Michael S Diamond

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5576577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SARS-CoV-2 Causes Lung Infection without Severe Disease in Human ACE2 Knock-In Mice. Journal of Virology, 2022, 96, JVI0151121.	3.4	58
2	Host cell-intrinsic innate immune recognition of SARS-CoV-2. Current Opinion in Virology, 2022, 52, 30-38.	5.4	32
3	Mesalamine Reduces Intestinal ACE2 Expression Without Modifying SARS-CoV-2 Infection or Disease Severity in Mice. Inflammatory Bowel Diseases, 2022, 28, 318-321.	1.9	5
4	The antibody response to SARS-CoV-2 Beta underscores the antigenic distance to other variants. Cell Host and Microbe, 2022, 30, 53-68.e12.	11.0	52
5	SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature, 2022, 603, 687-692.	27.8	475
6	JIB-04 Has Broad-Spectrum Antiviral Activity and Inhibits SARS-CoV-2 Replication and Coronavirus Pathogenesis. MBio, 2022, 13, e0337721.	4.1	14
7	Advances and gaps in SARS-CoV-2 infection models. PLoS Pathogens, 2022, 18, e1010161.	4.7	61
8	To assess marine cloud brightening's technical feasibility, we need to know what to study—and when to stop. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	14
9	Opportunistic experiments to constrain aerosol effective radiative forcing. Atmospheric Chemistry and Physics, 2022, 22, 641-674.	4.9	44
10	Standardized two-step testing of antibody activity in COVID-19 convalescent plasma. IScience, 2022, 25, 103602.	4.1	6
11	An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nature Medicine, 2022, 28, 490-495.	30.7	577
12	Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Science Translational Medicine, 2022, 14, .	12.4	55
13	A genome-wide CRISPR screen identifies HuR as a regulator of apoptosis induced by dsRNA and virus. Journal of Cell Science, 2022, 135, .	2.0	3
14	A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med, 2022, 3, 188-203.e4.	4.4	11
15	Innate immunity: the first line of defense against SARS-CoV-2. Nature Immunology, 2022, 23, 165-176.	14.5	303
16	Distinct Cellular Tropism and Immune Responses to Alphavirus Infection. Annual Review of Immunology, 2022, 40, 615-649.	21.8	8
17	Resurfaced ZIKV EDIII nanoparticle immunogens elicit neutralizing and protective responses inÂvivo. Cell Chemical Biology, 2022, 29, 811-823.e7.	5.2	6
18	A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates. Science Translational Medicine. 2022. 14	12.4	73

#	Article	IF	CITATIONS
19	Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection in mice. Cell, 2022, 185, 1572-1587.e11.	28.9	71
20	Rationally designed immunogens enable immune focusing following SARS-CoV-2 spike imprinting. Cell Reports, 2022, 38, 110561.	6.4	16
21	Neutralizing antibodies protect mice against Venezuelan equine encephalitis virus aerosol challenge. Journal of Experimental Medicine, 2022, 219, .	8.5	7
22	Defining the risk of SARS-CoV-2 variants on immune protection. Nature, 2022, 605, 640-652.	27.8	117
23	mRNA-1273 and Ad26.COV2.S vaccines protect against the B.1.621 variant of SARS-CoV-2. Med, 2022, 3, 309-324.e6.	4.4	6
24	Isolation of a Potently Neutralizing and Protective Human Monoclonal Antibody Targeting Yellow Fever Virus. MBio, 2022, 13, e0051222.	4.1	7
25	Multivalent designed proteins neutralize SARS-CoV-2 variants of concern and confer protection against infection in mice. Science Translational Medicine, 2022, 14, eabn1252.	12.4	68
26	Nasally delivered interferon-λ protects mice against infection by SARS-CoV-2 variants including Omicron. Cell Reports, 2022, 39, 110799.	6.4	39
27	An antibody targeting the N-terminal domain of SARS-CoV-2 disrupts the spike trimer. Journal of Clinical Investigation, 2022, 132, .	8.2	14
28	Thermodynamically coupled biosensors for detecting neutralizing antibodies against SARS-CoV-2 variants. Nature Biotechnology, 2022, 40, 1336-1340.	17.5	23
29	Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2. Nature, 2022, 607, 119-127.	27.8	174
30	The Translational Landscape of SARS-CoV-2-infected Cells Reveals Suppression of Innate Immune Genes. MBio, 2022, 13, .	4.1	21
31	A Powassan virus domain III nanoparticle immunogen elicits neutralizing and protective antibodies in mice. PLoS Pathogens, 2022, 18, e1010573.	4.7	6
32	mRNA vaccine boosting enhances antibody responses against SARS-CoV-2 Omicron variant in in in in in in in individuals with antibody deficiency syndromes. Cell Reports Medicine, 2022, 3, 100653.	6.5	10
33	IMM-BCP-01, a patient-derived anti–SARS-CoV-2 antibody cocktail, is active across variants of concern including Omicron BA.1 and BA.2. Science Immunology, 2022, 7, .	11.9	8
34	A Multitrait Locus Regulates Sarbecovirus Pathogenesis. MBio, 2022, 13, .	4.1	11
35	Hydrogen–deuterium exchange mass spectrometry identifies spatially distinct antibody epitopes on domain III of the Zika virus envelope protein. Journal of Mass Spectrometry, 2021, 56, e4685.	1.6	6
36	Intercellular Mitochondria Transfer to Macrophages Regulates White Adipose Tissue Homeostasis and Is Impaired in Obesity. Cell Metabolism, 2021, 33, 270-282.e8.	16.2	160

#	Article	IF	CITATIONS
37	A Crisp(r) New Perspective on SARS-CoV-2 Biology. Cell, 2021, 184, 15-17.	28.9	71
38	Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature, 2021, 591, 293-299.	27.8	579
39	TLR3 controls constitutive IFN-Î ² antiviral immunity in human fibroblasts and cortical neurons. Journal of Clinical Investigation, 2021, 131, .	8.2	64
40	An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosol–cloud–radiation interactions in the southeast Atlantic basin. Atmospheric Chemistry and Physics, 2021, 21, 1507-1563.	4.9	97
41	Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nature Medicine, 2021, 27, 717-726.	30.7	838
42	Enteric helminth coinfection enhances host susceptibility to neurotropic flaviviruses via a tuft cell-IL-4 receptor signaling axis. Cell, 2021, 184, 1214-1231.e16.	28.9	48
43	Itaconate confers tolerance to late NLRP3 inflammasome activation. Cell Reports, 2021, 34, 108756.	6.4	105
44	Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization. Cell Host and Microbe, 2021, 29, 477-488.e4.	11.0	700
45	Murine astrovirus tropism for goblet cells and enterocytes facilitates an IFN-λ response in vivo and in enteroid cultures. Mucosal Immunology, 2021, 14, 751-761.	6.0	23
46	SARS-CoV-2 Infects Human EngineeredÂHeart Tissues and Models COVID-19 Myocarditis. JACC Basic To Translational Science, 2021, 6, 331-345.	4.1	121
47	Broadly neutralizing monoclonal antibodies protect against multiple tick-borne flaviviruses. Journal of Experimental Medicine, 2021, 218, .	8.5	22
48	Spatiotemporal Heterogeneity of Aerosol and Cloud Properties Over the Southeast Atlantic: An Observational Analysis. Geophysical Research Letters, 2021, 48, e2020GL091469.	4.0	13
49	The antigenic anatomy of SARS-CoV-2 receptor binding domain. Cell, 2021, 184, 2183-2200.e22.	28.9	331
50	The mechanistic basis of protection by non-neutralizing anti-alphavirus antibodies. Cell Reports, 2021, 35, 108962.	6.4	25
51	Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell, 2021, 184, 2316-2331.e15.	28.9	321
52	Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell, 2021, 184, 1804-1820.e16.	28.9	297
53	A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. Cell Reports Medicine, 2021, 2, 100230.	6.5	99
54	A trans-complementation system for SARS-CoV-2 recapitulates authentic viral replication without virulence. Cell, 2021, 184, 2229-2238.e13.	28.9	51

#	Article	IF	CITATIONS
55	Pharmacological activation of STING blocks SARS-CoV-2 infection. Science Immunology, 2021, 6, .	11.9	123
56	Hypergraph models of biological networks to identify genes critical to pathogenic viral response. BMC Bioinformatics, 2021, 22, 287.	2.6	39
57	Cross-reactive coronavirus antibodies with diverse epitope specificities and Fc effector functions. Cell Reports Medicine, 2021, 2, 100313.	6.5	56
58	On the road to ending the COVID-19 pandemic: Are we there yet?. Virology, 2021, 557, 70-85.	2.4	38
59	An Interview with Michael Diamond, MD, PhD. Journal of Interferon and Cytokine Research, 2021, 41, 200-202.	1.2	0
60	Exploring the elevated water vapor signal associated with the free tropospheric biomass burning plume over the southeast Atlantic Ocean. Atmospheric Chemistry and Physics, 2021, 21, 9643-9668.	4.9	17
61	Western diet induces Paneth cell defects through microbiome alterations and farnesoid X receptor and type I interferon activation. Cell Host and Microbe, 2021, 29, 988-1001.e6.	11.0	69
62	SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Nature, 2021, 596, 109-113.	27.8	586
63	In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains. Nature, 2021, 596, 103-108.	27.8	222
64	Profiling B cell immunodominance after SARS-CoV-2 infection reveals antibody evolution to non-neutralizing viral targets. Immunity, 2021, 54, 1290-1303.e7.	14.3	101
65	SARS-CoV-2 exacerbates proinflammatory responses in myeloid cells through C-type lectin receptors and Tweety family member 2. Immunity, 2021, 54, 1304-1319.e9.	14.3	115
66	An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Reports, 2021, 36, 109452.	6.4	90
67	Assessment of serological assays for identifying high titer convalescent plasma. Transfusion, 2021, 61, 2658-2667.	1.6	7
68	After the pandemic: perspectives on the future trajectory of COVID-19. Nature, 2021, 596, 495-504.	27.8	260
69	Decreased antiviral immune response within the central nervous system of aged mice is associated with increased lethality of West Nile virus encephalitis. Aging Cell, 2021, 20, e13412.	6.7	10
70	Differential usage of transcriptional repressor Zeb2 enhancers distinguishes adult and embryonic hematopoiesis. Immunity, 2021, 54, 1417-1432.e7.	14.3	17
71	Ultrapotent miniproteins targeting the SARS-CoV-2 receptor-binding domain protect against infection and disease. Cell Host and Microbe, 2021, 29, 1151-1161.e5.	11.0	36
72	Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell. Cell Reports, 2021, 36, 109364.	6.4	109

#	Article	IF	CITATIONS
73	Convergent antibody responses to the SARS-CoV-2 spike protein in convalescent and vaccinated individuals. Cell Reports, 2021, 36, 109604.	6.4	67
74	Listeria exploits IFITM3 to suppress antibacterial activity in phagocytes. Nature Communications, 2021, 12, 4999.	12.8	11
75	Pan-protective anti-alphavirus human antibodies target a conserved E1 protein epitope. Cell, 2021, 184, 4414-4429.e19.	28.9	41
76	Therapeutic alphavirus cross-reactive E1 human antibodies inhibit viral egress. Cell, 2021, 184, 4430-4446.e22.	28.9	25
77	A potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitope. Immunity, 2021, 54, 2399-2416.e6.	14.3	79
78	A vaccine-induced public antibody protects against SARS-CoV-2 and emerging variants. Immunity, 2021, 54, 2159-2166.e6.	14.3	52
79	Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nature Microbiology, 2021, 6, 1233-1244.	13.3	237
80	Near-germline human monoclonal antibodies neutralize and protect against multiple arthritogenic alphaviruses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
81	Efficacy and breadth of adjuvanted SARS-CoV-2 receptor-binding domain nanoparticle vaccine in macaques. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	44
82	Tetravalent SARS-CoV-2 Neutralizing Antibodies Show Enhanced Potency and Resistance to Escape Mutations. Journal of Molecular Biology, 2021, 433, 167177.	4.2	31
83	Levels of Circulating NS1 Impact West Nile Virus Spread to the Brain. Journal of Virology, 2021, 95, e0084421.	3.4	13
84	Neutralisation of SARS-CoV-2 lineage P.1 by antibodies elicited through natural SARS-CoV-2 infection or vaccination with an inactivated SARS-CoV-2 vaccine: an immunological study. Lancet Microbe, The, 2021, 2, e527-e535.	7.3	92
85	Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade. JCI Insight, 2021, 6, .	5.0	46
86	Helminth–virus interactions: determinants of coinfection outcomes. Gut Microbes, 2021, 13, 1961202.	9.8	17
87	Human Monoclonal Antibodies against NS1 Protein Protect against Lethal West Nile Virus Infection. MBio, 2021, 12, e0244021.	4.1	12
88	Structure of Venezuelan equine encephalitis virus in complex with the LDLRAD3 receptor. Nature, 2021, 598, 672-676.	27.8	27
89	Implications of a highly divergent dengue virus strain for cross-neutralization, protection, and vaccine immunity. Cell Host and Microbe, 2021, 29, 1634-1648.e5.	11.0	5
90	Structural mechanism of SARS-CoV-2 neutralization by two murine antibodies targeting the RBD. Cell Reports, 2021, 37, 109881.	6.4	14

#	Article	IF	CITATIONS
91	Reduced antibody activity against SARS-CoV-2 B.1.617.2 delta virus in serum of mRNA-vaccinated individuals receiving tumor necrosis factor-α inhibitors. Med, 2021, 2, 1327-1341.e4.	4.4	31
92	SARS-CoV-2 ferritin nanoparticle vaccines elicit broad SARS coronavirus immunogenicity. Cell Reports, 2021, 37, 110143.	6.4	94
93	Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains. Science Translational Medicine, 2021, , eabm3302.	12.4	13
94	A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates Science Translational Medicine, 2021, , eabi5735.	12.4	8
95	A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower Respiratory Tracts against SARS-CoV-2. Cell, 2020, 183, 169-184.e13.	28.9	446
96	Chikungunya Virus Strains from Each Genetic Clade Bind Sulfated Glycosaminoglycans as Attachment Factors. Journal of Virology, 2020, 94, .	3.4	21
97	Antibodies targeting epitopes on the cell-surface form of NS1 protect against Zika virus infection during pregnancy. Nature Communications, 2020, 11, 5278.	12.8	30
98	A molecular understanding of alphavirus entry. PLoS Pathogens, 2020, 16, e1008876.	4.7	62
99	An Agonistic Anti-CD137 Antibody Disrupts Lymphoid Follicle Structure and T-Cell-Dependent Antibody Responses. Cell Reports Medicine, 2020, 1, 100035.	6.5	3
100	Dengue mouse models for evaluating pathogenesis and countermeasures. Current Opinion in Virology, 2020, 43, 50-58.	5.4	32
101	Affinity-Restricted Memory B Cells Dominate Recall Responses to Heterologous Flaviviruses. Immunity, 2020, 53, 1078-1094.e7.	14.3	76
102	Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nature Immunology, 2020, 21, 1506-1516.	14.5	563
103	The Intestinal Microbiome Restricts Alphavirus Infection and Dissemination through a Bile Acid-Type I IFN Signaling Axis. Cell, 2020, 182, 901-918.e18.	28.9	98
104	LDLRAD3 is a receptor for Venezuelan equine encephalitis virus. Nature, 2020, 588, 308-314.	27.8	78
105	Replication-Competent Vesicular Stomatitis Virus Vaccine Vector Protects against SARS-CoV-2-Mediated Pathogenesis in Mice. Cell Host and Microbe, 2020, 28, 465-474.e4.	11.0	156
106	Intramuscular Delivery of Replicon RNA Encoding ZIKV-117 Human Monoclonal Antibody Protects against Zika Virus Infection. Molecular Therapy - Methods and Clinical Development, 2020, 18, 402-414.	4.1	63
107	Integrated pipeline for the accelerated discovery of antiviral antibody therapeutics. Nature Biomedical Engineering, 2020, 4, 1030-1043.	22.5	46
108	Inhibition of PIKfyve kinase prevents infection by Zaire ebolavirus and SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20803-20813.	7.1	154

#	Article	IF	CITATIONS
109	Human mAbs Broadly Protect against Arthritogenic Alphaviruses by Recognizing Conserved Elements of the Mxra8 Receptor-Binding Site. Cell Host and Microbe, 2020, 28, 699-711.e7.	11.0	40
110	Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature, 2020, 584, 443-449.	27.8	956
111	Structural basis of Chikungunya virus inhibition by monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27637-27645.	7.1	35
112	Mechanism of differential Zika and dengue virus neutralization by a public antibody lineage targeting the DIII lateral ridge. Journal of Experimental Medicine, 2020, 217, .	8.5	26
113	Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science, 2020, 370, 950-957.	12.6	504
114	Influenza virus repurposes the antiviral protein IFIT2 to promote translation of viral mRNAs. Nature Microbiology, 2020, 5, 1490-1503.	13.3	45
115	Development and Validation of a Rapid Lateral Flow E1/E2-Antigen Test and ELISA in Patients Infected with Emerging Asian Strain of Chikungunya Virus in the Americas. Viruses, 2020, 12, 971.	3.3	8
116	Association between SARS-CoV-2 Neutralizing Antibodies and Commercial Serological Assays. Clinical Chemistry, 2020, 66, 1538-1547.	3.2	112
117	De novo design of picomolar SARS-CoV-2 miniprotein inhibitors. Science, 2020, 370, 426-431.	12.6	464
118	A cross-reactive antibody protects against Ross River virus musculoskeletal disease despite rapid neutralization escape in mice. PLoS Pathogens, 2020, 16, e1008743.	4.7	12
119	Limited Regional Aerosol and Cloud Microphysical Changes Despite Unprecedented Decline in Nitrogen Oxide Pollution During the February 2020 COVIDâ€19 Shutdown in China. Geophysical Research Letters, 2020, 47, e2020GL088913.	4.0	42
120	SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function. Nature Immunology, 2020, 21, 1327-1335.	14.5	743
121	Human Antibodies Protect against Aerosolized Eastern Equine Encephalitis Virus Infection. Cell, 2020, 183, 1884-1900.e23.	28.9	26
122	Accelerated Preclinical Paths to Support Rapid Development of COVID-19 Therapeutics. Cell Host and Microbe, 2020, 28, 638-645.	11.0	30
123	Barrier-to-Autointegration Factor 1 Protects against a Basal cCAS-STING Response. MBio, 2020, 11, .	4.1	33
124	The continued threat of emerging flaviviruses. Nature Microbiology, 2020, 5, 796-812.	13.3	520
125	Human monoclonal antibodies against Ross River virus target epitopes within the E2 protein and protect against disease. PLoS Pathogens, 2020, 16, e1008517.	4.7	18
126	Ultra-clean and smoky marine boundary layers frequently occur in the same season over the southeast Atlantic. Atmospheric Chemistry and Physics, 2020, 20, 2341-2351.	4.9	12

#	Article	IF	CITATIONS
127	TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Science Immunology, 2020, 5, .	11.9	811
128	The Challenges of Vaccine Development against a New Virus during a Pandemic. Cell Host and Microbe, 2020, 27, 699-703.	11.0	88
129	Identification of Dengue Virus Serotype 3 Specific Antigenic Sites Targeted by Neutralizing Human Antibodies. Cell Host and Microbe, 2020, 27, 710-724.e7.	11.0	25
130	Substantial Cloud Brightening From Shipping in Subtropical Low Clouds. AGU Advances, 2020, 1, e2019AV000111.	5.4	56
131	Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 2020, 583, 290-295.	27.8	1,695
132	Growth, detection, quantification, and inactivation of SARS-CoV-2. Virology, 2020, 548, 39-48.	2.4	209
133	A SARS-CoV-2 Infection Model in Mice Demonstrates Protection by Neutralizing Antibodies. Cell, 2020, 182, 744-753.e4.	28.9	486
134	Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. Cell Host and Microbe, 2020, 28, 475-485.e5.	11.0	380
135	A Potently Neutralizing Antibody Protects Mice against SARS-CoV-2 Infection. Journal of Immunology, 2020, 205, 915-922.	0.8	186
136	Rapid isolation and profiling of a diverse panel of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. Nature Medicine, 2020, 26, 1422-1427.	30.7	450
137	An Evolutionary Insertion in the Mxra8 Receptor-Binding Site Confers Resistance to Alphavirus Infection and Pathogenesis. Cell Host and Microbe, 2020, 27, 428-440.e9.	11.0	26
138	Zika Virus Targets Glioblastoma Stem Cells through a SOX2-Integrin αvβ5 Axis. Cell Stem Cell, 2020, 26, 187-204.e10.	11.1	126
139	Immune correlates of tuberculosis disease and risk translate across species. Science Translational Medicine, 2020, 12, .	12.4	52
140	MyD88-dependent influx of monocytes and neutrophils impairs lymph node B cell responses to chikungunya virus infection via Irf5, Nos2 and Nox2. PLoS Pathogens, 2020, 16, e1008292.	4.7	22
141	Chikungunya Virus Evades Antiviral CD8 + T Cell Responses To Establish Persistent Infection in Joint-Associated Tissues. Journal of Virology, 2020, 94, .	3.4	21
142	Neutralizing Antibody and Soluble ACE2 Inhibition of a Replication-Competent VSV-SARS-CoV-2 and a Clinical Isolate of SARS-CoV-2. SSRN Electronic Journal, 2020, , 3606354.	0.4	16
143	Consumptive coagulopathy of severe yellow fever occurs independently of hepatocellular tropism and massive hepatic injury. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 32648-32656.	7.1	16
144	IMMU-43. ZIKA VIRUS TO TREAT GLIOMA: TURNING COLD TUMORS HOT. Neuro-Oncology, 2020, 22, ii114-ii114.	1.2	0

#	Article	IF	CITATIONS
145	Title is missing!. , 2020, 16, e1008292.		Ο
146	Title is missing!. , 2020, 16, e1008292.		0
147	Title is missing!. , 2020, 16, e1008292.		Ο
148	Title is missing!. , 2020, 16, e1008292.		0
149	Neutralizing antibodies against Mayaro virus require Fc effector functions for protective activity. Journal of Experimental Medicine, 2019, 216, 2282-2301.	8.5	51
150	Zika Virus NS3 Mimics a Cellular 14-3-3-Binding Motif to Antagonize RIG-I- and MDA5-Mediated Innate Immunity. Cell Host and Microbe, 2019, 26, 493-503.e6.	11.0	91
151	Protective Efficacy of Nucleic Acid Vaccines Against Transmission of Zika Virus During Pregnancy in Mice. Journal of Infectious Diseases, 2019, 220, 1577-1588.	4.0	39
152	Distinct Roles of Interferon Alpha and Beta in Controlling Chikungunya Virus Replication and Modulating Neutrophil-Mediated Inflammation. Journal of Virology, 2019, 94, .	3.4	49
153	Human monoclonal antibodies against chikungunya virus target multiple distinct epitopes in the E1 and E2 glycoproteins. PLoS Pathogens, 2019, 15, e1008061.	4.7	35
154	Clearance of Chikungunya Virus Infection in Lymphoid Tissues Is Promoted by Treatment with an Agonistic Anti-CD137 Antibody. Journal of Virology, 2019, 93, .	3.4	7
155	No IL-18BP? Avoid HAV. Journal of Experimental Medicine, 2019, 216, 1728-1729.	8.5	1
156	Dermal and muscle fibroblasts and skeletal myofibers survive chikungunya virus infection and harbor persistent RNA. PLoS Pathogens, 2019, 15, e1007993.	4.7	49
157	A Gorilla Adenovirus-Based Vaccine against Zika Virus Induces Durable Immunity and Confers Protection in Pregnancy. Cell Reports, 2019, 28, 2634-2646.e4.	6.4	19
158	Mechanisms of Pathogen Invasion into the Central Nervous System. Neuron, 2019, 103, 771-783.	8.1	72
159	A protective Zika virus E-dimer-based subunit vaccine engineered to abrogate antibody-dependent enhancement of dengue infection. Nature Immunology, 2019, 20, 1291-1298.	14.5	60
160	Expression of the Mxra8 Receptor Promotes Alphavirus Infection and Pathogenesis in Mice and Drosophila. Cell Reports, 2019, 28, 2647-2658.e5.	6.4	55
161	Interferon lambda protects the female reproductive tract against Zika virus infection. Nature Communications, 2019, 10, 280.	12.8	83
162	Therapeutic efficacy of favipiravir against Bourbon virus in mice. PLoS Pathogens, 2019, 15, e1007790.	4.7	32

#	Article	IF	CITATIONS
163	Zika Virus Causes Acute Infection and Inflammation in the Ovary of Mice Without Apparent Defects in Fertility. Journal of Infectious Diseases, 2019, 220, 1904-1914.	4.0	14
164	Cryo-EM Structure of Chikungunya Virus in Complex with the Mxra8 Receptor. Cell, 2019, 177, 1725-1737.e16.	28.9	104
165	A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Science Immunology, 2019, 4, .	11.9	147
166	Shared and Distinct Functions of Type I and Type III Interferons. Immunity, 2019, 50, 907-923.	14.3	699
167	Optimal therapeutic activity of monoclonal antibodies against chikungunya virus requires Fc-Fcl̂³R interaction on monocytes. Science Immunology, 2019, 4, .	11.9	60
168	Dengue and Zika Virus Cross-Reactive Human Monoclonal Antibodies Protect against Spondweni Virus Infection and Pathogenesis in Mice. Cell Reports, 2019, 26, 1585-1597.e4.	6.4	18
169	A protective human monoclonal antibody targeting the West Nile virus E protein preferentially recognizes mature virions. Nature Microbiology, 2019, 4, 71-77.	13.3	25
170	Protective antibodies against Eastern equine encephalitis virus bind to epitopes in domains A and B of the E2 glycoprotein. Nature Microbiology, 2019, 4, 187-197.	13.3	45
171	Immune responses at the maternal-fetal interface. Science Immunology, 2019, 4, .	11.9	380
172	Structural basis of a potent human monoclonal antibody against Zika virus targeting a quaternary epitope. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1591-1596.	7.1	53
173	Zika Virus Vaccine Development: Progress in the Face of New Challenges. Annual Review of Medicine, 2019, 70, 121-135.	12.2	76
174	Human IFIT3 Modulates IFIT1 RNA Binding Specificity and Protein Stability. Immunity, 2018, 48, 487-499.e5.	14.3	94
175	Mouse and Human Monoclonal Antibodies Protect against Infection by Multiple Genotypes of Japanese Encephalitis Virus. MBio, 2018, 9, .	4.1	32
176	Zika virus–related neurotropic flaviviruses infect human placental explants and cause fetal demise in mice. Science Translational Medicine, 2018, 10, .	12.4	85
177	Cellular and Humoral Immunity Protect against Vaginal Zika Virus Infection in Mice. Journal of Virology, 2018, 92, .	3.4	54
178	Oral Antibiotic Treatment of Mice Exacerbates the Disease Severity of Multiple Flavivirus Infections. Cell Reports, 2018, 22, 3440-3453.e6.	6.4	97
179	<i>Irg1</i> expression in myeloid cells prevents immunopathology during <i>M. tuberculosis</i> infection. Journal of Experimental Medicine, 2018, 215, 1035-1045.	8.5	190
180	Time-dependent entrainment of smoke presents an observational challenge for assessing aerosol–cloud interactions over the southeast Atlantic Ocean. Atmospheric Chemistry and Physics, 2018, 18, 14623-14636.	4.9	50

#	Article	IF	CITATIONS
181	Remote Sensing of Droplet Number Concentration in Warm Clouds: A Review of the Current State of Knowledge and Perspectives. Reviews of Geophysics, 2018, 56, 409-453.	23.0	185
182	WDFY4 is required for cross-presentation in response to viral and tumor antigens. Science, 2018, 362, 694-699.	12.6	216
183	Maternally Acquired Zika Antibodies Enhance Dengue Disease Severity in Mice. Cell Host and Microbe, 2018, 24, 743-750.e5.	11.0	69
184	Efficacy of a T Cell-Biased Adenovirus Vector as a Zika Virus Vaccine. Scientific Reports, 2018, 8, 18017.	3.3	33
185	Cryo-EM Structures of Eastern Equine Encephalitis Virus Reveal Mechanisms of Virus Disassembly and Antibody Neutralization. Cell Reports, 2018, 25, 3136-3147.e5.	6.4	49
186	An mRNA Vaccine Protects Mice against Multiple Tick-Transmitted Flavivirus Infections. Cell Reports, 2018, 25, 3382-3392.e3.	6.4	79
187	The Interferon-Induced Exonuclease ISG20 Exerts Antiviral Activity through Upregulation of Type I Interferon Response Proteins. MSphere, 2018, 3, .	2.9	49
188	Intestinal Dysmotility Syndromes following Systemic Infection by Flaviviruses. Cell, 2018, 175, 1198-1212.e12.	28.9	53
189	Animal Models of Zika Virus Infection during Pregnancy. Viruses, 2018, 10, 598.	3.3	60
190	The emergence of Zika virus and its new clinical syndromes. Nature, 2018, 560, 573-581.	27.8	303
191	Mxra8 is a receptor for multiple arthritogenic alphaviruses. Nature, 2018, 557, 570-574.	27.8	254
192	Cross-reactive Dengue virus-specific CD8+ T cells protect against Zika virus during pregnancy. Nature Communications, 2018, 9, 3042.	12.8	93
193	Zika virus vaccines: immune response, current status, and future challenges. Current Opinion in Immunology, 2018, 53, 130-136.	5.5	45
194	An Immunocompetent Mouse Model of Zika Virus Infection. Cell Host and Microbe, 2018, 23, 672-685.e6.	11.0	192
195	Antigen-specific antibody Fc glycosylation enhances humoral immunity via the recruitment of complement. Science Immunology, 2018, 3, .	11.9	78
196	Closing in on a Zika virus vaccine. Nature Reviews Immunology, 2018, 18, 89-90.	22.7	8
197	MAVS Is Essential for Primary CD4 ⁺ T Cell Immunity but Not for Recall T Cell Responses following an Attenuated West Nile Virus Infection. Journal of Virology, 2017, 91, .	3.4	8
198	MPLEx: a method for simultaneous pathogen inactivation and extraction of samples for multi-omics profiling. Analyst, The, 2017, 142, 442-448.	3.5	43

#	Article	IF	CITATIONS
199	Mapping and Role of the CD8 + T Cell Response During Primary Zika Virus Infection in Mice. Cell Host and Microbe, 2017, 21, 35-46.	11.0	211
200	Therapy with CTLA4-Ig and an antiviral monoclonal antibody controls chikungunya virus arthritis. Science Translational Medicine, 2017, 9, .	12.4	67
201	Animal Models of Zika Virus Infection, Pathogenesis, and Immunity. Journal of Virology, 2017, 91, .	3.4	225
202	Modified mRNA Vaccines Protect against Zika Virus Infection. Cell, 2017, 168, 1114-1125.e10.	28.9	633
203	Zika Virus Pathogenesis and Tissue Tropism. Cell Host and Microbe, 2017, 21, 134-142.	11.0	337
204	AXL-dependent infection of human fetal endothelial cells distinguishes Zika virus from other pathogenic flaviviruses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2024-2029.	7.1	177
205	Maternal-Fetal Transmission of Zika Virus: Routes and Signals for Infection. Journal of Interferon and Cytokine Research, 2017, 37, 287-294.	1.2	44
206	Vaccination strategies against Zika virus. Current Opinion in Virology, 2017, 23, 59-67.	5.4	62
207	TAM Receptors Are Not Required for Zika Virus Infection in Mice. Cell Reports, 2017, 19, 558-568.	6.4	125
208	Dengue Antibodies, then Zika: A Fatal Sequence in Mice. Immunity, 2017, 46, 771-773.	14.3	17
209	Editorial overview: Viral pathogenesis: Strategies for virus survival — Acute versus persistent infections. Current Opinion in Virology, 2017, 23, v.	5.4	7
210	Negative regulators of the RIGâ€lâ€like receptor signaling pathway. European Journal of Immunology, 2017, 47, 615-628.	2.9	85
211	A human antibody against Zika virus crosslinks the E protein to prevent infection. Nature Communications, 2017, 8, 14722.	12.8	122
212	Pre-clinical development of a hydrogen peroxide-inactivated West Nile virus vaccine. Vaccine, 2017, 35, 283-292.	3.8	15
213	Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection. Nature Immunology, 2017, 18, 1261-1269.	14.5	95
214	Interferon Regulatory Factor 1 Protects against Chikungunya Virus-Induced Immunopathology by Restricting Infection in Muscle Cells. Journal of Virology, 2017, 91, .	3.4	45
215	Zika virus has oncolytic activity against glioblastoma stem cells. Journal of Experimental Medicine, 2017, 214, 2843-2857.	8.5	179
216	Gestational Stage and IFN-λ Signaling Regulate ZIKV Infection In Utero. Cell Host and Microbe, 2017, 22, 366-376.e3.	11.0	137

#	Article	IF	CITATIONS
217	A single-dose live-attenuated vaccine prevents Zika virus pregnancy transmission and testis damage. Nature Communications, 2017, 8, 676.	12.8	125
218	Inhibition of autophagy limits vertical transmission of Zika virus in pregnant mice. Journal of Experimental Medicine, 2017, 214, 2303-2313.	8.5	170
219	Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease. Cell, 2017, 170, 273-283.e12.	28.9	224
220	Mutations in the E2 Glycoprotein and the 3′ Untranslated Region Enhance Chikungunya Virus Virulence in Mice. Journal of Virology, 2017, 91, .	3.4	28
221	Dengue virus-reactive CD8+ T cells mediate cross-protection against subsequent Zika virus challenge. Nature Communications, 2017, 8, 1459.	12.8	129
222	An IRF-3-, IRF-5-, and IRF-7-Independent Pathway of Dengue Viral Resistance Utilizes IRF-1 to Stimulate Type I and II Interferon Responses. Cell Reports, 2017, 21, 1600-1612.	6.4	53
223	The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral Research, 2017, 137, 134-140.	4.1	217
224	Influenza virus differentially activates mTORC1 and mTORC2 signaling to maximize late stage replication. PLoS Pathogens, 2017, 13, e1006635.	4.7	74
225	A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS Pathogens, 2017, 13, e1006178.	4.7	69
226	Therapeutic administration of a recombinant human monoclonal antibody reduces the severity of chikungunya virus disease in rhesus macaques. PLoS Neglected Tropical Diseases, 2017, 11, e0005637.	3.0	55
227	Plasmodium falciparum histidine-rich protein II causes vascular leakage and exacerbates experimental cerebral malaria in mice. PLoS ONE, 2017, 12, e0177142.	2.5	19
228	Protection of mice deficient in mature B cells from West Nile virus infection by passive and active immunization. PLoS Pathogens, 2017, 13, e1006743.	4.7	16
229	The Interferon-Stimulated Gene <i>Ifitm3</i> Restricts West Nile Virus Infection and Pathogenesis. Journal of Virology, 2016, 90, 8212-8225.	3.4	83
230	Itaconate Links Inhibition of Succinate Dehydrogenase with Macrophage Metabolic Remodeling and Regulation of Inflammation. Cell Metabolism, 2016, 24, 158-166.	16.2	944
231	A Mouse Model of Zika Virus Pathogenesis. Cell Host and Microbe, 2016, 19, 720-730.	11.0	818
232	MAVS Expressed by Hematopoietic Cells Is Critical for Control of West Nile Virus Infection and Pathogenesis. Journal of Virology, 2016, 90, 7098-7108.	3.4	23
233	Immunodominant West Nile Virus T Cell Epitopes Are Fewer in Number and Fashionably Late. Journal of Immunology, 2016, 196, 4263-4273.	0.8	11
234	Understanding How Zika Virus Enters and Infects Neural Target Cells. Cell Stem Cell, 2016, 18, 559-560.	11.1	52

#	Article	IF	CITATIONS
235	Dengue Virus Immunopathogenesis: Lessons Applicable to the Emergence of Zika Virus. Journal of Molecular Biology, 2016, 428, 3429-3448.	4.2	33
236	Zika Virus Infection during Pregnancy in Mice Causes Placental Damage and Fetal Demise. Cell, 2016, 165, 1081-1091.	28.9	737
237	Zika Virus Infection in Mice Causes Panuveitis with Shedding of Virus in Tears. Cell Reports, 2016, 16, 3208-3218.	6.4	243
238	A Library of Infectious Hepatitis C Viruses with Engineered Mutations in the E2 Gene Reveals Growth-Adaptive Mutations That Modulate Interactions with Scavenger Receptor Class B Type I. Journal of Virology, 2016, 90, 10499-10512.	3.4	22
239	Structural Basis of Zika Virus-Specific Antibody Protection. Cell, 2016, 166, 1016-1027.	28.9	325
240	Pathogenic Chikungunya Virus Evades B Cell Responses to Establish Persistence. Cell Reports, 2016, 16, 1326-1338.	6.4	62
241	The Interferon-Stimulated Gene IFITM3 Restricts Infection and Pathogenesis of Arthritogenic and Encephalitic Alphaviruses. Journal of Virology, 2016, 90, 8780-8794.	3.4	83
242	Broadly Neutralizing Activity of Zika Virus-Immune Sera Identifies a Single Viral Serotype. Cell Reports, 2016, 16, 1485-1491.	6.4	190
243	Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nature Medicine, 2016, 22, 1256-1259.	30.7	241
244	Enhancing dengue virus maturation using a stable furin over-expressing cell line. Virology, 2016, 497, 33-40.	2.4	69
245	Modeling Zika Virus Infection in Pregnancy. New England Journal of Medicine, 2016, 375, 481-484.	27.0	93
246	An ultrasensitive electrogenerated chemiluminescence-based immunoassay for specific detection of Zika virus. Scientific Reports, 2016, 6, 32227.	3.3	40
247	Immune-Mediated Protection and Pathogenesis of Chikungunya Virus. Journal of Immunology, 2016, 197, 4210-4218.	0.8	55
248	Secreted NS1 Protects Dengue Virus from Mannose-Binding Lectin–Mediated Neutralization. Journal of Immunology, 2016, 197, 4053-4065.	0.8	64
249	Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature, 2016, 540, 443-447.	27.8	349
250	Innate immune escape by Dengue and West Nile viruses. Current Opinion in Virology, 2016, 20, 119-128.	5.4	57
251	Zika virus infection damages the testes in mice. Nature, 2016, 540, 438-442.	27.8	430
252	Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nature Immunology, 2016, 17, 966-975.	14.5	144

#	Article	IF	CITATIONS
253	Plasmodium falciparum Histidine-Rich Protein II Compromises Brain Endothelial Barriers and May Promote Cerebral Malaria Pathogenesis. MBio, 2016, 7, .	4.1	58
254	Mechanisms of Zika Virus Infection and Neuropathogenesis. DNA and Cell Biology, 2016, 35, 367-372.	1.9	40
255	Mechanisms of restriction of viral neuroinvasion at the blood–brain barrier. Current Opinion in Immunology, 2016, 38, 18-23.	5.5	90
256	Antibody Response to Hypervariable Region 1 Interferes with Broadly Neutralizing Antibodies to Hepatitis C Virus. Journal of Virology, 2016, 90, 3112-3122.	3.4	59
257	Zika Virus: New Clinical Syndromes and Its Emergence in the Western Hemisphere. Journal of Virology, 2016, 90, 4864-4875.	3.4	382
258	The Interferon-Stimulated Gene <i>Ifi27l2a</i> Restricts West Nile Virus Infection and Pathogenesis in a Cell-Type- and Region-Specific Manner. Journal of Virology, 2016, 90, 2600-2615.	3.4	48
259	Interferon-Regulatory Factor 5-Dependent Signaling Restricts Orthobunyavirus Dissemination to the Central Nervous System. Journal of Virology, 2016, 90, 189-205.	3.4	22
260	Identifying Candidate Targets of Immune Responses in Zika Virus Based on Homology to Epitopes in Other Flavivirus Species. PLOS Currents, 2016, 8, .	1.4	64
261	AXL receptor tyrosine kinase is required for T cell priming and antiviral immunity. ELife, 2016, 5, .	6.0	54
262	Occurrence and trends of eastern and central Pacific El Niño in different reconstructed SST data sets. Geophysical Research Letters, 2015, 42, 10,375.	4.0	6
263	Selective Blockade of Interferon-α and -β Reveals Their Non-Redundant Functions in a Mouse Model of West Nile Virus Infection. PLoS ONE, 2015, 10, e0128636.	2.5	47
264	Age-Dependent Cell Trafficking Defects in Draining Lymph Nodes Impair Adaptive Immunity and Control of West Nile Virus Infection. PLoS Pathogens, 2015, 11, e1005027.	4.7	83
265	Preparing for the Next Epidemic with Basic Virology. PLoS Pathogens, 2015, 11, e1005182.	4.7	2
266	Neutralizing Monoclonal Antibodies Block Chikungunya Virus Entry and Release by Targeting an Epitope Critical to Viral Pathogenesis. Cell Reports, 2015, 13, 2553-2564.	6.4	86
267	New insights into innate immune restriction of West Nile virus infection. Current Opinion in Virology, 2015, 11, 1-6.	5.4	43
268	Brief Report: Chikungunya Viral Arthritis in the United States: A Mimic of Seronegative Rheumatoid Arthritis. Arthritis and Rheumatology, 2015, 67, 1214-1220.	5.6	122
269	The 5′ and 3′ ends of alphavirus RNAs – Non-coding is not non-functional. Virus Research, 2015, 206, 99-107.	2.2	70
270	Oropouche Virus Infection and Pathogenesis Are Restricted by MAVS, IRF-3, IRF-7, and Type I Interferon Signaling Pathways in Nonmyeloid Cells. Journal of Virology, 2015, 89, 4720-4737.	3.4	37

#	Article	IF	CITATIONS
271	Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell, 2015, 162, 488-492.	28.9	219
272	Isolation and Characterization of Broad and Ultrapotent Human Monoclonal Antibodies with Therapeutic Activity against Chikungunya Virus. Cell Host and Microbe, 2015, 18, 86-95.	11.0	116
273	Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae Families. Journal of Virology, 2015, 89, 9465-9476.	3.4	38
274	Interferon-λ: Immune Functions at Barrier Surfaces and Beyond. Immunity, 2015, 43, 15-28.	14.3	381
275	Innate immune interactions within the central nervous system modulate pathogenesis of viral infections. Current Opinion in Immunology, 2015, 36, 47-53.	5.5	36
276	IFIT1 Differentially Interferes with Translation and Replication of Alphavirus Genomes and Promotes Induction of Type I Interferon. PLoS Pathogens, 2015, 11, e1004863.	4.7	88
277	Hepatitis C Virus RNA Replication Depends on Specific Cis- and Trans-Acting Activities of Viral Nonstructural Proteins. PLoS Pathogens, 2015, 11, e1004817.	4.7	26
278	Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. Science Translational Medicine, 2015, 7, 284ra59.	12.4	197
279	Innate immune restriction and antagonism of viral RNA lacking 2×3-O methylation. Virology, 2015, 479-480, 66-74.	2.4	147
280	RIG-I Signaling Is Essential for Influenza B Virus-Induced Rapid Interferon Gene Expression. Journal of Virology, 2015, 89, 12014-12025.	3.4	36
281	Cryo-EM structures elucidate neutralizing mechanisms of anti-chikungunya human monoclonal antibodies with therapeutic activity. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13898-13903.	7.1	50
282	The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity. Nature Medicine, 2015, 21, 1464-1472.	30.7	113
283	Broadly Neutralizing Alphavirus Antibodies Bind an Epitope on E2 and Inhibit Entry and Egress. Cell, 2015, 163, 1095-1107.	28.9	157
284	Defining New Therapeutics Using a More Immunocompetent Mouse Model of Antibody-Enhanced Dengue Virus Infection. MBio, 2015, 6, e01316-15.	4.1	40
285	Commensal microbes and interferon-λ determine persistence of enteric murine norovirus infection. Science, 2015, 347, 266-269.	12.6	386
286	A Game of Numbers. Progress in Molecular Biology and Translational Science, 2015, 129, 141-166.	1.7	42
287	Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity. Science, 2015, 347, 269-273.	12.6	308
288	Structure of Acidic pH Dengue Virus Showing the Fusogenic Glycoprotein Trimers. Journal of Virology, 2015, 89, 743-750.	3.4	56

#	Article	IF	CITATIONS
289	Utilization of an Eilat Virus-Based Chimera for Serological Detection of Chikungunya Infection. PLoS Neglected Tropical Diseases, 2015, 9, e0004119.	3.0	48
290	GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation. PLoS ONE, 2015, 10, e0133854.	2.5	25
291	Vaccination of Mice Using the West Nile Virus E-Protein in a DNA Prime-Protein Boost Strategy Stimulates Cell-Mediated Immunity and Protects Mice against a Lethal Challenge. PLoS ONE, 2014, 9, e87837.	2.5	32
292	Generation and Analysis of Novel Plant-Derived Antibody-Based Therapeutic Molecules against West Nile Virus. PLoS ONE, 2014, 9, e93541.	2.5	53
293	MDA5 and autoimmune disease. Nature Genetics, 2014, 46, 418-419.	21.4	19
294	c-Myc-induced transcription factor AP4 is required for host protection mediated by CD8+ T cells. Nature Immunology, 2014, 15, 884-893.	14.5	85
295	Potent Dengue Virus Neutralization by a Therapeutic Antibody with Low Monovalent Affinity Requires Bivalent Engagement. PLoS Pathogens, 2014, 10, e1004072.	4.7	51
296	Genome-Wide RNAi Screen Identifies Broadly-Acting Host Factors That Inhibit Arbovirus Infection. PLoS Pathogens, 2014, 10, e1003914.	4.7	78
297	Experimental Infection of Rhesus Macaques and Common Marmosets with a European Strain of West Nile Virus. PLoS Neglected Tropical Diseases, 2014, 8, e2797.	3.0	19
298	Deficient IFN Signaling by Myeloid Cells Leads to MAVS-Dependent Virus-Induced Sepsis. PLoS Pathogens, 2014, 10, e1004086.	4.7	63
299	Interferon Regulatory Factor 5-Dependent Immune Responses in the Draining Lymph Node Protect against West Nile Virus Infection. Journal of Virology, 2014, 88, 11007-11021.	3.4	24
300	Dendritic Cells in Dengue Virus Infection: Targets of Virus Replication and Mediators of Immunity. Frontiers in Immunology, 2014, 5, 647.	4.8	96
301	Matrix-Mâ,,¢ adjuvanted envelope protein vaccine protects against lethal lineage 1 and 2 West Nile virus infection in mice. Vaccine, 2014, 32, 800-808.	3.8	28
302	K63-linked polyubiquitination of transcription factor IRF1 is essential for IL-1-induced production of chemokines CXCL10 and CCL5. Nature Immunology, 2014, 15, 231-238.	14.5	113
303	Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature, 2014, 505, 691-695.	27.8	773
304	Chikungunya Viruses That Escape Monoclonal Antibody Therapy Are Clinically Attenuated, Stable, and Not Purified in Mosquitoes. Journal of Virology, 2014, 88, 8213-8226.	3.4	67
305	Vaccine Development as a Means to Control Dengue Virus Pathogenesis: Do We Know Enough?. Annual Review of Virology, 2014, 1, 375-398.	6.7	15
306	IFIT1: A dual sensor and effector molecule that detects non-2′-O methylated viral RNA and inhibits its translation. Cytokine and Growth Factor Reviews, 2014, 25, 543-550.	7.2	90

#	Article	IF	CITATIONS
307	Increased Frequency of Tim-3 Expressing T Cells Is Associated with Symptomatic West Nile Virus Infection. PLoS ONE, 2014, 9, e92134.	2.5	17
308	Vaccine-Induced Protection of Rhesus Macaques against Plasma Viremia after Intradermal Infection with a European Lineage 1 Strain of West Nile Virus. PLoS ONE, 2014, 9, e112568.	2.5	13
309	Abstract 76: Genome Wide Association Study of Early Neurological Deterioration after Acute Ischemic Stroke Defines the Interferon-Stimulated Gene IFIT1 as a Neuroprotective Factor. Stroke, 2014, 45, .	2.0	0
310	Propagation, Quantification, Detection, and Storage of West Nile Virus. Current Protocols in Microbiology, 2013, 31, 15D.3.1-15D.3.18.	6.5	104
311	Non-structural protein-1 is required for West Nile virus replication complex formation and viral RNA synthesis. Virology Journal, 2013, 10, 339.	3.4	37
312	The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nature Reviews Immunology, 2013, 13, 46-57.	22.7	656
313	Host Restriction Factor Screening: Let the Virus Do the Work. Cell Host and Microbe, 2013, 14, 229-231.	11.0	6
314	Development of a Highly Protective Combination Monoclonal Antibody Therapy against Chikungunya Virus. PLoS Pathogens, 2013, 9, e1003312.	4.7	228
315	Structural Basis of Differential Neutralization of DENV-1 Genotypes by an Antibody that Recognizes a Cryptic Epitope. PLoS Pathogens, 2012, 8, e1002930.	4.7	103
316	A cross-protective mAb recognizes a novel epitope within the flavivirus NS1 protein. Journal of General Virology, 2012, 93, 20-26.	2.9	22
317	Cell-intrinsic innate immune control of West Nile virus infection. Trends in Immunology, 2012, 33, 522-530.	6.8	46
318	Poorly Neutralizing Cross-Reactive Antibodies against the Fusion Loop of West Nile Virus Envelope Protein Protect <i>In Vivo</i> via Fcl³ Receptor and Complement-Dependent Effector Mechanisms. Journal of Virology, 2011, 85, 11567-11580.	3.4	110
319	Neutralizing Monoclonal Antibodies against Hepatitis C Virus E2 Protein Bind Discontinuous Epitopes and Inhibit Infection at a Postattachment Step. Journal of Virology, 2011, 85, 7005-7019.	3.4	120
320	2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 2010, 468, 452-456.	27.8	736
321	The Development of Therapeutic Antibodies That Neutralize Homologous and Heterologous Genotypes of Dengue Virus Type 1. PLoS Pathogens, 2010, 6, e1000823.	4.7	192
322	Development of Resistance to Passive Therapy with a Potently Neutralizing Humanized Monoclonal Antibody against West Nile Virus. Journal of Infectious Diseases, 2009, 200, 202-205.	4.0	33
323	Virus and Host Determinants of West Nile Virus Pathogenesis. PLoS Pathogens, 2009, 5, e1000452.	4.7	38
324	A Therapeutic Antibody against West Nile Virus Neutralizes Infection by Blocking Fusion within Endosomes. PLoS Pathogens, 2009, 5, e1000453.	4.7	84

#	Article	IF	CITATIONS
325	On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes. Journal of General Virology, 2009, 90, 799-809.	2.9	73
326	Progress on the development of therapeutics against West Nile virus. Antiviral Research, 2009, 83, 214-227.	4.1	106
327	Mechanisms of Evasion of the Type I Interferon Antiviral Response by Flaviviruses. Journal of Interferon and Cytokine Research, 2009, 29, 521-530.	1.2	72
328	The host immunologic response to West Nile encephalitis virus. Frontiers in Bioscience - Landmark, 2009, Volume, 3024.	3.0	53
329	The structural immunology of antibody protection against West Nile virus. Immunological Reviews, 2008, 225, 212-225.	6.0	118
330	Ebola Images Emerge from the Cave. Cell Host and Microbe, 2008, 4, 87-89.	11.0	1
331	Maturation of West Nile Virus Modulates Sensitivity to Antibody-Mediated Neutralization. PLoS Pathogens, 2008, 4, e1000060.	4.7	158
332	Induction of Epitope-Specific Neutralizing Antibodies against West Nile Virus. Journal of Virology, 2007, 81, 11828-11839.	3.4	157
333	The Stoichiometry of Antibody-Mediated Neutralization and Enhancement of West Nile Virus Infection. Cell Host and Microbe, 2007, 1, 135-145.	11.0	262
334	Antibody Recognition and Neutralization Determinants on Domains I and II of West Nile Virus Envelope Protein. Journal of Virology, 2006, 80, 12149-12159.	3.4	272
335	A genetic basis for human susceptibility to West Nile virus. Trends in Microbiology, 2006, 14, 287-289.	7.7	33
336	A rapid and quantitative assay for measuring antibody-mediated neutralization of West Nile virus infection. Virology, 2006, 346, 53-65.	2.4	197
337	Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nature Medicine, 2005, 11, 522-530.	30.7	477
338	Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature, 2005, 437, 764-769.	27.8	332
339	Development of effective therapies against West Nile virus infection. Expert Review of Anti-Infective Therapy, 2005, 3, 931-944.	4.4	24
340	Evasion of innate and adaptive immunity by flaviviruses. Immunology and Cell Biology, 2003, 81, 196-206.	2.3	103
341	Innate and Adaptive Immune Responses Determine Protection against Disseminated Infection by West Nile Encephalitis Virus. Viral Immunology, 2003, 16, 259-278.	1.3	177
342	A Critical Role for Induced IgM in the Protection against West Nile Virus Infection. Journal of Experimental Medicine, 2003, 198, 1853-1862.	8.5	261

0

#	Article	IF	CITATIONS
343	B Cells and Antibody Play Critical Roles in the Immediate Defense of Disseminated Infection by West Nile Encephalitis Virus. Journal of Virology, 2003, 77, 2578-2586.	3.4	433

West Nile Encephalitis Virus. , 0, , 489-492.