Geoffrey T Swanson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5576238/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The Antiseizure Drug Perampanel Is a Subunit-Selective Negative Allosteric Modulator of Kainate Receptors. Journal of Neuroscience, 2022, 42, 5499-5509.	3.6	12
2	Enhanced Synaptic Transmission in the Extended Amygdala and Altered Excitability in an Extended Amygdala to Brainstem Circuit in a Dravet Syndrome Mouse Model. ENeuro, 2021, 8, ENEURO.0306-20.2021.	1.9	10
3	Clustered mutations in the GRIK2 kainate receptor subunit gene underlie diverse neurodevelopmental disorders. American Journal of Human Genetics, 2021, 108, 1692-1709.	6.2	18
4	Activity-dependent Golgi satellite formation in dendrites reshapes the neuronal surface glycoproteome. ELife, 2021, 10, .	6.0	23
5	Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacological Reviews, 2021, 73, 1469-1658.	16.0	237
6	Orai1 Channels Are Essential for Amplification of Glutamate-Evoked Ca2+ Signals in Dendritic Spines to Regulate Working and Associative Memory. Cell Reports, 2020, 33, 108464.	6.4	24
7	Auxiliary Proteins are the Predominant Determinants of Differential Efficacy of Clinical Candidates Acting as AMPA Receptor Positive Allosteric Modulators. Molecular Pharmacology, 2020, 97, 336-350.	2.3	13
8	Phosphorylation of the HCN channel auxiliary subunit TRIP8b is altered in an animal model of temporal lobe epilepsy and modulates channel function. Journal of Biological Chemistry, 2019, 294, 15743-15758.	3.4	21
9	Peripherally derived T regulatory and Î ³ δT cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. Journal of Experimental Medicine, 2018, 215, 1169-1186.	8.5	80
10	Functional characterization of AMPA receptor positive allosteric modulators PF-04958242 and LY-451395. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-1-83.	0.0	0
11	Complete Disruption of the Kainate Receptor Gene Family Results in Corticostriatal Dysfunction in Mice. Cell Reports, 2017, 18, 1848-1857.	6.4	25
12	A gain-of-function mutation in the <i>GRIK2</i> gene causes neurodevelopmental deficits. Neurology: Genetics, 2017, 3, e129.	1.9	38
13	Neto2 Assembles with Kainate Receptors in DRG Neurons during Development and Modulates Neurite Outgrowth in Adult Sensory Neurons. Journal of Neuroscience, 2017, 37, 3352-3363.	3.6	24
14	Cadherin-10 Maintains Excitatory/Inhibitory Ratio through Interactions with Synaptic Proteins. Journal of Neuroscience, 2017, 37, 11127-11139.	3.6	17
15	<i>N</i> â€glycan content modulates kainate receptor functional properties. Journal of Physiology, 2017, 595, 5913-5930.	2.9	14
16	Excitatory Synaptic Input to Hilar Mossy Cells under Basal and Hyperexcitable Conditions. ENeuro, 2017, 4, ENEURO.0364-17.2017.	1.9	21
17	Selective and regulated trapping of nicotinic receptor weak base ligands and relevance to smoking cessation. ELife, 2017, 6, .	6.0	18
18	Transduction of group I mGluR-mediated synaptic plasticity by β-arrestin2 signalling. Nature Communications, 2016, 7, 13571.	12.8	37

GEOFFREY T SWANSON

#	Article	IF	CITATIONS
19	Identification of critical functional determinants of kainate receptor modulation by auxiliary protein Neto2. Journal of Physiology, 2015, 593, 4815-4833.	2.9	17
20	mGluR1â€Î²â€arrestin 2 Signaling Mediates Induction of Excitatory Synaptic Plasticity. FASEB Journal, 2015, 29, 935.4.	0.5	0
21	Modulation of ionotropic glutamate receptor function by vertebrate galectins. Journal of Physiology, 2014, 592, 2079-2096.	2.9	24
22	Recent progress in neuroactive marine natural products. Natural Product Reports, 2014, 31, 273.	10.3	47
23	Psychiatric Risk Factor ANK3/Ankyrin-G Nanodomains Regulate the Structure and Function of Glutamatergic Synapses. Neuron, 2014, 84, 399-415.	8.1	159
24	Kainate Receptor Signaling in Pain Pathways. Molecular Pharmacology, 2013, 83, 307-315.	2.3	29
25	Studies on an (<i>S</i>)-2-Amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic Acid (AMPA) Receptor Antagonist IKM-159: Asymmetric Synthesis, Neuroactivity, and Structural Characterization. Journal of Medicinal Chemistry, 2013, 56, 2283-2293.	6.4	23
26	Isolation of novel prototype galectins from the marine ball sponge Cinachyrella sp. guided by their modulatory activity on mammalian glutamate-gated ion channels. Glycobiology, 2013, 23, 412-425.	2.5	22
27	Structure of a tetrameric galectin fromCinachyrellasp. (ball sponge). Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1163-1174.	2.5	14
28	Dancing partners at the synapse: auxiliary subunits that shape kainate receptor function. Nature Reviews Neuroscience, 2012, 13, 675-686.	10.2	81
29	Modulation of AMPA and kainate receptors by galectins. FASEB Journal, 2012, 26, 1048.2.	0.5	0
30	Kainate receptors coming of age: milestones of two decades of research. Trends in Neurosciences, 2011, 34, 154-163.	8.6	241
31	Antinociceptive effects of MSVIII-19, a functional antagonist of the GluK1 kainate receptor. Pain, 2011, 152, 1052-1060.	4.2	27
32	Synaptic Targeting and Functional Modulation of GluK1 Kainate Receptors by the Auxiliary Neuropilin and Tolloid-Like (NETO) Proteins. Journal of Neuroscience, 2011, 31, 7334-7340.	3.6	82
33	Exploring kainate receptor pharmacology using molecular dynamics simulations. Neuropharmacology, 2010, 58, 515-527.	4.1	22
34	Pharmacological activity of C10-substituted analogs of the high-affinity kainate receptor agonist dysiherbaine. Neuropharmacology, 2010, 58, 640-649.	4.1	15
35	Full Domain Closure of the Ligand-binding Core of the Ionotropic Glutamate Receptor iGluR5 Induced by the High Affinity Agonist Dysiherbaine and the Functional Antagonist 8,9-Dideoxyneodysiherbaine. Journal of Biological Chemistry, 2009, 284, 14219-14229.	3.4	53
36	High-Affinity Kainate Receptor Subunits Are Necessary for Ionotropic but Not Metabotropic Signaling. Neuron, 2009, 63, 818-829.	8.1	101

GEOFFREY T SWANSON

#	Article	IF	CITATIONS
37	Ligands for Ionotropic Glutamate Receptors. Progress in Molecular and Subcellular Biology, 2009, 46, 123-157.	1.6	38
38	Targeting AMPA and kainate receptors in neurological disease: therapies on the horizon?. Neuropsychopharmacology, 2009, 34, 249-250.	5.4	42
39	Novel Analogs and Stereoisomers of the Marine Toxin Neodysiherbaine with Specificity for Kainate Receptors. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 484-496.	2.5	33
40	Critical Roles for the M3–S2 Transduction Linker Domain in Kainate Receptor Assembly and Postassembly Trafficking. Journal of Neuroscience, 2007, 27, 10423-10433.	3.6	22
41	Total Synthesis and Biological Evaluation of Neodysiherbaine A and Analogues. Journal of Organic Chemistry, 2006, 71, 5208-5220.	3.2	46
42	Determination of Binding Site Residues Responsible for the Subunit Selectivity of Novel Marine-Derived Compounds on Kainate Receptors. Molecular Pharmacology, 2006, 69, 1849-1860.	2.3	30
43	Pharmacological activity of synthetic analogs of dysiherbaine on glutamate receptors. FASEB Journal, 2006, 20, A687.	0.5	Ο
44	Divergent Pharmacological Activity of Novel Marine-Derived Excitatory Amino Acids on Glutamate Receptors. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 1068-1078.	2.5	52
45	Recording in the Cerebellar Slice. Current Protocols in Neuroscience, 2003, 25, Unit 6.18.	2.6	Ο
46	Multiple Trafficking Signals Regulate Kainate Receptor KA2 Subunit Surface Expression. Journal of Neuroscience, 2003, 23, 6608-6616.	3.6	113
47	Loss of Kainate Receptor-Mediated Heterosynaptic Facilitation of Mossy-Fiber Synapses in KA2 ^{â~'/â~'} Mice. Journal of Neuroscience, 2003, 23, 422-429.	3.6	151
48	Differential Activation of Individual Subunits in Heteromeric Kainate Receptors. Neuron, 2002, 34, 589-598.	8.1	85
49	Kainate Receptors Are Involved in Short- and Long-Term Plasticity at Mossy Fiber Synapses in the Hippocampus. Neuron, 2001, 29, 209-216.	8.1	297
50	Identification of the Kainate Receptor Subunits Underlying Modulation of Excitatory Synaptic Transmission in the CA3 Region of the Hippocampus. Journal of Neuroscience, 2000, 20, 8269-8278.	3.6	162
51	Subunit Composition of Kainate Receptors in Hippocampal Interneurons. Neuron, 2000, 28, 475-484.	8.1	194
52	Heterogeneity of homomeric GluR5 kainate receptor desensitization expressed in HEK293 cells. Journal of Physiology, 1998, 513, 639-646.	2.9	50
53	Rat GluR7 and a Carboxy-Terminal Splice Variant, GluR7b, Are Functional Kainate Receptor Subunits with a Low Sensitivity to Glutamate. Neuron, 1997, 19, 1141-1146.	8.1	175
54	Identification of Amino Acid Residues that Control Functional Behavior in GluR5 and GluR6 Kainate Receptors. Neuron, 1997, 19, 913-926.	8.1	116