enhanced Raman Scattering Activity. Journal of Physical Chemistry Letters, 2010, 1, 24-27.	2.1	74
244	Solâ^'Gel Derived Gold Nanoclusters in Silica Glass Possessing Large Optical Nonlinearities. Journal of Physical Chemistry B, 2002, 106, 10157-10162.	1.2	73
245	Shape Control in Iron Oxide Nanocrystal Synthesis, Induced by Trioctylammonium Ions. Chemistry of Materials, 2009, 21, 1326-1332.	3.2	73
246	Growth and galvanic replacement of silver nanocubes in organic media. Nanoscale, 2013, 5, 4355.	2.8	73
247	Linear and Nonlinear Optical Response of Silver Nanoprisms:Â Local Electric Fields of Dipole and Quadrupole Plasmon Resonances. Journal of Physical Chemistry B, 2004, 108, 8751-8755.	1.2	72
248	Accelerated physical aging in PMMA/silica nanocomposites. Soft Matter, 2010, 6, 3306.	1.2	72
249	Alternating Plasmonic Nanoparticle Heterochains Made by Polymerase Chain Reaction and Their Optical Properties. Journal of Physical Chemistry Letters, 2013, 4, 641-647.	2.1	72
250	Au@pNIPAM SERRS Tags for Multiplex Immunophenotyping Cellular Receptors and Imaging Tumor Cells. Small, 2015, 11, 4149-4157.	5.2	72
251	Multibranched Gold–Mesoporous Silica Nanoparticles Coated with a Molecularly Imprinted Polymer for Label-Free Antibiotic Surface-Enhanced Raman Scattering Analysis. Chemistry of Materials, 2016, 28, 7947-7954.	3.2	72
252	Templatedâ€Assembly of CsPbBr ₃ Perovskite Nanocrystals into 2D Photonic Supercrystals with Amplified Spontaneous Emission. Angewandte Chemie - International Edition, 2020, 59, 17750-17756.	7.2	72

#	Article	IF	Citations
253	Silica-coated metals and semiconductors. Stabilization and nanostructuring. Pure and Applied Chemistry, 2000, 72, 257-267.	0.9	71
254	Spectroscopy, Imaging, and Modeling of Individual Gold Decahedra. Journal of Physical Chemistry C, 2009, 113, 18623-18631.	1.5	71
255	Multiplex SERS Detection of Metabolic Alterations in Tumor Extracellular Media. Advanced Functional Materials, 2020, 30, 1910335.	7.8	71
256	Self-Assembly of Silver Particle Monolayers on Glass from Ag+ Solutions in DMF. Journal of Colloid and Interface Science, 2000, 221, 236-241.	5.0	69
257	Colloidal Nanoplasmonics: From Building Blocks to Sensing Devices. Langmuir, 2013, 29, 4652-4663.	1.6	69
258	Gold Nanostar-Coated Polystyrene Beads as Multifunctional Nanoprobes for SERS Bioimaging. Journal of Physical Chemistry C, 2016, 120, 20860-20868.	1.5	69
259	Bifunctional Nanocomposites with Long-Term Stability as SERS Optical Accumulators for Ultrasensitive Analysis. Journal of Physical Chemistry C, 2009, 113, 3373-3377.	1.5	68
260	Plasmonic Supercrystals. Accounts of Chemical Research, 2019, 52, 1855-1864.	7.6	68
261	Synthesis, characterization and magnetism of monodispersed water soluble palladium nanoparticles. Journal of Materials Chemistry, 2008, 18, 5682.	6.7	66
262	Dispersed and Encapsulated Gain Medium in Plasmonic Nanoparticles: a Multipronged Approach to Mitigate Optical Losses. ACS Nano, 2011, 5, 5823-5829.	7.3	66
263	Plasmonic Mesoporous Composites as Molecular Sieves for SERS Detection. Journal of Physical Chemistry Letters, 2013, 4, 2715-2720.	2.1	66
264	Gold nanoparticle research before and after the Brust–Schiffrin method. Chemical Communications, 2013, 49, 16-18.	2.2	66
265	Blocked Enzymatic Etching of Gold Nanorods: Application to Colorimetric Detection of Acetylcholinesterase Activity and Its Inhibitors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 11139-11146.	4.0	66
266	Imaging Bacterial Interspecies Chemical Interactions by Surface-Enhanced Raman Scattering. ACS Nano, 2017, 11, 4631-4640.	7.3	66
267	Magneticâ-'Noble Metal Nanocomposites with Morphology-Dependent Optical Response. Chemistry of Materials, 2007, 19, 4415-4422.	3.2	65
268	Sterilization Matters: Consequences of Different Sterilization Techniques on Gold Nanoparticles. Small, 2010, 6, 89-95.	5.2	65
269	Multifunctionality in metal@microgel colloidal nanocomposites. Journal of Materials Chemistry A, 2013, 1, 20-26.	5.2	65
270	Synthetic Routes and Plasmonic Properties of Noble Metal Nanoplates. European Journal of Inorganic Chemistry, 2010, 2010, 4288-4297.	1.0	64

#	Article	IF	CITATIONS
271	Plasmon Modes and Hot Spots in Gold Nanostar–Satellite Clusters. Journal of Physical Chemistry C, 2015, 119, 10836-10843.	1.5	64
272	Plasmonic Nanoparticles with Supramolecular Recognition. Advanced Functional Materials, 2020, 30, 1902082.	7.8	64
273	Au@SiO2 colloids: effect of temperature on the surface plasmon absorption. New Journal of Chemistry, 1998, 22, 1285-1288.	1.4	61
274	Cellular Uptake of Gold Nanoparticles Triggered by Host–Guest Interactions. Journal of the American Chemical Society, 2018, 140, 4469-4472.	6.6	61
275	Synthesis of Bimetallic Colloids with Tailored Intermetallic Separation. Nano Letters, 2002, 2, 13-16.	4.5	60
276	Optical Sensing of Small Ions with Colloidal Nanoparticles. Chemistry of Materials, 2012, 24, 738-745.	3.2	60
277	Sensitive Detection of Silver Ions Based on Chiroplasmonic Assemblies of Nanoparticles. Advanced Optical Materials, 2013, 1, 626-630.	3 . 6	60
278	Hybrid Au–SiO ₂ Core–Satellite Colloids as Switchable SERS Tags. Chemistry of Materials, 2015, 27, 2540-2545.	3.2	60
279	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	7.3	60
280	Threeâ€Dimensional Characterization of Nobleâ€Metal Nanoparticles and their Assemblies by Electron Tomography. Angewandte Chemie - International Edition, 2014, 53, 10600-10610.	7.2	59
281	SERS and plasmonic heating efficiency from anisotropic core/satellite superstructures. Nanoscale, 2019, 11, 17655-17663.	2.8	59
282	Carbon Nanotubes Encapsulated in Wormlike Hollow Silica Shells. Small, 2006, 2, 1174-1177.	5.2	58
283	A Quantitative Study of the Environmental Effects on the Optical Response of Gold Nanorods. ACS Nano, 2012, 6, 8183-8193.	7.3	58
284	Synthesis of Janus plasmonic–magnetic, star–sphere nanoparticles, and their application in SERS detection. Faraday Discussions, 2016, 191, 47-59.	1.6	58
285	Ptâ€Catalyzed Formation of Ni Nanoshells on Carbon Nanotubes. Angewandte Chemie - International Edition, 2007, 46, 7026-7030.	7.2	56
286	Magnetic Properties of Ni/NiO Nanowires Deposited onto CNT/Pt Nanocomposites. Advanced Functional Materials, 2008, 18, 616-621.	7.8	56
287	Growth of pentatwinned gold nanorods into truncated decahedra. Nanoscale, 2010, 2, 2377.	2.8	56
288	Spiked Gold Beads as Substrates for Singleâ∈Particle SERS. ChemPhysChem, 2012, 13, 2561-2565.	1.0	56

#	Article	IF	CITATIONS
289	3D characterization of heat-induced morphological changes of Au nanostars by fast <i>in situ</i> electron tomography. Nanoscale, 2018, 10, 22792-22801.	2.8	56
290	Fully Accessible Gold Nanoparticles within Ordered Macroporous Solids. Nano Letters, 2002, 2, 471-473.	4.5	55
291	Self-assembled nanorod supercrystals for ultrasensitive SERS diagnostics. Nano Today, 2012, 7, 6-9.	6.2	54
292	Multifunctional self-assembled composite colloids and their application to SERS detection. Nanoscale, 2015, 7, 10377-10381.	2.8	54
293	Design and Fabrication of Plasmonic Nanomaterials Based on Gold Nanorod Supercrystals. Chemistry of Materials, 2017, 29, 15-25.	3.2	54
294	Reversible Clustering of Gold Nanoparticles under Confinement. Angewandte Chemie - International Edition, 2018, 57, 3183-3186.	7.2	53
295	Plasmon-Enhanced Optical Chirality through Hotspot Formation in Surfactant-Directed Self-Assembly of Gold Nanorods. ACS Nano, 2020, 14, 16712-16722.	7.3	53
296	Reproducibility in Nanocrystal Synthesis? Watch Out for Impurities!. ACS Nano, 2020, 14, 6359-6361.	7.3	53
297	Prospects of Surface-Enhanced Raman Spectroscopy for Biomarker Monitoring toward Precision Medicine. ACS Photonics, 2022, 9, 333-350.	3.2	53
298	Bending Contours in Silver Nanoprisms. Journal of Physical Chemistry B, 2006, 110, 11796-11799.	1.2	52
299	An Electrochemical Model for Gold Colloid Formation via Citrate Reduction. Zeitschrift Fur Physikalische Chemie, 2007, 221, 415-426.	1.4	52
300	Pt-Catalyzed Growth of Ni Nanoparticles in Aqueous CTAB Solution. Chemistry of Materials, 2008, 20, 5399-5405.	3.2	52
301	Plasmonic nanoparticles in 2D for biological applications: Toward active multipurpose platforms. Nano Today, 2014, 9, 365-377.	6.2	52
302	Chiral Nanostructures: New Twists. ACS Nano, 2021, 15, 12457-12460.	7.3	52
303	Spectroscopy and High-Resolution Microscopy of Single Nanocrystals by a Focused Ion Beam Registration Method. Angewandte Chemie - International Edition, 2007, 46, 3517-3520.	7.2	51
304	Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis. Nanoscale, 2013, 5, 4776.	2.8	51
305	Template-assisted self-assembly of achiral plasmonic nanoparticles into chiral structures. Chemical Science, 2022, 13, 595-610.	3.7	51
306	Well defined hybrid PNIPAM core-shell microgels: size variation of the silica nanoparticle core. Colloid and Polymer Science, 2011, 289, 699-709.	1.0	50

#	Article	IF	CITATIONS
307	Acoustic Vibrations in Bimetallic Au@Pd Core–Shell Nanorods. Journal of Physical Chemistry Letters, 2012, 3, 613-619.	2.1	50
308	Surface-Enhanced Raman Scattering-Based Detection of the Interactions between the Essential Cell Division FtsZ Protein and Bacterial Membrane Elements. ACS Nano, 2012, 6, 7514-7520.	7.3	50
309	Using Surface Enhanced Raman Scattering to Analyze the Interactions of Protein Receptors with Bacterial Quorum Sensing Modulators. ACS Nano, 2015, 9, 5567-5576.	7.3	50
310	A Simple Preparation of Small, Smooth Silica Spheres in a Seed Alcosol for Stöber Synthesis. Journal of Colloid and Interface Science, 1996, 179, 318-321.	5.0	49
311	Acoustic Vibrations of Metal-Dielectric Core–Shell Nanoparticles. Nano Letters, 2011, 11, 3016-3021.	4.5	49
312	Colloidal design of plasmonic sensors based on surface enhanced Raman scattering. Journal of Colloid and Interface Science, 2018, 512, 834-843.	5.0	49
313	Optimizing the Geometry of Photoacoustically Active Gold Nanoparticles for Biomedical Imaging. ACS Photonics, 2020, 7, 646-652.	3.2	49
314	Plasmonic metalâ€organic frameworks. SmartMat, 2021, 2, 446-465.	6.4	49
315	Photoluminescence of Individual Au/CdSe Nanocrystal Complexes with Variable Interparticle Distances. Journal of Physical Chemistry Letters, 2011, 2, 2466-2471.	2.1	48
316	Janus gold nanoparticles obtained via spontaneous binary polymer shell segregation. Chemical Communications, 2016, 52, 4278-4281.	2.2	48
317	Reversible Control of Protein Corona Formation on Gold Nanoparticles Using Host–Guest Interactions. ACS Nano, 2020, 14, 5382-5391.	7.3	48
318	Optical Properties of Nanoparticle-Based Metallodielectric Inverse Opals. Small, 2004, 1, 122-130.	5.2	47
319	Printing gold nanoparticles with an electrohydrodynamic direct-write device. Gold Bulletin, 2006, 39, 48-53.	3.2	47
320	Redshift of surface plasmon modes of small gold rods due to their atomic roughness and end-cap geometry. Physical Review B, 2008, 77, .	1.1	47
321	Seedless Synthesis of Single Crystalline Au Nanoparticles with Unusual Shapes and Tunable LSPR in the near-IR. Chemistry of Materials, 2012, 24, 1393-1399.	3.2	47
322	Plasmonic Surfaces for Cell Growth and Retrieval Triggered by Nearâ€Infrared Light. Angewandte Chemie - International Edition, 2016, 55, 974-978.	7.2	47
323	Inulin coated plasmonic gold nanoparticles as a tumor-selective tool for cancer therapy. Journal of Materials Chemistry B, 2016, 4, 1150-1155.	2.9	47
324	Asymmetric Functional Colloids Through Selective Hemisphere Modification. Advanced Materials, 2005, 17, 2014-2018.	11.1	46

#	Article	IF	CITATIONS
325	Pillar[5]areneâ€Mediated Synthesis of Gold Nanoparticles: Size Control and Sensing Capabilities. Chemistry - A European Journal, 2014, 20, 8404-8409.	1.7	46
326	A general LbL strategy for the growth of pNIPAM microgels on Au nanoparticles with arbitrary shapes. Soft Matter, 2012, 8, 4165-4170.	1.2	45
327	Plasmon Mapping in Au@Ag Nanocube Assemblies. Journal of Physical Chemistry C, 2014, 118, 15356-15362.	1.5	45
328	Metal Nanoparticles/MoS ₂ Surface-Enhanced Raman Scattering-Based Sandwich Immunoassay for α-Fetoprotein Detection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 8823-8831.	4.0	45
329	Microcontainers with Fluorescent Anisotropic Zeolite L Cores and Isotropic Silica Shells. Angewandte Chemie - International Edition, 2009, 48, 1266-1270.	7.2	44
330	Using SERS Tags to Image the Threeâ€Dimensional Structure of Complex Cell Models. Advanced Functional Materials, 2020, 30, 1909655.	7.8	44
331	Supramolecular Chirality Synchronization in Thin Films of Plasmonic Nanocomposites. ACS Nano, 2020, 14, 12918-12928.	7.3	43
332	Can Copper Nanostructures Sustain High-Quality Plasmons?. Nano Letters, 2021, 21, 2444-2452.	4.5	43
333	Flexible Ureasil Hybrids with Tailored Optical Properties through Doping with Metal Nanoparticles. Langmuir, 2004, 20, 10268-10272.	1.6	42
334	Influence of Silver Nanoparticles Concentration on the $\langle i \rangle \hat{l} \pm \langle i \rangle - \text{to} \langle i \rangle \hat{l}^2 \langle i \rangle$ -Phase Transformation and the Physical Properties of Silver Nanoparticles Doped Poly(vinylidene fluoride) Nanocomposites. Journal of Nanoscience and Nanotechnology, 2009, 9, 2910-2916.	0.9	42
335	Effects of Gold Nanoparticles on the Stability of Microbubbles. Langmuir, 2012, 28, 13808-13815.	1.6	42
336	Governing the morphology of Pt–Au heteronanocrystals with improved electrocatalytic performance. Nanoscale, 2015, 7, 8739-8747.	2.8	42
337	Au Nanoparticles–Mesoporous TiO ₂ Thin Films Composites as SERS Sensors: A Systematic Performance Analysis. Journal of Physical Chemistry C, 2018, 122, 13095-13105.	1.5	42
338	Nano and Plants. ACS Nano, 2022, 16, 1681-1684.	7.3	41
339	Gold Colloids with Unconventional Angled Shapes. Langmuir, 2009, 25, 11431-11435.	1.6	40
340	Insulinâ€Coated Gold Nanoparticles: A Plasmonic Device for Studying Metal–Protein Interactions. Small, 2011, 7, 2650-2660.	5.2	40
341	Enzymatic modulation of gold nanorod growth and application to nerve gas detection. Nano Today, 2013, 8, 461-468.	6.2	40
342	Templated Colloidal Self-Assembly for Lattice Plasmon Engineering. Accounts of Materials Research, 2021, 2, 816-827.	5.9	40

#	Article	IF	CITATIONS
343	Thermoresponsive core–shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell. Physical Chemistry Chemical Physics, 2008, 10, 6708.	1.3	39
344	Microdroplet fabrication of silver–agarose nanocomposite beads for SERS optical accumulation. Soft Matter, 2011, 7, 1321-1325.	1.2	39
345	Coating matters: the influence of coating materials on the optical properties of gold nanoparticles. Nanophotonics, $2012, 1, 199-220$.	2.9	39
346	Nickel Nanoparticle-Doped Paper as a Bioactive Scaffold for Targeted and Robust Immobilization of Functional Proteins. ACS Nano, 2014, 8, 6221-6231.	7.3	38
347	Stabilization and Encapsulation of Gold Nanostars Mediated by Dithiols. Small, 2015, 11, 4314-4320.	5.2	38
348	Molecular-Fluorescence Enhancement via Blue-Shifted Plasmon-Induced Resonance Energy Transfer. Journal of Physical Chemistry C, 2016, 120, 14820-14827.	1.5	38
349	Quantitative 3D analysis of huge nanoparticle assemblies. Nanoscale, 2016, 8, 292-299.	2.8	38
350	Structure and vacancy distribution in copper telluride nanoparticles influence plasmonic activity in the near-infrared. Nature Communications, 2017, 8, 14925.	5.8	38
351	Challenges for optical nanothermometry in biological environments. Chemical Society Reviews, 2022, 51, 4223-4242.	18.7	38
352	Metallodielectric Hollow Shells: Optical and Catalytic Properties. Chemistry - an Asian Journal, 2006, 1, 730-736.	1.7	37
353	Growth and branching of gold nanoparticles through mesoporous silica thin films. Nanoscale, 2012, 4, 931-939.	2.8	37
354	Synthesis and applications of mesoporous nanocomposites containing metal nanoparticles. Journal of Sol-Gel Science and Technology, 2014, 70, 180-190.	1.1	37
355	Spatial Analysis of Metal–PLGA Hybrid Microstructures Using 3D SERS Imaging. Advanced Functional Materials, 2017, 27, 1701626.	7.8	37
356	Gold encapsulation of star-shaped FePtnanoparticles. Journal of Materials Chemistry, 2010, 20, 61-64.	6.7	36
357	Self-Organization of Highly Symmetric Nanoassemblies: A Matter of Competition. ACS Nano, 2014, 8, 3869-3875.	7.3	36
358	Strong Magneto-Optical Response of Nonmagnetic Organic Materials Coupled to Plasmonic Nanostructures. Nano Letters, 2017, 17, 1808-1813.	4.5	36
359	Surface-enhanced Raman scattering (SERS) imaging of bioactive metabolites in mixed bacterial populations. Applied Materials Today, 2019, 14, 207-215.	2.3	36
360	Tailored Nanoscale Plasmon-Enhanced Vibrational Electron Spectroscopy. Nano Letters, 2020, 20, 2973-2979.	4.5	36

#	Article	IF	CITATIONS
361	Chemistry of nanosized silicaâ€coated metal particlesâ€EMâ€study. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 1617-1620.	0.9	35
362	Physical aging in PMMA/silica nanocomposites: Enthalpy and dielectric relaxation. Journal of Non-Crystalline Solids, 2011, 357, 605-609.	1.5	35
363	SERS Chiral Recognition and Quantification of Enantiomers through Cyclodextrin Supramolecular Complexation. ChemPhysChem, 2011, 12, 1529-1535.	1.0	35
364	Hierarchical organization and molecular diffusion in gold nanorod/silica supercrystal nanocomposites. Nanoscale, 2016, 8, 7914-7922.	2.8	35
365	Disentangling the effect of seed size and crystal habit on gold nanoparticle seeded growth. Chemical Communications, 2017, 53, 11360-11363.	2.2	35
366	Plasmon–trion and plasmon–exciton resonance energy transfer from a single plasmonic nanoparticle to monolayer MoS2. Nanoscale, 2017, 9, 13947-13955.	2.8	35
367	Spatially resolved measurements of plasmonic eigenstates in complex-shaped, asymmetric nanoparticles: gold nanostars. EPJ Applied Physics, 2011, 54, 33512.	0.3	34
368	Interplay of Resonant Cavity Modes with Localized Surface Plasmons: Optical Absorption Properties of Bragg Stacks Integrating Gold Nanoparticles. Advanced Materials, 2011, 23, 2108-2112.	11.1	34
369	Gold Nanowire Forests for SERS Detection. ChemistryOpen, 2014, 3, 146-151.	0.9	34
370	CTAB Stabilizes Silver on Gold Nanorods. Chemistry of Materials, 2020, 32, 1650-1656.	3.2	34
371	Nanofiller effect on the glass transition of a polyurethane. Journal of Thermal Analysis and Calorimetry, 2007, 87, 45-47.	2.0	33
372	Flow Dichroism as a Reliable Method to Measure the Hydrodynamic Aspect Ratio of Gold Nanoparticles. ACS Nano, 2011, 5, 4935-4944.	7.3	33
373	Surfactantâ€Assisted Symmetry Breaking in Colloidal Gold Nanocrystal Growth. ChemNanoMat, 2020, 6, 698-707.	1.5	33
374	An Extended Protocol for the Synthesis of Monodisperse Gold Nanotriangles. ACS Nano, 2021, 15, 18600-18607.	7.3	33
375	Surface Plasmon Mapping of Dumbbell-Shaped Gold Nanorods: The Effect of Silver Coating. Langmuir, 2012, 28, 9063-9070.	1.6	32
376	Thermal monitoring during photothermia: hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry. Theranostics, 2019, 9, 7298-7312.	4.6	32
377	Monodisperse Gold Nanorods for High-Pressure Refractive Index Sensing. Journal of Physical Chemistry Letters, 2019, 10, 1587-1593.	2.1	32
378	Live-Cell Surface-Enhanced Raman Spectroscopy Imaging of Intracellular pH: From Two Dimensions to Three Dimensions. ACS Sensors, 2020, 5, 3194-3206.	4.0	32

#	Article	IF	CITATIONS
379	SERS-based immunoassay for monitoring cortisol-related disorders. Biosensors and Bioelectronics, 2020, 165, 112418.	5.3	32
380	New Aspects of Nanocrystal Research. MRS Bulletin, 2001, 26, 981-984.	1.7	31
381	Shape-Templated Growth of Au@Cu Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 2474-2479.	1.5	31
382	Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance. CrystEngComm, 2016, 18, 3422-3427.	1.3	31
383	Chirality of Liquid Crystals Formed from Achiral Molecules Revealed by Resonant Xâ€Ray Scattering. Advanced Materials, 2020, 32, e1905591.	11.1	31
384	Hematite spindles with optical functionalities: Growth of gold nanoshells and assembly of gold nanorods. Journal of Colloid and Interface Science, 2007, 310, 297-301.	5.0	30
385	Optical strain detectors based on gold/elastomer nanoparticulated films. Gold Bulletin, 2007, 40, 6-14.	3.2	30
386	A New Method for Quantitative XEDS Tomography of Complex Heteronanostructures. Particle and Particle Systems Characterization, 2016, 33, 396-403.	1.2	30
387	Environmental Symmetry Breaking Promotes Plasmon Mode Splitting in Gold Nanotriangles. Journal of Physical Chemistry C, 2018, 122, 13259-13266.	1.5	30
388	Double Rabi Splitting in a Strongly Coupled System of Coreâ€"Shell Au@Ag Nanorods and J-Aggregates of Multiple Fluorophores. Journal of Physical Chemistry Letters, 2019, 10, 6137-6143.	2.1	30
389	Time-Resolved Analysis of the Structural Dynamics of Assembling Gold Nanoparticles. ACS Nano, 2019, 13, 6596-6604.	7.3	30
390	3D Characterization and Plasmon Mapping of Gold Nanorods Welded by Femtosecond Laser Irradiation. ACS Nano, 2020, 14, 12558-12570.	7.3	30
391	Shielded Silver Nanorods for Bioapplications. Chemistry of Materials, 2020, 32, 5879-5889.	3.2	30
392	CORE-SHELL NANOPARTICLES AND ASSEMBLIES THEREOF., 2001,, 189-237.		29
393	Fabrication of nano-structured gold films by electrohydrodynamic atomisation. Applied Physics A: Materials Science and Processing, 2008, 91, 141-147.	1.1	29
394	Hierarchical Assembly of Plasmonic Nanoparticles. Chemistry - A European Journal, 2015, 21, 9956-9963.	1.7	29
395	Selective SERS Sensing Modulated by Functionalized Mesoporous Films. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25633-25640.	4.0	29
396	Biocompatible, Multiresponsive Nanogel Composites for Codelivery of Antiangiogenic and Chemotherapeutic Agents. Chemistry of Materials, 2017, 29, 2303-2313.	3.2	29

#	Article	IF	CITATIONS
397	Monitoring plasmon coupling and SERS enhancement through <i>in situ</i> nanoparticle spacing modulation. Faraday Discussions, 2017, 205, 67-83.	1.6	29
398	Reducing Protein Corona Formation and Enhancing Colloidal Stability of Gold Nanoparticles by Capping with Silica Monolayers. Chemistry of Materials, 2019, 31, 57-61.	3.2	29
399	MnO Nanoparticles Embedded in Functional Polymers as $\langle i \rangle T \langle i \rangle \langle sub \rangle 1 \langle sub \rangle$ Contrast Agents for Magnetic Resonance Imaging. ACS Applied Nano Materials, 2020, 3, 3787-3797.	2.4	29
400	Femtosecond dynamics of CdTe quantum dots in water. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 196, 51-58.	2.0	28
401	Breaking the Mode Degeneracy of Surface Plasmon Resonances in a Triangular System. Langmuir, 2012, 28, 8867-8873.	1.6	28
402	A protecting group approach toward synthesis of Au–silica Janus nanostars. Chemical Communications, 2014, 50, 79-81.	2.2	28
403	Colloidal Superstructures with Triangular Cores: Size Effects on SERS Efficiency. ACS Photonics, 2020, 7, 1839-1848.	3.2	28
404	Tailoring the magnetic properties of nickel nanoshells through controlled chemical growth. Journal of Materials Chemistry, 2010, 20, 7360.	6.7	27
405	Antibonding Plasmon Modes in Colloidal Gold Nanorod Clusters. Langmuir, 2012, 28, 8826-8833.	1.6	27
406	Multimode Electron Tomography as a Tool to Characterize the Internal Structure and Morphology of Gold Nanoparticles. Journal of Physical Chemistry C, 2018, 122, 13522-13528.	1.5	27
407	Manipulating chemistry through nanoparticle morphology. Nanoscale Horizons, 2020, 5, 102-108.	4.1	27
408	Exploiting Hydrophobic Interactions at the Nanoscale. Journal of Physical Chemistry Letters, 2014, 5, 2455-2463.	2.1	26
409	Residual CTAB Ligands as Mass Spectrometry Labels to Monitor Cellular Uptake of Au Nanorods. Journal of Physical Chemistry Letters, 2015, 6, 2003-2008.	2.1	26
410	Electrostatic Anchoring of Mn ₄ Singleâ€Molecule Magnets onto Chemically Modified Multiwalled Carbon Nanotubes. Advanced Functional Materials, 2012, 22, 979-988.	7.8	25
411	Exploring the Optical Nonlinearities of Plasmon-Exciton Hybrid Resonances in Coupled Colloidal Nanostructures. Journal of Physical Chemistry C, 2016, 120, 12226-12233.	1.5	25
412	Darkâ€Excitonâ€Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer WS ₂ at Room Temperature. Small, 2019, 15, e1900982.	5. 2	25
413	H-Bonding-mediated binding and charge reorganization of proteins on gold nanoparticles. Physical Chemistry Chemical Physics, 2020, 22, 4490-4500.	1.3	25
414	Self-assembly and magnetism in core-shell microspheres. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 1515-1518.	0.9	24

#	Article	IF	CITATIONS
415	Quantitative Structure Determination of Large Threeâ€Dimensional Nanoparticle Assemblies. Particle and Particle Systems Characterization, 2013, 30, 84-88.	1.2	24
416	A general approach toward polymer-coated plasmonic nanostructures. CrystEngComm, 2014, 16, 9425-9429.	1.3	24
417	Ultrafast Acoustic Vibrations of Bimetallic Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 1591-1599.	1.5	24
418	Targeted Chemoâ€Photothermal Therapy: A Nanomedicine Approximation to Selective Melanoma Treatment. Particle and Particle Systems Characterization, 2018, 35, 1800148.	1.2	24
419	Heat generation by branched Au/Pd nanocrystals: influence of morphology and composition. Nanoscale, 2019, 11, 19561-19570.	2.8	24
420	3Dâ€Printed Biocompatible Scaffolds with Builtâ€In Nanoplasmonic Sensors. Advanced Functional Materials, 2020, 30, 2005407.	7.8	24
421	Synthesis and Optical Characterization of Submicrometer Gold Nanotubes Grown on Goethite Rods. Langmuir, 2008, 24, 9675-9681.	1.6	23
422	Evidence of random magnetic anisotropy in ferrihydrite nanoparticles based on analysis of statistical distributions. Physical Review B, 2008, 77, .	1.1	23
423	SERS Study of the Controllable Release of Nitric Oxide from Aromatic Nitrosothiols on Bimetallic, Bifunctional Nanoparticles Supported on Carbon Nanotubes. ACS Applied Materials & Samp; Interfaces, 2009, 1, 56-59.	4.0	23
424	Real Time Dual-Channel Multiplex SERS Ultradetection. Journal of Physical Chemistry Letters, 2014, 5, 73-79.	2.1	23
425	Composite Polymer Colloids for SERSâ€Based Applications. Chemical Record, 2018, 18, 807-818.	2.9	23
426	Lectin-gated and glycan functionalized mesoporous silica nanocontainers for targeting cancer cells overexpressing Lewis X antigen. Nanoscale, 2018, 10, 239-249.	2.8	23
427	Encapsulation of Noble Metal Nanoparticles through Seeded Emulsion Polymerization as Highly Stable Plasmonic Systems. Advanced Functional Materials, 2019, 29, 1809071.	7.8	23
428	<i>In Vivo</i> Evaluation of Multifunctional Gold Nanorods for Boron Neutron Capture and Photothermal Therapies. ACS Applied Materials & Interfaces, 2021, 13, 49589-49601.	4.0	23
429	Unstable Reshaping of Gold Nanorods Prepared by a Wet Chemical Method in the Presence of Silver Nitrate. Journal of Nanoscience and Nanotechnology, 2006, 6, 3355-3359.	0.9	22
430	MicroRNAâ€Directed Intracellular Selfâ€Assembly of Chiral Nanorod Dimers. Angewandte Chemie, 2018, 130, 10704-10708.	1.6	22
431	Preventing Memory Effects in Surface-Enhanced Raman Scattering Substrates by Polymer Coating and Laser-Activated Deprotection. ACS Nano, 2021, 15, 8984-8995.	7.3	22
432	Laser Heating Tunability by Offâ€Resonant Irradiation of Gold Nanoparticles. Small, 2014, 10, 376-384.	5.2	21

#	Article	IF	CITATIONS
433	Peptides used to make light-twisting nanoparticles. Nature, 2018, 556, 313-314.	13.7	21
434	Caged clusters shine brighter. Science, 2018, 361, 645-645.	6.0	21
435	Mechanistic Insights into the Light-Driven Catalysis of an Immobilized Lipase on Plasmonic Nanomaterials. ACS Catalysis, 2021, 11, 414-423.	5. 5	21
436	Photodegradation of SiO ₂ -Coated CdS Nanoparticles within Silica Gels. Journal of Nanoscience and Nanotechnology, 2001, 1, 95-99.	0.9	20
437	Gold Spiky Nanodumbbells: Anisotropy in Gold Nanostars. Particle and Particle Systems Characterization, 2014, 31, 77-80.	1.2	20
438	Fano Interference in the Optical Absorption of an Individual Gold–Silver Nanodimer. Nano Letters, 2016, 16, 6311-6316.	4.5	20
439	An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells. ACS Nano, 2020, 14, 14655-14664.	7.3	20
440	Mechanically Tunable Latticeâ€Plasmon Resonances by Templated Selfâ€Assembled Superlattices for Multiâ€Wavelength Surfaceâ€Enhanced Raman Spectroscopy. Small Methods, 2021, 5, e2100453.	4.6	20
441	Liquid Crystal Templated Chiral Plasmonic Films with Dynamic Tunability and Moldability. Advanced Functional Materials, 2022, 32, .	7.8	20
442	STUDIES ON THE ATTACHMENT OF DNA TO SILICA-COATED NANOPARTICLES THROUGH A DIELS-ALDER REACTION. Nucleosides, Nucleotides and Nucleic Acids, 2005, 24, 1075-1079.	0.4	19
443	Charging/Discharging of Au (Core)/Silica (Shell) Nanoparticles as Revealed by XPS. Journal of Physical Chemistry B, 2005, 109, 24182-24184.	1.2	19
444	Structural and magnetic studies in ferrihydrite nanoparticles formed within organic-inorganic hybrid matrices. Journal of Applied Physics, 2006, 100, 054301.	1.1	19
445	Symmetry Cancellations in the Quadratic Hyperpolarizability of Non-Centrosymmetric Gold Decahedra. Journal of Physical Chemistry Letters, 2010, 1, 874-880.	2.1	19
446	Nanoplasmonic Enhancement of the Emission of Semiconductor Polymer Composites. Journal of Physical Chemistry C, 2013, 117, 16577-16583.	1.5	19
447	Identification of intracellular gold nanoparticles using surface-enhanced Raman scattering. Nanoscale, 2014, 6, 12403-12407.	2.8	19
448	Sensitivity Limit of Nanoparticle Biosensors in the Discrimination of Single Nucleotide Polymorphism. ACS Sensors, 2016, 1, 1110-1116.	4.0	19
449	Reversible Clustering of Gold Nanoparticles under Confinement. Angewandte Chemie, 2018, 130, 3237-3240.	1.6	19
450	Free-Standing Carbon Nanotube Films as Optical Accumulators for Multiplex SERRS Attomolar Detection. ACS Applied Materials & Samp; Interfaces, 2010, 2, 19-22.	4.0	18

#	Article	IF	Citations
451	Solvent-induced division of plasmonic clusters. Soft Matter, 2013, 9, 9094.	1.2	18
452	Tunable Nanoparticle and Cell Assembly Using Combined Selfâ€Powered Microfluidics and Microcontact Printing. Advanced Functional Materials, 2016, 26, 8053-8061.	7.8	18
453	Silver Ions Direct Twin-Plane Formation during the Overgrowth of Single-Crystal Gold Nanoparticles. ACS Omega, 2016, 1, 177-181.	1.6	18
454	Colloidal systems toward 3D cell culture scaffolds. Advances in Colloid and Interface Science, 2020, 283, 102237.	7.0	18
455	X-Ray Absorption of Gold Nanoparticles with Thin Silica Shell. Journal of Nanoscience and Nanotechnology, 2006, 6, 3503-3506.	0.9	17
456	Regioselective Localization and Tracking of Biomolecules on Single Gold Nanoparticles. Advanced Science, 2015, 2, 1500232.	5.6	17
457	Engineering Structural Diversity in Gold Nanocrystals by Ligand-Mediated Interface Control. Chemistry of Materials, 2015, 27, 8032-8040.	3.2	17
458	Nucleation of Amyloid Oligomers by RepAâ€WH1â€Prionoidâ€Functionalized Gold Nanorods. Angewandte Chemie - International Edition, 2016, 55, 11237-11241.	7.2	17
459	Surface Enhanced Raman Scattering and Gated Materials for Sensing Applications: The Ultrasensitive Detection of <i>Mycoplasma</i> and Cocaine. Chemistry - A European Journal, 2016, 22, 13488-13495.	1.7	17
460	Size-Dependent Transport and Cytotoxicity of Mitomycin-Gold Nanoparticle Conjugates in 2D and 3D Mammalian Cell Models. Bioconjugate Chemistry, 2019, 30, 242-252.	1.8	17
461	Rational Material Design Using Au Core-Shell Nanocrystals. Topics in Current Chemistry, 2003, , 225-246.	4.0	16
462	Monitoring Solvent Evaporation from Thin Films by Localized Surface Plasmon Resonance Shifts. Journal of Physical Chemistry C, 2010, 114, 18379-18383.	1.5	16
463	Chemical Solution Approaches to YBa _{O_{7â^Î}-Au Nanocomposite Superconducting Thin Films. Journal of Nanoscience and Nanotechnology, 2011, 11, 3245-3255.}	0.9	16
464	Static and Dynamic Plasmon-Enhanced Light Scattering from Dispersions of Polymer-Grafted Silver Nanoprisms in the Bulk and Near Solid Surfaces. Journal of Physical Chemistry C, 2012, 116, 3888-3896.	1.5	16
465	Optical properties and coherent vibrational oscillations of gold nanostars. Chemical Physics Letters, 2012, 543, 127-132.	1.2	16
466	Nano as a Rosetta Stone: The Global Roles and Opportunities for Nanoscience and Nanotechnology. ACS Nano, 2019, 13, 10853-10855.	7.3	16
467	Redefining the Experimental and Methods Sections. ACS Nano, 2019, 13, 4862-4864.	7.3	16
468	Chiral nanomaterials: evolving rapidly from concepts to applications. Materials Advances, 2022, 3, 3677-3679.	2.6	16

#	Article	IF	Citations
469	Colloidal Synthesis of Gold Semishells. ChemistryOpen, 2012, 1, 90-95.	0.9	15
470	Nanoparticle-Based Discrimination of Single-Nucleotide Polymorphism in Long DNA Sequences. Bioconjugate Chemistry, 2017, 28, 903-906.	1.8	15
471	Metal Nanoparticle Growth within Clay–Polymer Nacre-Inspired Materials for Improved Catalysis and Plasmonic Detection in Complex Biofluids. Langmuir, 2017, 33, 8774-8783.	1.6	15
472	Real-time dynamic SERS detection of galectin using glycan-decorated gold nanoparticles. Faraday Discussions, 2017, 205, 363-375.	1.6	15
473	Controlling Plasmonâ€Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules. Small, 2017, 13, 1701763.	5.2	15
474	Formation of Hollow Gold Nanocrystals by Nanosecond Laser Irradiation. Journal of Physical Chemistry Letters, 2020, 11, 670-677.	2.1	15
475	In Situ Tracking of Colloidally Stable and Ordered Assemblies of Gold Nanorods. Journal of the American Chemical Society, 2020, 142, 18814-18825.	6.6	15
476	Nanocomposite Scaffolds for Monitoring of Drug Diffusion in Three-Dimensional Cell Environments by Surface-Enhanced Raman Spectroscopy. Nano Letters, 2021, 21, 8785-8793.	4.5	15
477	SERS and Fluorescence-Active Multimodal Tessellated Scaffolds for Three-Dimensional Bioimaging. ACS Applied Materials & Diterfaces, 2022, 14, 20708-20719.	4.0	15
478	Magnificent Seaâ€Anemoneâ€Like Magnetic Silica Capsules Reinforced with Carbon Nanotubes. Small, 2008, 4, 583-586.	5.2	14
479	Optical Response of Ag-Au Bimetallic Nanoparticles to Electron Storage in Aqueous Medium. Journal of Nanoscience and Nanotechnology, 2008, 8, 3003-3007.	0.9	14
480	Integration of Gold Nanoparticles in Optical Resonators. Langmuir, 2012, 28, 9161-9167.	1.6	14
481	Combination of HAADF‧TEM and ADF‧TEM Tomography for Core–Shell Hybrid Materials. Particle and Particle Systems Characterization, 2015, 32, 1063-1067.	1.2	14
482	Plasmonic Detection of Carbohydrateâ€Mediated Biological Events. Advanced Optical Materials, 2018, 6, 1800680.	3.6	14
483	Chemical Nanoplasmonics: Emerging Interdisciplinary Research Field at Crossroads between Nanoscale Chemistry and Plasmonics. Accounts of Chemical Research, 2019, 52, 2995-2996.	7.6	14
484	Bioresponsive, Electroactive, and Inkjetâ€Printable Grapheneâ€Based Inks. Advanced Functional Materials, 2022, 32, 2105028.	7.8	14
485	Layered Silicate Clays as Templates for Anisotropic Gold Nanoparticle Growth. Chemistry of Materials, 2016, 28, 5131-5139.	3.2	13
486	Nanoplasmonically-engineered random lasing in organic semiconductor thin films. Nanoscale Horizons, 2017, 2, 261-266.	4.1	13

#	Article	IF	CITATIONS
487	Osteogenic effects of simvastatin-loaded mesoporous titania thin films. Biomedical Materials (Bristol), 2018, 13, 025017.	1.7	13
488	SANS study of mixed cholesteric cellulose nanocrystal $\hat{a} \in \text{``gold nanorod suspensions.}$ Chemical Communications, 2020, 56, 13001-13004.	2.2	13
489	Controlled Alloying of Au@Ag Core–Shell Nanorods Induced by Femtosecond Laser Irradiation. Advanced Optical Materials, 2021, 9, 2002134.	3.6	13
490	Quantification of the Helical Morphology of Chiral Gold Nanorods. , 2022, 4, 642-649.		13
491	Rapid Volumetric Optoacoustic Tracking of Nanoparticle Kinetics across Murine Organs. ACS Applied Materials & Samp; Interfaces, 2022, 14, 172-178.	4.0	13
492	Biosensing strategies based on enzymatic reactions and nanoparticles. Analyst, The, 2018, 143, 1727-1734.	1.7	12
493	Realâ€Time Reconstruction of Arbitrary Slices for Quantitative and In Situ 3D Characterization of Nanoparticles. Particle and Particle Systems Characterization, 2020, 37, 2000073.	1.2	12
494	Plasmonic Sensing of Refractive Index and Density in Methanol–Ethanol Mixtures at High Pressure. Journal of Physical Chemistry C, 2020, 124, 8978-8983.	1.5	12
495	Nd ³⁺ -Doped Lanthanum Oxychloride Nanocrystals as Nanothermometers. Journal of Physical Chemistry C, 2021, 125, 19887-19896.	1.5	12
496	On the Stiffness of Gold at the Nanoscale. ACS Nano, 2021, 15, 19128-19137.	7.3	12
497	Plasmonic Gradient Arrays for Rapid Screening of Surface-Enhanced Raman Scattering Efficiency: Particle Libraries of Gold Nanostars. Chemistry of Materials, 2021, 33, 8904-8914.	3.2	12
498	Synthesis and assembly of SiO2-coated Bi2S3 nanofibers. Journal of Colloid and Interface Science, 2003, 264, 391-395.	5.0	11
499	Large Scale Synthesis of Highly Pure Single Crystalline Tellurium Nanowires by Thermal Evaporation Method. Journal of Nanoscience and Nanotechnology, 2006, 6, 3380-3383.	0.9	11
500	Toward plasmonic monitoring of surface effects on bacterial quorum-sensing. Current Opinion in Colloid and Interface Science, 2017, 32, 1-10.	3.4	11
501	Mapping Surface Plasmons on a Single Mmetallic Nanoparticle using Sub-nm Resolved EELS Spectrum-Imaging. Microscopy and Microanalysis, 2007, 13, .	0.2	10
502	Light-Driven Catalytic Regulation of Enzymes at the Interface with Plasmonic Nanomaterials. Biochemistry, 2021, 60, 991-998.	1.2	10
503	The Influence of Size, Shape, and Twin Boundaries on Heatâ€Induced Alloying in Individual Au@Ag Core–Shell Nanoparticles. Small, 2021, 17, e2102348.	5 . 2	10
504	Plasmonics. Electron Oscillations and Beyond. Journal of Physical Chemistry Letters, 2013, 4, 1197-1198.	2.1	9

#	Article	IF	CITATIONS
505	Increasing Complexity while Maintaining a High Degree of Symmetry in Nanocrystal Growth. Angewandte Chemie - International Edition, 2015, 54, 3860-3861.	7.2	9
506	Monolayer and thin ⟨i⟩h⟨ i⟩–BN as substrates for electron spectro-microscopy analysis of plasmonic nanoparticles. Applied Physics Letters, 2018, 113, .	1.5	9
507	Monitoring Chemical Reactions with SERS-Active Ag-Loaded Mesoporous TiO ₂ Films. Analytical Chemistry, 2020, 92, 13656-13660.	3.2	9
508	Tuning Size and Seed Position in Small Silver Nanorods. , 2020, 2, 1246-1250.		9
509	SERSTEM: An app for the statistical analysis of correlative SERS and TEM imaging and evaluation of SERS tags performance. Journal of Raman Spectroscopy, 2021, 52, 355-365.	1.2	9
510	Kinetic Regulation of the Synthesis of Pentatwinned Gold Nanorods below Room Temperature. Journal of Physical Chemistry C, 2021, 125, 23937-23944.	1.5	9
511	Tailoring the properties of grafted silver nanoprism composites. Polymer, 2012, 53, 5771-5778.	1.8	8
512	Multilayered Materials Comprising Mesoporous Thin Films and Metal Nanoparticles. Particle and Particle Systems Characterization, 2017, 34, 1600428.	1.2	8
513	Thermal Activation of Gold Atom Diffusion in Au@Pt Nanorods. ACS Nano, 2022, 16, 9608-9619.	7. 3	8
514	Field gradient imaging of nanoparticle systems: analysis of geometry and surface coating effects. Nanotechnology, 2009, 20, 095708.	1.3	7
515	Reliable Methods for Silica Coating of Au Nanoparticles. Methods in Molecular Biology, 2013, 1025, 75-93.	0.4	7
516	Conjugated Polymers As Molecular Gates for Light-Controlled Release of Gold Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2015, 7, 15692-15695.	4.0	7
517	Radial growth of plasmon coupled gold nanowires on colloidal templates. Journal of Colloid and Interface Science, 2015, 449, 87-91.	5.0	7
518	The Role of Chemically Modified DNA in Discrimination of Single-Point Mutation through Plasmon-Based Colorimetric Assays. ACS Applied Nano Materials, 2018, 1, 3741-3746.	2.4	7
519	Trends in Tissue Bioprinting, Cell-Laden Bioink Formulation, and Cell Tracking. ACS Omega, 2022, 7, 16236-16243.	1.6	7
520	Combination of Live Cell Surface-Enhanced Raman Scattering Imaging with Chemometrics to Study Intracellular Nanoparticle Dynamics. ACS Sensors, 2022, 7, 1747-1756.	4.0	7
521	Phase behaviour and physicochemical properties of microemulsions with a non-ionic surfactant (IGEPAL). Colloid and Polymer Science, 1996, 274, 239-244.	1.0	6
522	Chemistry, From Alpha to Omega, Open to All. ACS Omega, 2016, 1, 1-1.	1.6	6

#	Article	IF	CITATIONS
523	Photothermal Therapy: Cancer Cell Internalization of Gold Nanostars Impacts Their Photothermal Efficiency In Vitro and In Vivo: Toward a Plasmonic Thermal Fingerprint in Tumoral Environment (Adv.) Tj ETQq1	1 03784314	rgBT /Over
524	Interfacial Activity of Gold Nanoparticles Coated with a Polymeric Patchy Shell and the Role of Spreading Agents. ACS Omega, 2016, 1, 311-317.	1.6	6
525	Understanding the Effect of Iodide Ions on the Morphology of Gold Nanorods. Particle and Particle Systems Characterization, 2018, 35, 1800051.	1.2	6
526	Templateâ€basierte Herstellung von 2Dâ€photonischen Superkristallen mit verstÃrkter spontaner Emission aus CsPbBr 3 â€Perowskitâ€Nanokristallen. Angewandte Chemie, 2020, 132, 17903-17909.	1.6	6
527	Tuning nanorod surface plasmon resonances. SPIE Newsroom, 2007, , .	0.1	5
528	Microgels and Nanoparticles: Where Micro and Nano Go Hand in Hand. Zeitschrift Fur Physikalische Chemie, 2015, 229, 263-282.	1.4	5
529	Chargeâ€Induced Shifts in Chiral Surface Plasmon Modes in Gold Nanorod Assemblies. Particle and Particle Systems Characterization, 2019, 36, 1800368.	1.2	5
530	SERS monitoring of local pH in encapsulated therapeutic cells. Nanoscale, 2021, 13, 14354-14362.	2.8	5
531	Formation of Large Opals via Drying of Wet Colloidal Crystals. Australian Journal of Chemistry, 2003, 56, 1017.	0.5	5
532	Macroporous Silica Foams Fabricated via Soft Colloid Templating. Small Methods, 2022, 6, e2101491.	4.6	5
533	Robust Encapsulation of Biocompatible Gold Nanosphere Assemblies for Bioimaging via Surface Enhanced Raman Scattering. Advanced Optical Materials, 2022, 10, .	3.6	5
534	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	7.3	4
535	Blocking probe as a potential tool for detection of single nucleotide DNA mutations: design and performance. Nanoscale, 2017, 9, 16205-16213.	2.8	4
536	<i>In My Element</i> : Gold. Chemistry - A European Journal, 2019, 25, 661-661.	1.7	4
537	Correlation between Spectroscopic and Mechanical Properties of Gold Nanocrystals under Pressure. Journal of Physical Chemistry C, 2022, 126, 1982-1990.	1.5	4
538	Size and Shape-Tuned Overgrowth on Au Nanorods Regulated by Polyallylamine. Journal of Nanoscience and Nanotechnology, 2006, 6, 3373-3375.	0.9	3
539	Plasmonic Surfaces for Cell Growth and Retrieval Triggered by Nearâ€Infrared Light. Angewandte Chemie, 2016, 128, 986-990.	1.6	3
540	Plasmonics of Gold Nanorods. Considerations for Biosensing. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 103-111.	0.2	3

#	Article	IF	CITATIONS
541	Anisotropic Silver Nanoparticles: Synthesis and Optical Properties., 2003,, 65-75.		3
542	Preface to the Colloidal Nanoplasmonics Special Issue. Langmuir, 2012, 28, 8825-8825.	1.6	2
543	ACS Omega: The Inaugural Year in Perspective. ACS Omega, 2017, 2, 4030-4031.	1.6	2
544	ACS Omega 2017: A Year-End Expression of Appreciation for the Fundamental Contributions of Our Reviewers. ACS Omega, 2018, 3, 595-607.	1.6	2
545	San Sebastian, a City of (Nano)Science and Technology. ACS Nano, 2019, 13, 12254-12256.	7.3	2
546	Putting the World Back Together and Announcing the 2021 ACS Nano Award Lecture Laureates. ACS Nano, 2021, 15, 7837-7839.	7.3	2
547	Mechanically Tunable Latticeâ€Plasmon Resonances by Templated Selfâ€Assembled Superlattices for Multiâ€Wavelength Surfaceâ€Enhanced Raman Spectroscopy (Small Methods 10/2021). Small Methods, 2021, 5, .	4.6	2
548	3D printed scaffolds: Challenges toward developing relevant cellular in vitro models. Biomaterials and Biosystems, 2022, 6, 100044.	1.0	2
549	Design of Nanoscale Materials Using Silica-Coated Metal Nanocolloids. , 2004, , 227-246.		1
550	Preparation of Noble Metal Colloids and Selected Structures. , 2005, , 1-24.		1
551	Multiphoton Plasmonics: Regioselective Localization and Tracking of Biomolecules on Single Gold Nanoparticles (Adv. Sci. 11/2015). Advanced Science, 2015, 2, .	5.6	1
552	Nucleation of Amyloid Oligomers by RepAâ€WH1â€Prionoidâ€Functionalized Gold Nanorods. Angewandte Chemie, 2016, 128, 11403-11407.	1.6	1
553	Linear and nonlinear optics of hybrid plexitonic nanosystems. , 2017, , .		1
554	Fano Resonances: Tunable Fano Resonance and Plasmon-Exciton Coupling in Single Au Nanotriangles on Monolayer WS2 at Room Temperature (Adv. Mater. 22/2018). Advanced Materials, 2018, 30, 1870155.	11,1	1
555	Tunable Plasmonics by Self-Assembled Stretchable Superlattices on Macroscopic Scale., 2019,,.		1
556	Low-loss-energy EFTEM imaging of triangular silver nanoparticles. , 2008, , 243-244.		1
557	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	7.3	1
558	Tailoring the Morphology and Assembly of Silver Nanoparticles Formed in DMF., 2005, , 525-550.		1

#	Article	IF	CITATIONS
559	Controlled Assembly of Plasmonic Colloidal Nanoparticle Clusters*., 2020,, 321-353.		1
560	The Endless and Turbulent Frontier of Academic Entrepreneurship. ACS Nano, 2021, 15, 16947-16952.	7.3	1
561	Organization of Layer-By-Layer Assembled Nanocomposites. , 2004, , 273-301.		0
562	Effect of Nanoparticles on the Thermal Stability of Polymers. Materials Research Society Symposia Proceedings, 2005, 887, 1.	0.1	0
563	Photoluminescence of Di-Ureasil Hybrids Doped with Silica Coated Ag Nanoparticles. Materials Science Forum, 2006, 514-516, 113-117.	0.3	O
564	Organization of Magnetic/Noble Metal Heterostructures by an Applied External Magnetic Field. Materials Research Society Symposia Proceedings, 2008, 1079, 1.	0.1	0
565	Size dependent surface plasmon resonance broadening in non-spherical nanoparticles: Single gold nanorods., 2013,,.		0
566	The Basque Country Special Issue. Particle and Particle Systems Characterization, 2014, 31, 9-10.	1.2	0
567	Strong coupling detected in the photoluminescence of J-aggregate/plasmon hybrid systems. , 2016, , .		O
568	Titelbild: MicroRNAâ€Directed Intracellular Selfâ€Assembly of Chiral Nanorod Dimers (Angew. Chem.) Tj ETQq0 (0 o rgBT /0	Overlock 10 T
569	Dark Excitons: Darkâ€Excitonâ€Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer WS ₂ at Room Temperature (Small 31/2019). Small, 2019, 15, 1970164.	5.2	O
570	Titelbild: Templateâ€basierte Herstellung von 2Dâ€photonischen Superkristallen mit verstäkter spontaner Emission aus CsPbBr ₃ â€Perowskitâ€Nanokristallen (Angew. Chem. 40/2020). Angewandte Chemie, 2020, 132, 17457-17457.	1.6	0
571	Tailored nanoscale plasmon-enhanced vibrational electron spectroscopy. Microscopy and Microanalysis, 2021, 27, 320-321.	0.2	O
572	Accessing the optical properties of single nanoobjects at the nanometer scale through fast electron based spectroscopies. , 2014, , .		0
573	Plasmonic Nanostructures: Controlling Plasmonâ€Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules (Small 38/2017). Small, 2017, 13, .	5.2	O
574	Analysis of Quorum Sensing by Surface-Enhanced Raman Scattering Spectroscopy., 2020,, 59-77.		0
575	Oleylamine in Nanoparticle Synthesis*. , 2020, , 453-487.		0
576	Preparation And Properties Of Flexible Nanocomposites, Obtained By A Combination Of Colloidal Chemistry And Sol-Gel Approach. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 245-250.	0.2	0

Luis Liz-MarzÃin

#	Article	IF	CITATIONS
577	Quantitative strain determination in nanoparticles using aberration-corrected HREM., 2008,, 221-222.		O
578	Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.	7.3	0
579	Outside Front Cover: Volume 2 Issue 4. SmartMat, 2021, 2, .	6.4	O