
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/557337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9, 687-692.	31.5	3,627
2	Morphological Control for High Performance, Solutionâ€Processed Planar Heterojunction Perovskite Solar Cells. Advanced Functional Materials, 2014, 24, 151-157.	14.9	1,782
3	Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nature Communications, 2013, 4, 2761.	12.8	1,525
4	Reversible Hydration of CH ₃ NH ₃ PbI ₃ in Films, Single Crystals, and Solar Cells. Chemistry of Materials, 2015, 27, 3397-3407.	6.7	1,133
5	Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO ₂ , and TiO ₂ Films Used in Dye-Sensitized Solar Cells. ACS Nano, 2011, 5, 5158-5166.	14.6	698
6	Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication. Angewandte Chemie - International Edition, 2016, 55, 13887-13892.	13.8	615
7	High-Performance Perovskite-Polymer Hybrid Solar Cells via Electronic Coupling with Fullerene Monolayers. Nano Letters, 2013, 13, 3124-3128.	9.1	602
8	Lithium salts as "redox active―p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 2572.	2.8	557
9	Highly stable, phase pure Cs ₂ AgBiBr ₆ double perovskite thin films for optoelectronic applications. Journal of Materials Chemistry A, 2017, 5, 19972-19981.	10.3	509
10	Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide. Journal of Physical Chemistry Letters, 2015, 6, 1249-1253.	4.6	477
11	Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications. Nano Letters, 2015, 15, 6095-6101.	9.1	461
12	Preparation of Single-Phase Films of CH ₃ NH ₃ Pb(I _{1–<i>x</i>} Br _{<i>x</i>}) ₃ with Sharp Optical Band Edges. Journal of Physical Chemistry Letters, 2014, 5, 2501-2505.	4.6	385
13	Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Science Advances, 2017, 3, e1601935.	10.3	354
14	Solution Deposition onversion for Planar Heterojunction Mixed Halide Perovskite Solar Cells. Advanced Energy Materials, 2014, 4, 1400355.	19.5	325
15	Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700264.	19.5	295
16	Hybrid Perovskite/Perovskite Heterojunction Solar Cells. ACS Nano, 2016, 10, 5999-6007.	14.6	276
17	A low cost azomethine-based hole transporting material for perovskite photovoltaics. Journal of Materials Chemistry A, 2015, 3, 12159-12162.	10.3	260
18	Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide. Journal of Physical Chemistry Letters. 2014. 5. 2791-2795.	4.6	250

#	Article	IF	CITATIONS
19	A Long-Term View on Perovskite Optoelectronics. Accounts of Chemical Research, 2016, 49, 339-346.	15.6	189
20	Light-Emitting Electrochemical Cells Based on Hybrid Lead Halide Perovskite Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 12047-12054.	3.1	187
21	Understanding the Role of Cesium and Rubidium Additives in Perovskite Solar Cells: Trap States, Charge Transport, and Recombination. Advanced Energy Materials, 2018, 8, 1703057.	19.5	184
22	Recycling Perovskite Solar Cells To Avoid Lead Waste. ACS Applied Materials & Interfaces, 2016, 8, 12881-12886.	8.0	176
23	Impact of Rubidium and Cesium Cations on the Moisture Stability of Multiple-Cation Mixed-Halide Perovskites. ACS Energy Letters, 2017, 2, 2212-2218.	17.4	167
24	lonic-to-electronic current amplification in hybrid perovskite solar cells: ionically gated transistor-interface circuit model explains hysteresis and impedance of mixed conducting devices. Energy and Environmental Science, 2019, 12, 1296-1308.	30.8	146
25	Lessons Learned: From Dyeâ€Sensitized Solar Cells to Allâ€Solidâ€State Hybrid Devices. Advanced Materials, 2014, 26, 4013-4030.	21.0	144
26	Control of Solidâ€State Dyeâ€Sensitized Solar Cell Performance by Blockâ€Copolymerâ€Directed TiO ₂ Synthesis. Advanced Functional Materials, 2010, 20, 1787-1796.	14.9	131
27	A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors. Science Advances, 2020, 6, eaaz4948.	10.3	129
28	Charge Transport Limitations in Self-Assembled TiO ₂ Photoanodes for Dye-Sensitized Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 698-703.	4.6	111
29	Synthesis of Perfectly Oriented and Micrometer-Sized MAPbBr ₃ Perovskite Crystals for Thin-Film Photovoltaic Applications. ACS Energy Letters, 2016, 1, 150-154.	17.4	103
30	Charge Transfer from Methylammonium Lead Iodide Perovskite to Organic Transport Materials: Efficiencies, Transfer Rates, and Interfacial Recombination. Advanced Energy Materials, 2017, 7, 1602349.	19.5	101
31	A Closer Look into Two-Step Perovskite Conversion with X-ray Scattering. Journal of Physical Chemistry Letters, 2015, 6, 1265-1269.	4.6	96
32	Influence of the orientation of methylammonium lead iodide perovskite crystals on solar cell performance. APL Materials, 2014, 2, .	5.1	95
33	Improved conductivity in dye-sensitised solar cells through block-copolymer confined TiO ₂ crystallisation. Energy and Environmental Science, 2011, 4, 225-233.	30.8	88
34	Influence of Fermi Level Alignment with Tin Oxide on the Hysteresis of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 11414-11419.	8.0	79
35	Pore Filling of Spiroâ€OMeTAD in Solidâ€State Dyeâ€Sensitized Solar Cells Determined Via Optical Reflectometry. Advanced Functional Materials, 2012, 22, 5010-5019.	14.9	78
36	New Generation Hole Transporting Materials for Perovskite Solar Cells: Amideâ€Based Smallâ€Molecules with Nonconjugated Backbones. Advanced Energy Materials, 2018, 8, 1801605.	19.5	78

#	Article	IF	CITATIONS
37	The Influence of Water Vapor on the Stability and Processing of Hybrid Perovskite Solar Cells Made from Nonâ€Stoichiometric Precursor Mixtures. ChemSusChem, 2016, 9, 2699-2707.	6.8	77
38	Temperature-dependent studies of exciton binding energy and phase-transition suppression in (Cs,FA,MA)Pb(I,Br)3 perovskites. APL Materials, 2019, 7, .	5.1	73
39	The origin of an efficiency improving "light soaking―effect in SnO2 based solid-state dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 9566.	30.8	67
40	Toward Tailored Film Morphologies: The Origin of Crystal Orientation in Hybrid Perovskite Thin Films. Advanced Materials Interfaces, 2016, 3, 1600403.	3.7	67
41	Progress and challenges in perovskite photovoltaics from single- to multi-junction cells. Materials Today Energy, 2019, 12, 70-94.	4.7	67
42	Hyperbranched Quasi-1D Nanostructures for Solid-State Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 10023-10031.	14.6	65
43	Identifying and controlling phase purity in 2D hybrid perovskite thin films. Journal of Materials Chemistry A, 2018, 6, 22215-22225.	10.3	59
44	Triblockâ€Terpolymerâ€Directed Selfâ€Assembly of Mesoporous TiO ₂ : Highâ€Performance Photoanodes for Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2012, 2, 676-682.	19.5	58
45	Unraveling the Function of an MgO Interlayer in Both Electrolyte and Solid-State SnO ₂ Based Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2012, 116, 22840-22846.	3.1	57
46	Shedding Light on the Moisture Stability of 3D/2D Hybrid Perovskite Heterojunction Thin Films. ACS Applied Energy Materials, 2019, 2, 1011-1018.	5.1	56
47	Starke Lumineszenz in Nanokristallen aus Caesiumbleihalogenid―Perowskit mit durchstimmbarer Zusammensetzung und Dicke mittels Ultraschalldispersion. Angewandte Chemie, 2016, 128, 14091-14096.	2.0	54
48	Towards Longâ€Term Photostability of Solidâ€State Dye Sensitized Solar Cells. Advanced Energy Materials, 2014, 4, 1301667.	19.5	51
49	Design rules for the preparation of low-cost hole transporting materials for perovskite solar cells with moisture barrier properties. Journal of Materials Chemistry A, 2017, 5, 25200-25210.	10.3	49
50	Temperature-Dependent Ambipolar Charge Carrier Mobility in Large-Crystal Hybrid Halide Perovskite Thin Films. ACS Applied Materials & Interfaces, 2019, 11, 20838-20844.	8.0	49
51	Layered Perovskites in Solar Cells: Structure, Optoelectronic Properties, and Device Design. Advanced Energy Materials, 2021, 11, 2003877.	19.5	49
52	Unveiling the Dynamic Processes in Hybrid Lead Bromide Perovskite Nanoparticle Thin Film Devices. Advanced Energy Materials, 2017, 7, 1602283.	19.5	47
53	Single-crystal-like optoelectronic-properties of MAPbI ₃ perovskite polycrystalline thin films. Journal of Materials Chemistry A, 2018, 6, 4822-4828.	10.3	46
54	Obviating the requirement for oxygen in SnO2-based solid-state dye-sensitized solar cells. Nanotechnology, 2011, 22, 225403.	2.6	40

#	Article	IF	CITATIONS
55	Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 7974-7981.	8.0	40
56	Lead-sulphide quantum-dot sensitization of tin oxide based hybrid solar cells. Solar Energy, 2011, 85, 1283-1290.	6.1	39
57	Layerâ€byâ€Layer Formation of Blockâ€Copolymerâ€Derived TiO ₂ for Solidâ€State Dyeâ€Sensitized Solar Cells. Small, 2012, 8, 432-440.	10.0	35
58	Light-emitting electrochemical cells based on inorganic metal halide perovskite nanocrystals. Journal Physics D: Applied Physics, 2018, 51, 334001.	2.8	32
59	Charge Transport Limitations in Perovskite Solar Cells: The Effect of Charge Extraction Layers. ACS Applied Materials & Interfaces, 2017, 9, 37655-37661.	8.0	30
60	Control of Perovskite Crystal Growth by Methylammonium Lead Chloride Templating. Chemistry - an Asian Journal, 2016, 11, 1199-1204.	3.3	28
61	Contactless Visualization of Fast Charge Carrier Diffusion in Hybrid Halide Perovskite Thin Films. ACS Photonics, 2016, 3, 255-261.	6.6	26
62	The Bandgap as a Moving Target: Reversible Bandgap Instabilities in Multiple-Cation Mixed-Halide Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 2995-3001.	17.4	24
63	The influence of 1D, meso- and crystal structures on charge transport and recombination in solid-state dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 12088.	10.3	22
64	Passivation of PbS Quantum Dot Surface with <scp>l</scp> -Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 4600-4607.	8.0	22
65	Universal Nanoparticle Wetting Agent for Upscaling Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 12948-12957.	8.0	22
66	Optimizing the Energy Offset between Dye and Hole-Transporting Material in Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 19850-19858.	3.1	19
67	Observation of Annealing-Induced Doping in TiO ₂ Mesoporous Single Crystals for Use in Solid State Dye Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 1821-1827.	3.1	19
68	Synthesis of Hybrid Tin Halide Perovskite Solar Cells with Less Hazardous Solvents: Methanol and 1,4â€Đioxane. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2017, 643, 1704-1711.	1.2	19
69	Hydrazone-based hole transporting material prepared <i>via</i> condensation chemistry as alternative for cross-coupling chemistry for perovskite solar cells. Molecular Systems Design and Engineering, 2018, 3, 734-740.	3.4	19
70	Highly Efficient Reproducible Perovskite Solar Cells Prepared by Low-Temperature Processing. Molecules, 2016, 21, 542.	3.8	18
71	Enhanced electronic contacts in SnO2–dye–P3HT based solid state dye sensitized solar cells. Physical Chemistry Chemical Physics, 2013, 15, 2075.	2.8	17
72	Perovskite solar cells with a hybrid electrode structure. AIP Advances, 2019, 9, 125037.	1.3	16

#	Article	IF	CITATIONS
73	Wide-Band-Gap Metal-Free Perovskite for Third-Order Nonlinear Optics. ACS Photonics, 2021, 8, 2450-2458.	6.6	15
74	Impact of Molecular Charge-Transfer States on Photocurrent Generation in Solid State Dye-Sensitized Solar Cells Employing Low-Band-Gap Dyes. Journal of Physical Chemistry C, 2014, 118, 16825-16830.	3.1	13
75	Controlling crystal growth by chloride-assisted synthesis: Towards optimized charge transport in hybrid halide perovskites. Solar Energy Materials and Solar Cells, 2017, 166, 269-275.	6.2	8
76	Chapter 2. Towards Optimum Solution-processed Planar Heterojunction Perovskite Solar Cells. RSC Energy and Environment Series, 2016, , 32-56.	0.5	5
77	Self-assembly as a design tool for the integration of photonic structures into excitonic solar cells. Proceedings of SPIE, 2011, , .	0.8	3
78	Perovskite Solar Cells: Capturing the Sun: A Review of the Challenges and Perspectives of Perovskite Solar Cells (Adv. Energy Mater. 16/2017). Advanced Energy Materials, 2017, 7, .	19.5	3
79	Guided in Situ Polymerization of MEH-PPV in Mesoporous Titania Photoanodes. ACS Applied Materials & Interfaces, 2015, 7, 10356-10364.	8.0	1
80	Perovskite Nanoparticles: Unveiling the Dynamic Processes in Hybrid Lead Bromide Perovskite Nanoparticle Thin Film Devices (Adv. Energy Mater. 15/2017). Advanced Energy Materials, 2017, 7, .	19.5	1
81	Quantum Dot Based Light-Emitting Electrochemical Cells. , 2017, , 351-371.		1
82	Solid State Dye-Sensitized Solar Cell. , 2014, , 2029-2040.		1
83	The Influence of Fermi Level Alignment with Tin Oxide on the Hysteresis of Perovskite Solar Cells. , 0, ,		1
84	Synthesis of SOT-OH and its application as a building block for the synthesis of new dimeric and trimeric Spiro-OMeTAD materials. Molecular Systems Design and Engineering, 2022, 7, 899-905.	3.4	1
85	Temperature-Dependent Electromodulation Spectroscopy of Excitons in Perovskite Solar Cells. , 2018, , .		0
86	Preface: Two dimensional (2D) hybrid organic-inorganic perovskites. APL Materials, 2018, 6, .	5.1	0
87	Local Disorder at the Phase Transition Interrupts Ambipolar Charge Carrier Transport in Large Crystal Methylammonium Lead Iodide Thin Films. Journal of Physical Chemistry C, 2020, 124, 20757-20764.	3.1	0
88	Light-emitting Electrochemical Cells based on Inorganic Metal Halide Perovskite Nanocrystals. , 0, , .		0
89	Ultrafast spectroscopy of lattice-charge carrier interactions in bismuth-based perovskites. , 0, , .		0
90	Reversible Bandgap Instabilities in Multiple-Cation Mixed-Halide Perovskite Solar Cells. , 0, , .		0

#	Article	IF	CITATIONS
91	SPICE Modeling and Characterization of Filament Formation Perovskite Memristors. , 2020, , .		0
92	2-Dimensional Layered Single Crystal Perovskites and Films for Memristor and Photoresistor Applications. , 0, , .		0
93	Synthesis of SOT-OH as a building block for the synthesis of new dimeric and trimeric Spiro-OMeTAD Materials. , 0, , .		0