Richard B Kennedy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/557350/publications.pdf

Version: 2024-02-01

70 papers 3,305 citations

30 h-index 53 g-index

70 all docs

70 docs citations

70 times ranked

5658 citing authors

#	Article	IF	CITATIONS
1	Humoral and cellular immune responses to recombinant herpes zoster vaccine in patients with chronic lymphocytic leukemia and monoclonal B cell lymphocytosis. American Journal of Hematology, 2022, 97, 90-98.	4.1	13
2	Mumps virus-specific immune response outcomes and sex-based differences in a cohort of healthy adolescents. Clinical Immunology, 2022, 234, 108912.	3.2	14
3	Efficacy of an adenovirus type 5 vectored SARS-CoV-2 vaccine. Lancet, The, 2022, 399, 212-213.	13.7	6
4	Proteomic assessment of humoral immune responses in smallpox vaccine recipients. Vaccine, 2022, 40, 789-797.	3.8	9
5	Distinct Homologous and Variant-Specific Memory B-Cell and Antibody Response Over Time After Severe Acute Respiratory Syndrome Coronavirus 2 Messenger RNA Vaccination. Journal of Infectious Diseases, 2022, 226, 23-31.	4.0	17
6	Vaccine safety in an era of novel vaccines: a proposed research agenda. Nature Reviews Immunology, 2022, 22, 203-204.	22.7	7
7	Oncolytic virus–mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Science Translational Medicine, 2022, 14, eabn2231.	12.4	70
8	Detection of SARS-CoV-2 peptide-specific antibodies in Syrian hamster serum by ELISA. Journal of Immunological Methods, 2022, 505, 113275.	1.4	1
9	The humoral immune response to high-dose influenza vaccine in persons with monoclonal B-cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL). Vaccine, 2021, 39, 1122-1130.	3.8	26
10	Pharmacogenomics and Vaccine Development. Clinical Pharmacology and Therapeutics, 2021, 110, 546-548.	4.7	4
11	The need for broadly protective COVID-19 vaccines: Beyond S-only approaches. Vaccine, 2021, 39, 4239-4241.	3.8	14
12	Update on Influenza Vaccines: Needs and Progress. Journal of Allergy and Clinical Immunology: in Practice, 2021, 9, 3599-3603.	3.8	3
13	Inflammasome Activity in Response to Influenza Vaccination Is Maintained in Monocyte-Derived Peripheral Blood Macrophages in Older Adults. Frontiers in Aging, 2021, 2, .	2.6	1
14	Rubella virus-specific humoral immune responses and their interrelationships before and after a third dose of measles-mumps-rubella vaccine in women of childbearing age. Vaccine, 2020, 38, 1249-1257.	3.8	14
15	SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. Lancet, The, 2020, 396, 1595-1606.	13.7	511
16	B and Th cell response to Ag in vivo: Implications for vaccine development and diseases. Immunological Reviews, 2020, 296, 5-8.	6.0	2
17	The role of host genetics in the immune response to SARSâ€CoVâ€2 and COVIDâ€19 susceptibility and severity. Immunological Reviews, 2020, 296, 205-219.	6.0	175
18	Associations between markers of cellular and humoral immunity to rubella virus following a third dose of measles-mumps-rubella vaccine. Vaccine, 2020, 38, 7897-7904.	3.8	4

#	Article	IF	CITATIONS
19	Durability of humoral immune responses to rubella following MMR vaccination. Vaccine, 2020, 38, 8185-8193.	3.8	7
20	Immunoinformatic identification of B cell and T cell epitopes in the SARS-CoV-2 proteome. Scientific Reports, 2020, 10, 14179.	3.3	80
21	Current Challenges in Vaccinology. Frontiers in Immunology, 2020, 11, 1181.	4.8	47
22	Immunosenescence and human vaccine immune responses. Immunity and Ageing, 2019, 16, 25.	4.2	323
23	The role of systems biology approaches in determining molecular signatures for the development of more effective vaccines. Expert Review of Vaccines, 2019, 18, 253-267.	4.4	18
24	Seroprevalence and durability of rubella virus antibodies in a highly immunized population. Vaccine, 2019, 37, 3876-3882.	3.8	17
25	Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses. Experimental Gerontology, 2019, 124, 110632.	2.8	86
26	Multi-Level Model to Predict Antibody Response to Influenza Vaccine Using Gene Expression Interaction Network Feature Selection. Microorganisms, 2019, 7, 79.	3.6	11
27	Sex Differences in Older Adults' Immune Responses to Seasonal Influenza Vaccination. Frontiers in Immunology, 2019, 10, 180.	4.8	57
28	Differential durability of immune responses to measles and mumps following MMR vaccination. Vaccine, 2019, 37, 1775-1784.	3.8	39
29	Zika Vaccine Development: Current Status. Mayo Clinic Proceedings, 2019, 94, 2572-2586.	3.0	69
30	Polymorphisms in the Wilms Tumor Gene Are Associated With Interindividual Variations in Rubella Virus–Specific Cellular Immunity After Measles-Mumps-Rubella II Vaccination. Journal of Infectious Diseases, 2018, 217, 560-566.	4.0	21
31	Transcriptomic signatures of cellular and humoral immune responses in older adults after seasonal influenza vaccination identified by data-driven clustering. Scientific Reports, 2018, 8, 739.	3.3	34
32	Detection and Quantification of Influenza A/H1N1 Virus-Specific Memory B Cells in Human PBMCs Using ELISpot Assay. Methods in Molecular Biology, 2018, 1808, 221-236.	0.9	6
33	Smallpox and Vaccinia. , 2018, , 1001-1030.e12.		40
34	Differential miRNA expression in B cells is associated with inter-individual differences in humoral immune response to measles vaccination. PLoS ONE, 2018, 13, e0191812.	2.5	21
35	Genome-wide associations of CD46 and IFI44L genetic variants with neutralizing antibody response to measles vaccine. Human Genetics, 2017, 136, 421-435.	3.8	59
36	Integration of Immune Cell Populations, mRNA-Seq, and CpG Methylation to Better Predict Humoral Immunity to Influenza Vaccination: Dependence of mRNA-Seq/CpG Methylation on Immune Cell Populations. Frontiers in Immunology, 2017, 8, 445.	4.8	29

#	Article	IF	CITATIONS
37	Characterization of rubella-specific humoral immunity following two doses of MMR vaccine using proteome microarray technology. PLoS ONE, 2017, 12, e0188149.	2.5	6
38	Recursive Indirect-Paths Modularity (RIP-M) for Detecting Community Structure in RNA-Seq Co-expression Networks. Frontiers in Genetics, 2016, 7, 80.	2.3	12
39	Immunosenescence-Related Transcriptomic and Immunologic Changes in Older Individuals Following Influenza Vaccination. Frontiers in Immunology, 2016, 7, 450.	4.8	40
40	System-Wide Associations between DNA-Methylation, Gene Expression, and Humoral Immune Response to Influenza Vaccination. PLoS ONE, 2016, 11, e0152034.	2.5	53
41	The Integration of Epistasis Network and Functional Interactions in a GWAS Implicates RXR Pathway Genes in the Immune Response to Smallpox Vaccine. PLoS ONE, 2016, 11, e0158016.	2.5	8
42	Pushing Forward With Zika Vaccines. EBioMedicine, 2016, 13, 29-30.	6.1	9
43	Vaccinology in the third millennium: scientific and social challenges. Current Opinion in Virology, 2016, 17, 116-125.	5.4	28
44	Genetically defined race, but not sex, is associated with higher humoral and cellular immune responses to measles vaccination. Vaccine, 2016, 34, 4913-4919.	3.8	24
45	Transcriptional signatures of influenza A/H1N1-specific IgG memory-like B cell response in older individuals. Vaccine, 2016, 34, 3993-4002.	3.8	39
46	Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients. Vaccine, 2016, 34, 3283-3290.	3.8	16
47	The composition of immune cells serves as a predictor of adaptive immunity in a cohort of 50―to 74â€yearâ€old adults. Immunology, 2016, 148, 266-275.	4.4	19
48	Whole Transcriptome Profiling Identifies CD93 and Other Plasma Cell Survival Factor Genes Associated with Measles-Specific Antibody Response after Vaccination. PLoS ONE, 2016, 11, e0160970.	2.5	20
49	The Impact of Immunosenescence on Humoral Immune Response Variation after Influenza A/H1N1 Vaccination in Older Subjects. PLoS ONE, 2015, 10, e0122282.	2.5	74
50	Polymorphisms in HLA-DPB1 Are Associated With Differences in Rubella Virus-Specific Humoral Immunity After Vaccination. Journal of Infectious Diseases, 2015, 211, 898-905.	4.0	45
51	Variability in Humoral Immunity to Measles Vaccine: New Developments. Trends in Molecular Medicine, 2015, 21, 789-801.	6.7	51
52	A systems biology approach to the effect of aging, immunosenescence and vaccine response. Current Opinion in Immunology, 2014, 29, 62-68.	5.5	87
53	Genetic polymorphisms associated with rubella virus-specific cellular immunity following MMR vaccination. Human Genetics, 2014, 133, 1407-1417.	3.8	26
54	Genome-wide SNP associations with rubella-specific cytokine responses in measles-mumps-rubella vaccine recipients. Immunogenetics, 2014, 66, 493-499.	2.4	34

#	Article	IF	Citations
55	HLA alleles associated with the adaptive immune response to smallpox vaccine: a replication study. Human Genetics, 2014, 133, 1083-1092.	3.8	27
56	Associations between race, sex and immune response variations to rubella vaccination in two independent cohorts. Vaccine, 2014, 32, 1946-1953.	3.8	62
57	Associations between Single Nucleotide Polymorphisms in Cellular Viral Receptors and Attachment Factor-Related Genes and Humoral Immunity to Rubella Vaccination. PLoS ONE, 2014, 9, e99997.	2.5	18
58	Vaccinomics, adversomics, and the immune response network theory: Individualized vaccinology in the 21st century. Seminars in Immunology, 2013, 25, 89-103.	5.6	113
59	Smallpox and vaccinia., 2013,, 718-745.		9
60	Race and sex-based differences in cytokine immune responses to smallpox vaccine in healthy individuals. Human Immunology, 2013, 74, 1263-1266.	2.4	48
61	ReliefSeq: A Gene-Wise Adaptive-K Nearest-Neighbor Feature Selection Tool for Finding Gene-Gene Interactions and Main Effects in mRNA-Seq Gene Expression Data. PLoS ONE, 2013, 8, e81527.	2.5	27
62	Associations Between Demographic Variables and Multiple Measles-Specific Innate and Cell-Mediated Immune Responses After Measles Vaccination. Viral Immunology, 2012, 25, 29-36.	1.3	61
63	Correlations Between Vaccinia-Specific Immune Responses Within a Cohort of Armed Forces Members. Viral Immunology, 2011, 24, 415-420.	1.3	16
64	Systems biology approaches to new vaccine development. Current Opinion in Immunology, 2011, 23, 436-443.	5.5	97
65	Vaccinomics and Personalized Vaccinology: Is Science Leading Us Toward a New Path of Directed Vaccine Development and Discovery?. PLoS Pathogens, 2011, 7, e1002344.	4.7	90
66	SNP/haplotype associations in cytokine and cytokine receptor genes and immunity to rubella vaccine. Immunogenetics, 2010, 62, 197-210.	2.4	45
67	The identification of HLA class II-restricted T cell epitopes to vaccinia virus membrane proteins. Virology, 2010, 408, 232-240.	2.4	19
68	The immunology of smallpox vaccines. Current Opinion in Immunology, 2009, 21, 314-320.	5.5	92
69	Gender effects on humoral immune responses to smallpox vaccine. Vaccine, 2009, 27, 3319-3323.	3.8	85
70	Smallpox vaccines for biodefense. Vaccine, 2009, 27, D73-D79.	3.8	50