## Chandra Veer Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5575310/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Structurally ordered highâ€entropy intermetallic nanoparticles with enhanced C–C bond cleavage for ethanol oxidation. SmartMat, 2023, 4, .                                                                                      | 10.7 | 23        |
| 2  | Machine learning-enabled band gap prediction of monolayer transition metal chalcogenide alloys.<br>Physical Chemistry Chemical Physics, 2022, 24, 4653-4665.                                                                    | 2.8  | 7         |
| 3  | High-Strength, Microporous, Two-Dimensional Polymer Thin Films with Rigid Benzoxazole Linkage. ACS<br>Applied Materials & Interfaces, 2022, 14, 1861-1873.                                                                      | 8.0  | 7         |
| 4  | Machine learned interatomic potentials using random features. Npj Computational Materials, 2022, 8, .                                                                                                                           | 8.7  | 11        |
| 5  | Two-dimensional square metal organic framework as promising cathode material for lithium-sulfur<br>battery with high theoretical energy density. Journal of Colloid and Interface Science, 2022, 613,<br>435-446.               | 9.4  | 11        |
| 6  | Mechanical Size Effect of Freestanding Nanoconfined Polymer Films. Macromolecules, 2022, 55, 1248-1259.                                                                                                                         | 4.8  | 18        |
| 7  | Interface Engineering of Co/CoMoN/NF Heterostructures for Highâ€Performance Electrochemical<br>Overall Water Splitting. Advanced Science, 2022, 9, e2105313.                                                                    | 11.2 | 90        |
| 8  | Chemical and molecular structure transformations in atomistic conformation of cellulose nanofibers under thermal environment. Npj Materials Degradation, 2022, 6, .                                                             | 5.8  | 1         |
| 9  | Fastâ€Charging Halideâ€Based Allâ€Solidâ€State Batteries by Manipulation of Current Collector Interface.<br>Advanced Functional Materials, 2022, 32, .                                                                          | 14.9 | 20        |
| 10 | Interplay between Thermal Stress and Interface Binding on Fracture of WS <sub>2</sub> Monolayer<br>with Triangular Voids. ACS Applied Materials & Interfaces, 2022, 14, 16876-16884.                                            | 8.0  | 10        |
| 11 | Friction of Ti <sub>3</sub> C <sub>2</sub> T <sub><i>x</i></sub> MXenes. Nano Letters, 2022, 22, 3356-3363.                                                                                                                     | 9.1  | 46        |
| 12 | High-throughput and machine-learning accelerated design of high entropy alloy catalysts. Trends in<br>Chemistry, 2022, 4, 577-579.                                                                                              | 8.5  | 8         |
| 13 | Mechanistic Origin of Orientation-Dependent Substructure Evolution in Aluminum and<br>Aluminum-Magnesium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2022, 53, 2689-2707. | 2.2  | 4         |
| 14 | Extraordinary lattice thermal conductivity of gold sulfide monolayers. Nanoscale Advances, 2022, 4,<br>2873-2883.                                                                                                               | 4.6  | 2         |
| 15 | Automatically Capturing Key Features for Predicting Superionic Conductivity of Solid-State<br>Electrolytes Using a Neural Network. ACS Applied Energy Materials, 2022, 5, 8042-8048.                                            | 5.1  | 2         |
| 16 | Mechanical reliability of monolayer MoS2 and WSe2. Matter, 2022, 5, 2975-2989.                                                                                                                                                  | 10.0 | 5         |
| 17 | Insights on the dual role of two-dimensional materials as catalysts and supports for energy and environmental catalysis. Journal of Materials Chemistry A, 2021, 9, 2018-2042.                                                  | 10.3 | 34        |
| 18 | Mechanochemistry for ammonia synthesis under mild conditions. Nature Nanotechnology, 2021, 16, 325-330.                                                                                                                         | 31.5 | 141       |

| #  | Article                                                                                                                                                                                                                                                                      | IF                                                      | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------|
| 19 | How does mass transfer influence electrochemical carbon dioxide reduction reaction? A case study of Ni molecular catalyst supported on carbon. Chemical Communications, 2021, 57, 1384-1387.                                                                                 | 4.1                                                     | 18        |
| 20 | Insights into oxygen activation on metal clusters for catalyst design. Journal of Materials Chemistry<br>A, 2021, 9, 11726-11733.                                                                                                                                            | 10.3                                                    | 4         |
| 21 | Defect evolution behaviors from single sulfur point vacancies to line vacancies in monolayer molybdenum disulfide. Physical Chemistry Chemical Physics, 2021, 23, 19525-19536.                                                                                               | 2.8                                                     | 6         |
| 22 | Synergistic vacancy defects and mechanical strain for the modulation of the mechanical, electronic<br>and optical properties of monolayer tungsten disulfide. Physical Chemistry Chemical Physics, 2021, 23,<br>6298-6308.                                                   | 2.8                                                     | 5         |
| 23 | A first-principles study of the relationship between modulus and ideal strength of single-layer,<br>transition metal dichalcogenides. Materials Advances, 2021, 2, 6631-6640.                                                                                                | 5.4                                                     | 17        |
| 24 | Bias dependence and defect analysis of Bi on Si(111) <mml:math<br>xmlns:mml="http://www.w3.org/1998/Math/MathML"&gt;<mml:mrow><mml:msqrt><mml:mn>3</mml:mn>width="4pt" /&gt;<mml:mi>î²</mml:mi></mml:msqrt></mml:mrow> -phase. Physical Review B, 2021, 103, .</mml:math<br> | m <b>sqz</b> t> <m< td=""><td>ımatmo&gt;×&lt;</td></m<> | ımatmo>×< |
| 25 | Anisotropic phonon thermal transport in nitrophosphorene monolayer. Physical Review Materials, 2021, 5, .                                                                                                                                                                    | 2.4                                                     | 9         |
| 26 | Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation.<br>Science China Materials, 2021, 64, 2454-2466.                                                                                                                        | 6.3                                                     | 43        |
| 27 | Deciphering Interfacial Chemical and Electrochemical Reactions of Sulfideâ€Based Allâ€Solidâ€State<br>Batteries. Advanced Energy Materials, 2021, 11, 2100210.                                                                                                               | 19.5                                                    | 63        |
| 28 | A molecular dynamics study of dislocation ejection and shear coupling associated with incoherent twin boundary migration. Materialia, 2021, 16, 101111.                                                                                                                      | 2.7                                                     | 2         |
| 29 | Machine-learning-accelerated discovery of single-atom catalysts based on bidirectional activation mechanism. Chem Catalysis, 2021, 1, 183-195.                                                                                                                               | 6.1                                                     | 50        |
| 30 | Interfacial Interactions and Tribological Behavior of Metal-Oxide/2D-Material Contacts. Tribology<br>Letters, 2021, 69, 1.                                                                                                                                                   | 2.6                                                     | 8         |
| 31 | Importance of quadratic dispersion in acoustic flexural phonons for thermal transport of two-dimensional materials. Physical Review B, 2021, 103, .                                                                                                                          | 3.2                                                     | 38        |
| 32 | Fundamental Insights into Electrical and Transport Properties of Chloroaluminate Ionic Liquids for Aluminum-Ion Batteries. Journal of Physical Chemistry C, 2021, 125, 15145-15154.                                                                                          | 3.1                                                     | 13        |
| 33 | Neural evolution structure generation: High entropy alloys. Journal of Chemical Physics, 2021, 155, 044102.                                                                                                                                                                  | 3.0                                                     | 5         |
| 34 | Thermoconformational Behavior of Cellulose Nanofiber Films as a Device Substrate and Their<br>Superior Flexibility and Durability to Glass. ACS Applied Materials & Interfaces, 2021, 13,<br>40853-40862.                                                                    | 8.0                                                     | 4         |
| 35 | Two-Dimensional Graphdiyne-Confined Platinum Catalyst for Hydrogen Evolution and Oxygen Reduction Reactions. ACS Applied Materials & Interfaces, 2021, 13, 47541-47548.                                                                                                      | 8.0                                                     | 15        |
| 36 | Fatigue resistance of atomically thin graphene oxide. Carbon, 2021, 183, 780-788.                                                                                                                                                                                            | 10.3                                                    | 14        |

| #  | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Quantum well states and sizable Rashba splitting on Pb induced α-phase Bi/Si(111) surface<br>reconstruction. Nanoscale, 2021, 13, 16622-16628.                                                                                                 | 5.6  | 5         |
| 38 | Friction of magnetene, a non–van der Waals 2D material. Science Advances, 2021, 7, eabk2041.                                                                                                                                                   | 10.3 | 21        |
| 39 | Eggshell-like MoS <sub>2</sub> Nanostructures with Negative Curvature and Stepped Faces for Efficient Hydrogen Evolution Reactions. ACS Applied Nano Materials, 2021, 4, 14086-14093.                                                          | 5.0  | 5         |
| 40 | Size effects in strengthening of NiCo multilayers with modulated microstructures. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 771,<br>138581.                                 | 5.6  | 12        |
| 41 | Performance Analysis of Composite Helicopter Blade Using Synergistic Damage Mechanics Approach.<br>AIAA Journal, 2020, 58, 968-976.                                                                                                            | 2.6  | 7         |
| 42 | Predicting aggregation energy for single atom bimetallic catalysts on clean and O* adsorbed surfaces through machine learning models. Catalysis Science and Technology, 2020, 10, 86-98.                                                       | 4.1  | 29        |
| 43 | Temperature dependence of grain boundary excess free volume. Scripta Materialia, 2020, 178, 71-76.                                                                                                                                             | 5.2  | 29        |
| 44 | Strength of graphene with curvilinear grain boundaries. Carbon, 2020, 158, 808-817.                                                                                                                                                            | 10.3 | 11        |
| 45 | Neural Network-Assisted Development of High-Entropy Alloy Catalysts: Decoupling Ligand and Coordination Effects. Matter, 2020, 3, 1318-1333.                                                                                                   | 10.0 | 83        |
| 46 | Electrolyte-Phobic Surface for the Next-Generation Nanostructured Battery Electrodes. Nano Letters, 2020, 20, 7455-7462.                                                                                                                       | 9.1  | 25        |
| 47 | Transition metal–N <sub>4</sub> embedded black phosphorus carbide as a high-performance<br>bifunctional electrocatalyst for ORR/OER. Nanoscale, 2020, 12, 18721-18732.                                                                         | 5.6  | 39        |
| 48 | Phase Evolution of a Prenucleator for Fast Li Nucleation in Allâ€Solidâ€State Lithium Batteries. Advanced<br>Energy Materials, 2020, 10, 2001191.                                                                                              | 19.5 | 17        |
| 49 | Computational screening of homo and hetero transition metal dimer catalysts for reduction of CO <sub>2</sub> to C <sub>2</sub> products with high activity and low limiting potential. Journal of Materials Chemistry A, 2020, 8, 21241-21254. | 10.3 | 51        |
| 50 | Materials perspective on new lithium chlorides and bromides: insights into thermo-physical properties. Physical Chemistry Chemical Physics, 2020, 22, 22758-22767.                                                                             | 2.8  | 15        |
| 51 | Structureâ€Dependent Wear and Shear Mechanics of Nanostructured MoS <sub>2</sub> Coatings.<br>Advanced Materials Interfaces, 2020, 7, 1901870.                                                                                                 | 3.7  | 13        |
| 52 | Microtissue Engineering Root Dentin with Photodynamically Cross-linked Nanoparticles Improves<br>Fatigue Resistance of Endodontically Treated Teeth. Journal of Endodontics, 2020, 46, 668-674.                                                | 3.1  | 13        |
| 53 | Determining the limiting factor of the electrochemical stability window for PEO-based solid polymer<br>electrolytes: main chain or terminal –OH group?. Energy and Environmental Science, 2020, 13, 1318-1325.                                 | 30.8 | 342       |
| 54 | A triple atom catalyst with ultrahigh loading potential for nitrogen electrochemical reduction.<br>Journal of Materials Chemistry A, 2020, 8, 15086-15093.                                                                                     | 10.3 | 48        |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Effect of He on the Order-Disorder Transition in Ni3Al under Irradiation. Physical Review Letters, 2020, 124, 075901.                                                                                                      | 7.8  | 9         |
| 56 | Fatigue of graphene. Nature Materials, 2020, 19, 405-411.                                                                                                                                                                  | 27.5 | 110       |
| 57 | Dramatic improvement in the performance of graphene as Li/Na battery anodes with suitable electrolytic solvents. Carbon, 2020, 161, 570-576.                                                                               | 10.3 | 12        |
| 58 | Toughening of graphene-based polymer nanocomposites via tuning chemical functionalization.<br>Composites Science and Technology, 2020, 194, 108140.                                                                        | 7.8  | 44        |
| 59 | Compression-induced resistance of singlet oxygen dissociation on phosphorene. Physical Review<br>Materials, 2020, 4, .                                                                                                     | 2.4  | 0         |
| 60 | Hindered surface diffusion of bonded molecular clusters mediated by surface defects. Physical<br>Review Materials, 2020, 4, .                                                                                              | 2.4  | 1         |
| 61 | Atomic structure of Ni-Nb-Y amorphous alloys and water-surface adsorption characteristics.<br>Computational Materials Science, 2019, 169, 109095.                                                                          | 3.0  | 3         |
| 62 | Understanding the Independent and Interdependent Role of Water and Oxidation on the Tribology of<br>Ultrathin Molybdenum Disulfide (MoS <sub>2</sub> ). Advanced Materials Interfaces, 2019, 6, 1901246.                   | 3.7  | 26        |
| 63 | Kinetics of annealing-induced detwinning in chemical vapor deposited nickel. Acta Materialia, 2019, 178, 263-274.                                                                                                          | 7.9  | 9         |
| 64 | Deformation behavior of BCC tantalum nanolayered composites with modulated layer thicknesses.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2019, 761, 138037. | 5.6  | 5         |
| 65 | Atomistic study of crack-tip plasticity in precipitation hardened monocrystalline aluminum. Modelling<br>and Simulation in Materials Science and Engineering, 2019, 27, 065009.                                            | 2.0  | 1         |
| 66 | Analysis of the Material Behavior of 3D Printed Laminates Via FFF. Experimental Mechanics, 2019, 59,<br>871-881.                                                                                                           | 2.0  | 45        |
| 67 | Uncertainty and sensitivity analysis of mechanical and thermal properties computed through<br>Embedded Atom Method potential. Computational Materials Science, 2019, 166, 30-41.                                           | 3.0  | 8         |
| 68 | Short-range structural origins of serration events in metallic glasses. Journal of Alloys and Compounds, 2019, 787, 840-850.                                                                                               | 5.5  | 6         |
| 69 | How Silver Grows on the Silicon (001) Surface: A Theoretical and Experimental Investigation. ACS Applied Electronic Materials, 2019, 1, 122-131.                                                                           | 4.3  | 4         |
| 70 | Development and implementation of a multi-scale model for matrix micro-cracking prediction in composite structures subjected to low velocity impact. Composites Part B: Engineering, 2019, 168, 140-151.                   | 12.0 | 20        |
| 71 | Theoretical Investigation: 2D N-Graphdiyne Nanosheets as Promising Anode Materials for Li/Na<br>Rechargeable Storage Devices. ACS Applied Nano Materials, 2019, 2, 127-135.                                                | 5.0  | 56        |
| 72 | Catalytic CO2 reduction by palladium-decorated silicon–hydride nanosheets. Nature Catalysis, 2019, 2,<br>46-54.                                                                                                            | 34.4 | 116       |

| #  | Article                                                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Elastomer-like deformation in high-Poisson's-ratio graphene allotropes may allow tensile strengths beyond theoretical cohesive strength limits. Carbon, 2019, 143, 752-761.                                                                                                                                       | 10.3 | 8         |
| 74 | Molecular adsorption and surface formation reactions of HCl, H2 and chlorosilanes on Si(100)-c(4â€Ã—â€2) with applications for high purity silicon production. Applied Surface Science, 2019, 475, 124-134.                                                                                                       | 6.1  | 14        |
| 75 | Uncertainty analysis and estimation of robust AIREBO parameters for graphene. Carbon, 2019, 142, 300-310.                                                                                                                                                                                                         | 10.3 | 43        |
| 76 | Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li–Air Batteries. ACS Applied Materials<br>& Interfaces, 2019, 11, 499-510.                                                                                                                                                                             | 8.0  | 27        |
| 77 | 2D Hydrogenated graphene-like borophene as a high capacity anode material for improved Li/Na ion<br>batteries: A first principles study. Materials Today Energy, 2018, 8, 22-28.                                                                                                                                  | 4.7  | 93        |
| 78 | Development of constitutive material model of 3D printed structure via FDM. Materials Today Communications, 2018, 15, 143-152.                                                                                                                                                                                    | 1.9  | 94        |
| 79 | Nonlinear fracture toughness measurement and crack propagation resistance of functionalized graphene multilayers. Science Advances, 2018, 4, eaao7202.                                                                                                                                                            | 10.3 | 72        |
| 80 | Ultrahigh Storage and Fast Diffusion of Na and K in Blue Phosphorene Anodes. ACS Applied Materials<br>& Interfaces, 2018, 10, 8630-8639.                                                                                                                                                                          | 8.0  | 143       |
| 81 | Borophene hydride: a stiff 2D material with high thermal conductivity and attractive optical and electronic properties. Nanoscale, 2018, 10, 3759-3768.                                                                                                                                                           | 5.6  | 109       |
| 82 | Adsorption and Diffusion of Lithium and Sodium on Defective Rhenium Disulfide: A First Principles<br>Study. ACS Applied Materials & Interfaces, 2018, 10, 5373-5384.                                                                                                                                              | 8.0  | 92        |
| 83 | Twoâ€dimensional boron as an impressive lithiumâ€sulphur battery cathode material. Energy Storage<br>Materials, 2018, 13, 80-87.                                                                                                                                                                                  | 18.0 | 38        |
| 84 | Carbon ene-yne graphyne monolayer as an outstanding anode material for Li/Na ion batteries. Applied<br>Materials Today, 2018, 10, 115-121.                                                                                                                                                                        | 4.3  | 44        |
| 85 | Highly Efficient Ambient Temperature CO <sub>2</sub> Photomethanation Catalyzed by<br>Nanostructured RuO <sub>2</sub> on Silicon Photonic Crystal Support. Advanced Energy Materials,<br>2018, 8, 1702277.                                                                                                        | 19.5 | 58        |
| 86 | Solar Fuels: Highly Efficient Ambient Temperature CO <sub>2</sub> Photomethanation Catalyzed by<br>Nanostructured RuO <sub>2</sub> on Silicon Photonic Crystal Support (Adv. Energy Mater. 9/2018).<br>Advanced Energy Materials, 2018, 8, 1870041.                                                               | 19.5 | 7         |
| 87 | Effect of lattice stacking orientation and local thickness variation on the mechanical behavior of few layer graphene oxide. Carbon, 2018, 136, 168-175.                                                                                                                                                          | 10.3 | 21        |
| 88 | Band Engineering of Carbon Nitride Monolayers by N-Type, P-Type, and Isoelectronic Doping for<br>Photocatalytic Applications. ACS Applied Materials & Interfaces, 2018, 10, 11143-11151.                                                                                                                          | 8.0  | 92        |
| 89 | Tailoring Surface Frustrated Lewis Pairs of<br>In <sub>2</sub> O <sub>3â^'</sub> <i><sub>x</sub></i> (OH) <sub>y</sub> for Gasâ€Phase Heterogeneous<br>Photocatalytic Reduction of CO <sub>2</sub> by Isomorphous Substitution of In <sup>3+</sup> with<br>Bi <sup>3+</sup> . Advanced Science, 2018, 5, 1700732. | 11.2 | 91        |
| 90 | Prediction of ply crack evolution and stiffness degradation in multidirectional symmetric laminates under multiaxial stress states. Composites Part B: Engineering, 2018, 133, 53-67.                                                                                                                             | 12.0 | 37        |

| #   | Article                                                                                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Assessing progressive failure in long wind turbine blades under quasi-static and cyclic loads.<br>Renewable Energy, 2018, 119, 754-766.                                                                                                                                                                                                          | 8.9  | 29        |
| 92  | Adsorption and diffusion of lithium polysulfides over blue phosphorene for Li–S batteries.<br>Nanoscale, 2018, 10, 21335-21352.                                                                                                                                                                                                                  | 5.6  | 69        |
| 93  | Enhanced photothermal reduction of gaseous CO <sub>2</sub> over silicon photonic crystal supported ruthenium at ambient temperature. Energy and Environmental Science, 2018, 11, 3443-3451.                                                                                                                                                      | 30.8 | 83        |
| 94  | Identification of Tetramers in Silver Films Grown on the Si(001) Surface at Room Temperature. Journal of Physical Chemistry Letters, 2018, 9, 6275-6279.                                                                                                                                                                                         | 4.6  | 5         |
| 95  | Time-dependent damage analysis for viscoelastic-viscoplastic structural laminates under biaxial<br>loading. Composite Structures, 2018, 203, 60-70.                                                                                                                                                                                              | 5.8  | 5         |
| 96  | Solar Fuels: Tailoring Surface Frustrated Lewis Pairs of<br>In <sub>2</sub> O <sub>3â^'</sub> <i><sub>x</sub></i> (OH) <sub>y</sub> for Gasâ€Phase Heterogeneous<br>Photocatalytic Reduction of CO <sub>2</sub> by Isomorphous Substitution of In <sup>3+</sup> with<br>Bi <sup>3+</sup> (Adv. Sci. 6/2018). Advanced Science, 2018, 5, 1870034. | 11.2 | 3         |
| 97  | 2.7 Micromechanics of Damage Evolution in Laminates. , 2018, , 118-147.                                                                                                                                                                                                                                                                          |      | Ο         |
| 98  | First Principles Investigation of HCl, H <sub>2</sub> , and Chlorosilane Adsorption on<br>Cu <sub>3</sub> Si Surfaces with Applications for Polysilicon Production. Journal of Physical<br>Chemistry C, 2018, 122, 20252-20260.                                                                                                                  | 3.1  | 9         |
| 99  | Hydrogen storage in Li, Na and Ca decorated and defective borophene: a first principles study. RSC<br>Advances, 2018, 8, 20748-20757.                                                                                                                                                                                                            | 3.6  | 64        |
| 100 | The ideal strength of two-dimensional stanene may reach or exceed the Griffith strength estimate.<br>Nanoscale, 2017, 9, 7055-7062.                                                                                                                                                                                                              | 5.6  | 29        |
| 101 | Consequences of Surface Oxophilicity of Ni, Ni-Co, and Co Clusters on Methane Activation. Journal of the American Chemical Society, 2017, 139, 6928-6945.                                                                                                                                                                                        | 13.7 | 104       |
| 102 | Solar grade silicon production: A review of kinetic, thermodynamic and fluid dynamics based continuum scale modeling. Renewable and Sustainable Energy Reviews, 2017, 78, 1288-1314.                                                                                                                                                             | 16.4 | 40        |
| 103 | A fast mollified impulse method for biomolecular atomistic simulations. Journal of Computational Physics, 2017, 333, 180-198.                                                                                                                                                                                                                    | 3.8  | 0         |
| 104 | Atomistic Origins of Ductility Enhancement in Metal Oxide Coated Silicon Nanowires for Liâ€lon Battery<br>Anodes. Advanced Materials Interfaces, 2017, 4, 1700920.                                                                                                                                                                               | 3.7  | 23        |
| 105 | Effect of matrix cracks and delamination on extension-twist coupling of thin pretwisted composite strips. Composite Structures, 2017, 180, 234-250.                                                                                                                                                                                              | 5.8  | 4         |
| 106 | Role of graphene in enhancing the mechanical properties of TiO <sub>2</sub> /graphene<br>heterostructures. Nanoscale, 2017, 9, 11678-11684.                                                                                                                                                                                                      | 5.6  | 22        |
| 107 | Adsorption of Metallic, Metalloidic, and Nonmetallic Adatoms on Two-Dimensional C <sub>3</sub> N.<br>Journal of Physical Chemistry C, 2017, 121, 18575-18583.                                                                                                                                                                                    | 3.1  | 111       |
| 108 | A first principles study of hydrogen storage inÂlithium decorated defective phosphorene. International<br>Journal of Hydrogen Energy, 2017, 42, 23018-23027.                                                                                                                                                                                     | 7.1  | 56        |

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Photothermal Catalyst Engineering: Hydrogenation of Gaseous CO <sub>2</sub> with High Activity and Tailored Selectivity. Advanced Science, 2017, 4, 1700252.                                                                         | 11.2 | 97        |
| 110 | Molecular Dynamics Investigation on Coke Ash Behavior in the High-Temperature Zones of a Blast<br>Furnace: Influence of Alkalis. Energy & Fuels, 2017, 31, 13466-13474.                                                              | 5.1  | 17        |
| 111 | Photothermal Catalysis: Photothermal Catalyst Engineering: Hydrogenation of Gaseous<br>CO <sub>2</sub> with High Activity and Tailored Selectivity (Adv. Sci. 10/2017). Advanced Science, 2017,<br>4, .                              | 11.2 | 2         |
| 112 | Phosphorene as a Polysulfide Immobilizer and Catalyst in Highâ€Performance Lithium–Sulfur Batteries.<br>Advanced Materials, 2017, 29, 1602734.                                                                                       | 21.0 | 289       |
| 113 | A molecular dynamic simulation on the factors influencing the fluidity of molten coke ash during alkalization with K2O and Na2O. Chemical Engineering Journal, 2017, 313, 1184-1193.                                                 | 12.7 | 44        |
| 114 | Self-Trapped Charge Carriers in Defected Amorphous TiO <sub>2</sub> . Journal of Physical Chemistry<br>C, 2016, 120, 27910-27916.                                                                                                    | 3.1  | 17        |
| 115 | Carrier dynamics and the role of surface defects: Designing a photocatalyst for gas-phase CO<br><sub>2</sub> reduction. Proceedings of the National Academy of Sciences of the United States of<br>America, 2016, 113, E8011-E8020.  | 7.1  | 89        |
| 116 | Vertically Oriented Arrays of ReS <sub>2</sub> Nanosheets for Electrochemical Energy Storage and Electrocatalysis. Nano Letters, 2016, 16, 3780-3787.                                                                                | 9.1  | 241       |
| 117 | Role of niobium and oxygen concentration on glass forming ability and crystallization behavior of<br>Zr-Ni-Al-Cu-Nb bulk metallic glasses with low copper concentration. Journal of Non-Crystalline<br>Solids, 2016, 445-446, 88-94. | 3.1  | 13        |
| 118 | Mechanical properties of monolayer penta-graphene and phagraphene: a first-principles study. Physical<br>Chemistry Chemical Physics, 2016, 18, 26736-26742.                                                                          | 2.8  | 106       |
| 119 | New insights into the structure-nonlinear mechanical property relations for graphene allotropes.<br>Carbon, 2016, 110, 443-457.                                                                                                      | 10.3 | 32        |
| 120 | Surface Analogues of Molecular Frustrated Lewis Pairs in Heterogeneous CO <sub>2</sub><br>Hydrogenation Catalysis. ACS Catalysis, 2016, 6, 5764-5770.                                                                                | 11.2 | 80        |
| 121 | Metadynamics-Biased ab Initio Molecular Dynamics Study of Heterogeneous CO <sub>2</sub><br>Reduction via Surface Frustrated Lewis Pairs. ACS Catalysis, 2016, 6, 7109-7117.                                                          | 11.2 | 78        |
| 122 | Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals. Nature Communications, 2016, 7, 12553.                                                                                                         | 12.8 | 93        |
| 123 | Development of a physics-based multi-scale progressive damage model for assessing the durability of wind turbine blades. Composite Structures, 2016, 141, 50-62.                                                                     | 5.8  | 46        |
| 124 | Photoexcited Surface Frustrated Lewis Pairs for Heterogeneous Photocatalytic CO <sub>2</sub><br>Reduction. Journal of the American Chemical Society, 2016, 138, 1206-1214.                                                           | 13.7 | 210       |
| 125 | Harnessing atomistic simulations to predict the rate at which dislocations overcome obstacles.<br>Journal of the Mechanics and Physics of Solids, 2016, 90, 203-214.                                                                 | 4.8  | 36        |
| 126 | Interfacial Shear Strength of Multilayer Graphene Oxide Films. ACS Nano, 2016, 10, 1939-1947.                                                                                                                                        | 14.6 | 64        |

8

| #   | Article                                                                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Competing twinning mechanisms in body-centered cubic metallic nanowires. Scripta Materialia, 2016, 113, 214-217.                                                                                                                                                                                     | 5.2  | 37        |
| 128 | Critical stiffness damage envelopes for multidirectional laminated structures under multiaxial loading conditions. Materials and Design, 2016, 91, 218-229.                                                                                                                                          | 7.0  | 13        |
| 129 | Development of a synergistic damage mechanics model to predict evolution of ply cracking and stiffness changes in multidirectional composite laminates under creep. International Journal of Damage Mechanics, 2016, 25, 1060-1078.                                                                  | 4.2  | 8         |
| 130 | Deformation behavior of a NiCo multilayer with a modulated grain size distribution. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015,<br>641, 305-314.                                                                                    | 5.6  | 13        |
| 131 | A Practical Investigation of the Production of Zr-Cu-Al-Ni Bulk Metallic Glasses by Arc Melting and Suction Casting. Materials Transactions, 2015, 56, 1834-1841.                                                                                                                                    | 1.2  | 2         |
| 132 | Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses. Journal of Chemical Physics, 2015, 143, 114509.                                                                                                                                       | 3.0  | 9         |
| 133 | Failure mechanisms in thin-walled nanocrystalline cylinders under uniaxial compression. Acta<br>Materialia, 2015, 86, 157-168.                                                                                                                                                                       | 7.9  | 0         |
| 134 | A synergistic damage mechanics based multiscale model for composite laminates subjected to multiaxial strains. Mechanics of Materials, 2015, 83, 72-89.                                                                                                                                              | 3.2  | 42        |
| 135 | Predicting evolution of ply cracks in composite laminates subjected toÂbiaxial loading. Composites<br>Part B: Engineering, 2015, 75, 264-273.                                                                                                                                                        | 12.0 | 48        |
| 136 | llluminating CO <sub>2</sub> reduction on frustrated Lewis pair surfaces: investigating the role of<br>surface hydroxides and oxygen vacancies on nanocrystalline<br>In <sub>2</sub> O <sub>3â<sup>°</sup>x</sub> (OH) <sub>y</sub> . Physical Chemistry Chemical Physics, 2015, 17,<br>14623-14635. | 2.8  | 186       |
| 137 | Adsorption and Dissociation of H <sub>2</sub> O on Monolayered MoS <sub>2</sub> Edges: Energetics<br>and Mechanism from <i>ab Initio</i> Simulations. Journal of Physical Chemistry C, 2015, 119, 6518-6529.                                                                                         | 3.1  | 107       |
| 138 | A first principles study of hydrogen storage on lithium decorated two dimensional carbon<br>allotropes. International Journal of Hydrogen Energy, 2015, 40, 6128-6136.                                                                                                                               | 7.1  | 53        |
| 139 | A Foldable Lithium–Sulfur Battery. ACS Nano, 2015, 9, 11342-11350.                                                                                                                                                                                                                                   | 14.6 | 125       |
| 140 | Strengthening in Graphene Oxide Nanosheets: Bridging the Gap between Interplanar and Intraplanar<br>Fracture. Nano Letters, 2015, 15, 6528-6534.                                                                                                                                                     | 9.1  | 61        |
| 141 | Effects of topological point reconstructions on the fracture strength and deformation mechanisms of graphene. Computational Materials Science, 2015, 97, 172-180.                                                                                                                                    | 3.0  | 23        |
| 142 | High strength measurement of monolayer graphene oxide. Carbon, 2015, 81, 497-504.                                                                                                                                                                                                                    | 10.3 | 138       |
| 143 | Development of a Synergistic Damage Mechanics-Based Model for Predicting Multiaxial Effects in Progressive Failure of Composite Structures. , 2014, , .                                                                                                                                              |      | Ο         |
| 144 | A van der Waals density functional theory comparison of metal decorated graphene systems for<br>hydrogen adsorption. Journal of Applied Physics, 2014, 115, 224301.                                                                                                                                  | 2.5  | 35        |

| #   | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | A kinematic study of energy barriers for crack formation in graphene tilt boundaries. Journal of<br>Applied Physics, 2014, 115, .                                                                            | 2.5 | 19        |
| 146 | Defect engineering of graphene for effective hydrogen storage. International Journal of Hydrogen<br>Energy, 2014, 39, 4981-4995.                                                                             | 7.1 | 96        |
| 147 | Progressive Failure Analysis of Polymer Composites Using a Synergistic Damage Mechanics<br>Methodology. , 2014, , 147-155.                                                                                   |     | 2         |
| 148 | An Atomistic-Based Hierarchical Multiscale Examination of Age Hardening in an Al-Cu Alloy.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44,<br>2625-2644. | 2.2 | 34        |
| 149 | A DFT + <i>U</i> study of (Rh, Nb)-codoped rutile TiO <sub>2</sub> . Journal of Physics Condensed<br>Matter, 2013, 25, 085501.                                                                               | 1.8 | 23        |
| 150 | Effect of doping on electronic structure and photocatalytic behavior of amorphous TiO2. Journal of Physics Condensed Matter, 2013, 25, 475501.                                                               | 1.8 | 30        |
| 151 | A synergistic damage mechanics approach to mechanical response of composite laminates with ply cracks. Journal of Composite Materials, 2013, 47, 2475-2501.                                                  | 2.4 | 38        |
| 152 | Amorphous TiO2 as a Photocatalyst for Hydrogen Production: A DFT Study of Structural and Electronic Properties. Energy Procedia, 2012, 29, 291-299.                                                          | 1.8 | 108       |
| 153 | Atomistic simulations of dislocation–precipitate interactions emphasize importance of cross-slip.<br>Scripta Materialia, 2011, 64, 398-401.                                                                  | 5.2 | 58        |
| 154 | Mechanisms of Guinier–Preston zone hardening in the athermal limit. Acta Materialia, 2010, 58,<br>5797-5805.                                                                                                 | 7.9 | 81        |
| 155 | Evolution of ply cracks in multidirectional composite laminates. International Journal of Solids and Structures, 2010, 47, 1338-1349.                                                                        | 2.7 | 86        |
| 156 | A synergistic damage mechanics approach for composite laminates with matrix cracks in multiple orientations. Mechanics of Materials, 2009, 41, 954-968.                                                      | 3.2 | 85        |
| 157 | A representative volume element based on translational symmetries for FE analysis of cracked<br>laminates with two arrays of cracks. International Journal of Solids and Structures, 2009, 46,<br>1793-1804. | 2.7 | 56        |
| 158 | Analysis of multiple off-axis ply cracks in composite laminates. International Journal of Solids and Structures, 2008, 45, 4574-4589.                                                                        | 2.7 | 61        |
| 159 | Multiscale Modeling for Damage Analysis. , 2008, , 529-578.                                                                                                                                                  |     | 4         |
| 160 | Damage Mechanics of Composite Laminates with Transverse Matrix Cracks in Multiple Orientations. ,<br>2007, , .                                                                                               |     | 2         |
| 161 | Macro-damage mechanics. , 0, , 134-178.                                                                                                                                                                      |     | 0         |
| 162 | Damage progression. , 0, , 179-236.                                                                                                                                                                          |     | 0         |