Hanna G Sizemore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5573981/publications.pdf Version: 2024-02-01

HANNA C SIZEMORE

#	Article	IF	CITATIONS
1	Extensive water ice within Ceres' aqueously altered regolith: Evidence from nuclear spectroscopy. Science, 2017, 355, 55-59.	12.6	169
2	Ground ice at the Phoenix Landing Site: Stability state and origin. Journal of Geophysical Research, 2009, 114, .	3.3	167
3	The geomorphology of Ceres. Science, 2016, 353, .	12.6	109
4	Results from the Mars Phoenix Lander Robotic Arm experiment. Journal of Geophysical Research, 2009, 114, .	3.3	97
5	Geomorphological evidence for ground ice on dwarf planet Ceres. Nature Geoscience, 2017, 10, 338-343.	12.9	83
6	Sizeâ€frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces. Journal of Geophysical Research, 2008, 113, .	3.3	70
7	The periglacial landscape at the Phoenix landing site. Journal of Geophysical Research, 2009, 114, .	3.3	61
8	A Possible Brine Reservoir Beneath Occator Crater: Thermal and Compositional Evolution and Formation of the Cerealia Dome and Vinalia Faculae. Icarus, 2019, 320, 119-135.	2.5	55
9	Laboratory characterization of the structural properties controlling dynamical gas transport in Mars-analog soils. Icarus, 2008, 197, 606-620.	2.5	54
10	Availability of subsurface water-ice resources in the northern mid-latitudes of Mars. Nature Astronomy, 2021, 5, 230-236.	10.1	53
11	Initiation and growth of martian ice lenses. Icarus, 2015, 251, 191-210.	2.5	52
12	Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nature Astronomy, 2020, 4, 741-747.	10.1	50
13	Pitted terrains on (1) Ceres and implications for shallow subsurface volatile distribution. Geophysical Research Letters, 2017, 44, 6570-6578.	4.0	48
14	Conditions for the Longâ€Term Preservation of a Deep Brine Reservoir in Ceres. Geophysical Research Letters, 2019, 46, 1963-1972.	4.0	46
15	A prelanding assessment of the ice table depth and ground ice characteristics in Martian permafrost at the Phoenix landing site. Journal of Geophysical Research, 2008, 113, .	3.3	45
16	The varied sources of faculae-forming brines in Ceres' Occator crater emplaced via hydrothermal brine effusion. Nature Communications, 2020, 11, 3680.	12.8	41
17	Cryovolcanic rates on Ceres revealed by topography. Nature Astronomy, 2018, 2, 946-950.	10.1	38
18	Effects of soil heterogeneity on martian ground-ice stability and orbital estimates of ice table depth. Icarus, 2006, 185, 358-369.	2.5	33

HANNA G SIZEMORE

#	Article	IF	CITATIONS
19	A Global Inventory of Iceâ€Related Morphological Features on Dwarf Planet Ceres: Implications for the Evolution and Current State of the Cryosphere. Journal of Geophysical Research E: Planets, 2019, 124, 1650-1689.	3.6	33
20	Evidence of non-uniform crust of Ceres from Dawn's high-resolution gravity data. Nature Astronomy, 2020, 4, 748-755.	10.1	30
21	The central pit and dome at Cerealia Facula bright deposit and floor deposits in Occator crater, Ceres: Morphology, comparisons and formation. Icarus, 2019, 320, 159-187.	2.5	28
22	Geologic mapping of the Urvara and Yalode Quadrangles of Ceres. Icarus, 2018, 316, 167-190.	2.5	23
23	In situ analysis of ice table depth variations in the vicinity of small rocks at the Phoenix landing site. Journal of Geophysical Research, 2010, 115, .	3.3	22
24	The history of ground ice at Jezero Crater Mars and other past, present, and future landing sites. Icarus, 2022, 371, 114667.	2.5	22
25	Water Vapor Contribution to Ceres' Exosphere From Observed Surface Ice and Postulated Iceâ€Exposing Impacts. Journal of Geophysical Research E: Planets, 2019, 124, 61-75.	3.6	20
26	Fluidized Appearing Ejecta on Ceres: Implications for the Mechanical Properties, Frictional Properties, and Composition of its Shallow Subsurface. Journal of Geophysical Research E: Planets, 2019, 124, 1819-1839.	3.6	19
27	Impact heat driven volatile redistribution at Occator crater on Ceres as a comparative planetary process. Nature Communications, 2020, 11, 3679.	12.8	19
28	Dome formation on Ceres by solid-state flow analogous to terrestrial salt tectonics. Nature Geoscience, 2019, 12, 797-801.	12.9	16
29	Landslides on Ceres: Inferences Into Ice Content and Layering in the Upper Crust. Journal of Geophysical Research E: Planets, 2019, 124, 1512-1524.	3.6	16
30	Ceres Crater Degradation Inferred From Concentric Fracturing. Journal of Geophysical Research E: Planets, 2019, 124, 1188-1203.	3.6	15
31	Post-impact cryo-hydrologic formation of small mounds and hills in Ceres's Occator crater. Nature Geoscience, 2020, 13, 605-610.	12.9	15
32	Landslides on Ceres: Diversity and Geologic Context. Journal of Geophysical Research E: Planets, 2019, 124, 3329-3343.	3.6	14
33	Mission Architecture Using the SpaceX Starship Vehicle to Enable a Sustained Human Presence on Mars. New Space, 2022, 10, 259-273.	0.8	14
34	Floorâ€Fractured Craters on Ceres and Implications for Interior Processes. Journal of Geophysical Research E: Planets, 2018, 123, 3188-3204.	3.6	13
35	Ice table depth variability near small rocks at the Phoenix landing site, Mars: A pre-landing assessment. Icarus, 2009, 199, 303-309.	2.5	12
36	Seasonal defrosting of the Phoenix landing site. Journal of Geophysical Research, 2010, 115, .	3.3	8

HANNA G SIZEMORE

#	Article	IF	CITATIONS
37	Normal Faults on Ceres: Insights Into the Mechanical Properties and Thermal History of Nar Sulcus. Geophysical Research Letters, 2019, 46, 80-88.	4.0	7
38	Solar-System-Wide Significance of Mars Polar Science. , 2021, 53, .		2
39	Mid-Latitude Ice on Mars: A Science Target for Planetary Climate Histories and an Exploration Target for In Situ Resources. , 2021, 53, .		2
40	The Mars Orbiter for Resources, Ices, and Environments (MORIE) Science Goals and Instrument Trades in Radar, Imaging, and Spectroscopy. Planetary Science Journal, 2021, 2, 76.	3.6	2
41	Replenishment of Near‣urface Water Ice by Impacts Into Ceres' Volatileâ€Rich Crust: Observations by Dawn's Gamma Ray and Neutron Detector. Geophysical Research Letters, 2021, 48, e2021GL094223.	4.0	2
42	Ceres' Broadâ€ 6 cale Surface Geomorphology Largely Due To Asymmetric Internal Convection. AGU Advances, 2022, 3, .	5.4	2
43	Introduction to the Special Issue: Ice on Ceres. Journal of Geophysical Research E: Planets, 2019, 124, 1639-1649.	3.6	1
44	GANGOTRI mission concept on the glacial key to the Amazonian climate of Mars. , 2021, 53, .		1
45	Ground ice at the Phoenix Landing Site: Stability state and origin. , 2009, .		1
46	HIDDEN ICE: USING AGGREGATE SPATIAL AND PHYSICAL PROPERTIES OF LIKELY GROUND ICE DRIVEN FLOWS ON CERES TO BETTER UNDERSTAND ITS SURFACE COMPOSITION. , 2016, , .		1
47	NMR Characterization of unfrozen brine vein distribution and structure in model packed beds. Cold Regions Science and Technology, 2022, 199, 103572.	3.5	1
48	White Paper Summary of the Final Report from the Ice and Climate Evolution Science Analysis group (ICE-SAC). , 2021, 53, .		0
49	Comparative morphometric analysis suggests ice-cored pingo-shaped landforms on the dwarf planet Ceres. Geology, 0, , .	4.4	0