JÃ, rgen E Olesen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5572951/publications.pdf Version: 2024-02-01

		8755	9589
331	25,358	75	142
papers	citations	h-index	g-index
353	353	353	21071
all docs	docs citations	times ranked	citing authors

IÃ DOEN E OLESEN

#	Article	IF	CITATIONS
1	Rising temperatures reduce global wheatÂproduction. Nature Climate Change, 2015, 5, 143-147.	18.8	1,544
2	Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy, 2002, 16, 239-262.	4.1	1,106
3	Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 2013, 3, 827-832.	18.8	1,021
4	Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 2011, 34, 96-112.	4.1	902
5	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	5.3	646
6	Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations. Journal of Environmental Quality, 2009, 38, 1930-1941.	2.0	502
7	Adverse weather conditions for European wheat production will become more frequent with climate change, 2014, 4, 637-643.	18.8	452
8	Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. European Journal of Agronomy, 2011, 35, 103-114.	4.1	408
9	Multimodel ensembles of wheat growth: many models are better than one. Global Change Biology, 2015, 21, 911-925.	9.5	387
10	Adaptation to Climate Change in Developing Countries. Environmental Management, 2009, 43, 743-752.	2.7	377
11	Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 2016, 6, 1130-1136.	18.8	352
12	Agroclimatic conditions in Europe under climate change. Global Change Biology, 2011, 17, 2298-2318.	9.5	315
13	Climate change impact and adaptation for wheat protein. Global Change Biology, 2019, 25, 155-173.	9.5	312
14	How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biology, 2020, 26, 219-241.	9.5	308
15	Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change, 2007, 81, 123-143.	3.6	304
16	Crop–climate models need an overhaul. Nature Climate Change, 2011, 1, 175-177.	18.8	295
17	Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models. Field Crops Research, 2012, 133, 23-36.	5.1	269
18	Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2788-2793.	7.1	265

JÃ,rgen E Olesen

#	Article	IF	CITATIONS
19	Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry. Journal of Agricultural Science, 1991, 117, 91-100.	1.3	256
20	Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation. Hydrobiologia, 2011, 663, 1-21.	2.0	242
21	Synergies between the mitigation of, and adaptation to, climate change in agriculture. Journal of Agricultural Science, 2010, 148, 543-552.	1.3	235
22	The responses of agriculture in Europe to climate change. Regional Environmental Change, 2011, 11, 151-158.	2.9	233
23	Crop modelling for integrated assessment of risk to food production from climate change. Environmental Modelling and Software, 2015, 72, 287-303.	4.5	230
24	Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications, 2018, 9, 4249.	12.8	230
25	Challenges in quantifying biosphere–atmosphere exchange of nitrogen species. Environmental Pollution, 2007, 150, 125-139.	7.5	203
26	Policies for agricultural nitrogen management—trends, challenges and prospects for improved efficiency in Denmark. Environmental Research Letters, 2014, 9, 115002.	5.2	184
27	Processes controlling ammonia emission from livestock slurry in the field. European Journal of Agronomy, 2003, 19, 465-486.	4.1	181
28	Soil tillage enhanced CO2 and N2O emissions from loamy sand soil under spring barley. Soil and Tillage Research, 2007, 97, 5-18.	5.6	176
29	Modelling greenhouse gas emissions from European conventional and organic dairy farms. Agriculture, Ecosystems and Environment, 2006, 112, 207-220.	5.3	175
30	The uncertainty of crop yield projections is reduced by improved temperature response functions. Nature Plants, 2017, 3, 17102.	9.3	170
31	Effects of Dry Matter Content and Temperature on Ammonia Loss from Surfaceâ€Applied Cattle Slurry. Journal of Environmental Quality, 1991, 20, 679-683.	2.0	157
32	Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change. Journal of Hydrology, 2016, 535, 301-317.	5.4	156
33	Evidence for denitrification as main source of N 2 O emission from residue-amended soil. Soil Biology and Biochemistry, 2016, 92, 153-160.	8.8	155
34	Mitigation of greenhouse gas emissions in European conventional and organic dairy farming. Agriculture, Ecosystems and Environment, 2006, 112, 221-232.	5.3	149
35	Landscape-scale modeling of carbon cycling under the impact of soil redistribution: The role of tillage erosion. Global Biogeochemical Cycles, 2005, 19, n/a-n/a.	4.9	144
36	Decline in climate resilience of European wheat. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 123-128.	7.1	144

#	Article	IF	CITATIONS
37	Soil carbon loss with warming: New evidence from carbonâ€degrading enzymes. Global Change Biology, 2020, 26, 1944-1952.	9.5	141
38	Nitrogen leaching: A crop rotation perspective on the effect of N surplus, field management and use of catch crops. Agriculture, Ecosystems and Environment, 2018, 255, 1-11.	5.3	138
39	Watershed land use effects on lake water quality in Denmark. Ecological Applications, 2012, 22, 1187-1200.	3.8	136
40	Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1527-1542.	2.3	135
41	Cereal yield gaps across Europe. European Journal of Agronomy, 2018, 101, 109-120.	4.1	135
42	Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET. Agricultural Systems, 2003, 76, 817-839.	6.1	131
43	Digging Deeper for Agricultural Resources, the Value of Deep Rooting. Trends in Plant Science, 2020, 25, 406-417.	8.8	127
44	Crop rotation modelling—A European model intercomparison. European Journal of Agronomy, 2015, 70, 98-111.	4.1	125
45	Winter wheat yield response to climate variability in Denmark. Journal of Agricultural Science, 2011, 149, 33-47.	1.3	124
46	Coincidence of variation in yield and climate in Europe. Agriculture, Ecosystems and Environment, 2010, 139, 483-489.	5.3	123
47	Carbon footprints of crops from organic and conventional arable crop rotations – using a life cycle assessment approach. Journal of Cleaner Production, 2014, 64, 609-618.	9.3	123
48	Longâ€ŧerm nitrogen loading alleviates phosphorus limitation in terrestrial ecosystems. Global Change Biology, 2020, 26, 5077-5086.	9.5	123
49	Nitrate leaching from organic arable crop rotations is mostly determined by autumn field management. Agriculture, Ecosystems and Environment, 2011, 142, 149-160.	5.3	120
50	Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems. Agriculture, Ecosystems and Environment, 2010, 139, 584-594.	5.3	116
51	Livestock and greenhouse gas emissions: The importance of getting the numbers right. Animal Feed Science and Technology, 2011, 166-167, 779-782.	2.2	116
52	Global maps of soil temperature. Global Change Biology, 2022, 28, 3110-3144.	9.5	113
53	Analysis and classification of data sets for calibration and validation of agro-ecosystem models. Environmental Modelling and Software, 2015, 72, 402-417.	4.5	112
54	Crop model improvement reduces the uncertainty of the response to temperature of multi-model ensembles. Field Crops Research, 2017, 202, 5-20.	5.1	109

#	Article	IF	CITATIONS
55	Nitrous oxide emissions from European agriculture – an analysis of variability and drivers of emissions from field experiments. Biogeosciences, 2013, 10, 2671-2682.	3.3	108
56	Nitrogen leaching from conventional versus organic farming systems — a systems modelling approach. European Journal of Agronomy, 2000, 13, 65-82.	4.1	107
57	Multielemental Fingerprinting as a Tool for Authentication of Organic Wheat, Barley, Faba Bean, and Potato. Journal of Agricultural and Food Chemistry, 2011, 59, 4385-4396.	5.2	106
58	A framework for testing the ability of models to project climate change and its impacts. Climatic Change, 2014, 122, 271-282.	3.6	104
59	Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark. European Journal of Agronomy, 2015, 62, 55-64.	4.1	104
60	Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas. Science Advances, 2019, 5, eaau2406.	10.3	104
61	Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agriculture, Ecosystems and Environment, 2010, 136, 199-208.	5.3	103
62	Sensitivity of European wheat to extreme weather. Field Crops Research, 2018, 222, 209-217.	5.1	101
63	Modelling effects of wind speed and surface cover on ammonia volatilization from stored pig slurry. Atmospheric Environment Part A General Topics, 1993, 27, 2567-2574.	1.3	99
64	Modelling CO2 effects on wheat with varying nitrogen supplies. Agriculture, Ecosystems and Environment, 2000, 82, 27-37.	5.3	96
65	The role of uncertainty in climate change adaptation strategies—A Danish water management example. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 337-359.	2.1	92
66	The role of catch crops in the ecological intensification of spring cereals in organic farming under Nordic climate. European Journal of Agronomy, 2013, 44, 98-108.	4.1	92
67	Similarity of differently sized macro-aggregates in arable soils of different texture. Geoderma, 2006, 137, 147-154.	5.1	91
68	Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Research, 2017, 202, 21-35.	5.1	91
69	Effects of reduced tillage on net greenhouse gas fluxes from loamy sand soil under winter crops in Denmark. Agriculture, Ecosystems and Environment, 2008, 128, 117-126.	5.3	90
70	A potato model intercomparison across varying climates and productivity levels. Global Change Biology, 2017, 23, 1258-1281.	9.5	90
71	The value of catch crops and organic manures for spring barley in organic arable farming. Field Crops Research, 2007, 100, 168-178.	5.1	89
72	Winter cereal yields as affected by animal manure and green manure in organic arable farming. European Journal of Agronomy, 2009, 30, 119-128.	4.1	87

#	Article	IF	CITATIONS
73	Comparison of methods for simulating effects of nitrogen on green area index and dry matter growth in winter wheat. Field Crops Research, 2002, 74, 131-149.	5.1	83
74	Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria. Journal of Agricultural Science, 2013, 151, 813-835.	1.3	82
75	Effects of contrasting catch crops on nitrogen availability and nitrous oxide emissions in an organic cropping system. Agriculture, Ecosystems and Environment, 2015, 199, 382-393.	5.3	81
76	Carbon dynamics and retention in soil after anaerobic digestion of dairy cattle feed and faeces. Soil Biology and Biochemistry, 2013, 58, 82-87.	8.8	79
77	Simulation of Effects of Soils, Climate and Management on N2O Emission from Grasslands. Biogeochemistry, 2005, 76, 395-419.	3.5	78
78	Changes in carbon stocks of <scp>D</scp> anish agricultural mineral soils between 1986 and 2009. European Journal of Soil Science, 2014, 65, 730-740.	3.9	78
79	Nitrate leaching from organic arable crop rotations: effects of location, manure and catch crop. Soil Use and Management, 2005, 21, 181-188.	4.9	78
80	Root carbon input in organic and inorganic fertilizer-based systems. Plant and Soil, 2012, 359, 321-333.	3.7	77
81	C-TOOL: A simple model for simulating whole-profile carbon storage in temperate agricultural soils. Ecological Modelling, 2014, 292, 11-25.	2.5	77
82	Nitrous oxide emissions and nitrogen use efficiency of manure and digestates applied to spring barley. Agriculture, Ecosystems and Environment, 2017, 239, 188-198.	5.3	76
83	Effects of catch crop type and root depth on nitrogen leaching and yield of spring barley. Field Crops Research, 2012, 125, 129-138.	5.1	75
84	ls it really organic? – Multi-isotopic analysis as a tool to discriminate between organic and conventional plants. Food Chemistry, 2013, 141, 2812-2820.	8.2	75
85	Do soil organic carbon levels affect potential yields and nitrogen use efficiency? An analysis of winter wheat and spring barley field trials. European Journal of Agronomy, 2015, 66, 62-73.	4.1	75
86	Performance of the SUBSTOR-potato model across contrasting growing conditions. Field Crops Research, 2017, 202, 57-76.	5.1	75
87	Cereal yield and quality as affected by nitrogen availability in organic and conventional arable crop rotations: A combined modeling and experimental approach. European Journal of Agronomy, 2011, 34, 83-95.	4.1	74
88	Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment. Science of the Total Environment, 2016, 573, 608-626.	8.0	73
89	Sensitivity of field-scale winter wheat production in Denmark to climate variability and climate change. Climate Research, 2000, 15, 221-238.	1.1	72
90	Regionâ€specific assessment of greenhouse gas mitigation with different manure management strategies in four agroecological zones. Global Change Biology, 2009, 15, 2825-2837.	9.5	70

#	Article	IF	CITATIONS
91	Effect of soil warming and rainfall patterns on soil N cycling in Northern Europe. Agriculture, Ecosystems and Environment, 2010, 139, 195-205.	5.3	70
92	Developments in greenhouse gas emissions and net energy use in Danish agriculture – How to achieve substantial CO2 reductions?. Environmental Pollution, 2011, 159, 3193-3203.	7.5	70
93	Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. Journal of Agricultural Science, 2016, 154, 1218-1240.	1.3	70
94	Above- and below-ground competition between intercropped winter wheat Triticum aestivum and white clover Trifolium repens. Journal of Applied Ecology, 2006, 43, 237-245.	4.0	68
95	Modelling the carbon and nitrogen balances of direct land use changes from energy crops in Denmark: a consequential life cycle inventory. GCB Bioenergy, 2012, 4, 889-907.	5.6	68
96	Dairy farm CH4 and N2O emissions, from one square metre to the full farm scale. Agriculture, Ecosystems and Environment, 2006, 112, 146-152.	5.3	67
97	Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties. Field Crops Research, 2004, 89, 263-280.	5.1	66
98	Organic matter and soil tilth in arable farming: Management makes a difference within 5–6 years. Agriculture, Ecosystems and Environment, 2007, 122, 157-172.	5.3	66
99	Effects of grass-clover management and cover crops on nitrogen cycling and nitrous oxide emissions in a stockless organic crop rotation. Agriculture, Ecosystems and Environment, 2013, 181, 115-126.	5.3	66
100	The effect of tillage intensity on soil structure and winter wheat root/shoot growth. Soil Use and Management, 2008, 24, 392-400.	4.9	65
101	Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1941-1957.	3.0	65
102	Irrigation strategy, nitrogen application and fungicide control in winter wheat on a sandy soil. I. Yield, yield components and nitrogen uptake. Journal of Agricultural Science, 2000, 134, 1-11.	1.3	64
103	Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1514-1526.	2.3	63
104	Modelling dry matter production and resource use in intercrops of pea and barley. Field Crops Research, 2004, 88, 69-83.	5.1	61
105	C and N mineralization of composted and anaerobically stored ruminant manure in differently textured soils. Journal of Agricultural Science, 2000, 135, 151-159.	1.3	60
106	Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems. Animal, 2013, 7, 373-385.	3.3	60
107	Nitrogen mineralization potential of organomineral size separates from soils with annual straw incorporation. European Journal of Soil Science, 1998, 49, 25-36.	3.9	58
108	Management effects on European cropland respiration. Agriculture, Ecosystems and Environment, 2010, 139, 346-362.	5.3	58

#	Article	IF	CITATIONS
109	Effects of experimental warming and nitrogen addition on soil respiration and CH4 fluxes from crop rotations of winter wheat–soybean/fallow. Agricultural and Forest Meteorology, 2015, 207, 38-47.	4.8	58
110	Growth and yield response of winter wheat to soil warming and rainfall patterns. Journal of Agricultural Science, 2010, 148, 553-566.	1.3	57
111	Could the changes in regional crop yields be a pointer of climatic change?. Agricultural and Forest Meteorology, 2012, 166-167, 62-71.	4.8	55
112	Effects of climate and nutrient load on the water quality of shallow lakes assessed through ensemble runs by PCLake. Ecological Applications, 2014, 24, 1926-1944.	3.8	55
113	Quantifying biological nitrogen fixation of different catch crops, and residual effects of roots and tops on nitrogen uptake in barley using in-situ 15N labelling. Plant and Soil, 2015, 395, 273-287.	3.7	55
114	Impacts and adaptation of the cropping systems to climate change in the Northeast Farming Region of China. European Journal of Agronomy, 2016, 78, 60-72.	4.1	55
115	Long-term fate of nitrogen uptake in catch crops. European Journal of Agronomy, 2006, 25, 383-390.	4.1	54
116	Looking at Biofuels and Bioenergy. Science, 2006, 312, 1743b-1744b.	12.6	54
117	Stimulation of ammonia oxidizer and denitrifier abundances by nitrogen loading: Poor predictability for increased soil N ₂ O emission. Global Change Biology, 2022, 28, 2158-2168.	9.5	54
118	Comparison of scales of climate and soil data for aggregating simulated yields of winter wheat in Denmark. Agriculture, Ecosystems and Environment, 2000, 82, 213-228.	5.3	53
119	Width of clover strips and wheat rows influence grain yield in winter wheat/white clover intercropping. Field Crops Research, 2006, 95, 280-290.	5.1	53
120	Warming and nitrogen fertilization effects on winter wheat yields in northern China varied between four years. Field Crops Research, 2013, 151, 56-64.	5.1	53
121	A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark. Agricultural and Forest Meteorology, 2014, 187, 1-13.	4.8	53
122	Estimating crop yield using a satellite-based light use efficiency model. Ecological Indicators, 2016, 60, 702-709.	6.3	52
123	Greenhouse gas emissions during storage of manure and digestates: Key role of methane for prediction and mitigation. Agricultural Systems, 2018, 166, 26-35.	6.1	52
124	Yield benefits from replacing chemical fertilizers with manure under water deficient conditions of the winter wheat – summer maize system in the North China Plain. European Journal of Agronomy, 2020, 119, 126118.	4.1	52
125	Projecting the future ecological state of lakes in Denmark in a 6 degree warming scenario. Climate Research, 2015, 64, 55-72.	1.1	52
126	Crop residues as driver for N2O emissions from a sandy loam soil. Agricultural and Forest Meteorology, 2017, 233, 45-54.	4.8	51

#	Article	IF	CITATIONS
127	Effects of rate and timing of nitrogen fertilizer on disease control by fungicides in winter wheat. 1. Grain yield and foliar disease control. Journal of Agricultural Science, 2003, 140, 1-13.	1.3	50
128	Multi-wheat-model ensemble responses to interannual climate variability. Environmental Modelling and Software, 2016, 81, 86-101.	4.5	50
129	Reviews and syntheses: Review of causes and sources of N ₂ O emissions and NO ₃ leaching from organic arable crop rotations. Biogeosciences, 2019, 16, 2795-2819.	3.3	50
130	C and N turnover in structurally intact soils of different texture. Soil Biology and Biochemistry, 2003, 35, 765-774.	8.8	49
131	Spatiotemporal variations of aridity in Iran using highâ€resolution gridded data. International Journal of Climatology, 2018, 38, 2701-2717.	3.5	49
132	Root biomass in cereals, catch crops and weeds can be reliably estimated without considering aboveground biomass. Agriculture, Ecosystems and Environment, 2018, 251, 141-148.	5.3	49
133	Effects of changes in land use and climate on aquatic ecosystems: Coupling of models and decomposition of uncertainties. Science of the Total Environment, 2019, 657, 627-633.	8.0	48
134	Carbon and nitrogen mineralization differ between incorporated shoots and roots of legume versus non-legume based cover crops. Plant and Soil, 2020, 446, 243-257.	3.7	48
135	Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2. Field Crops Research, 2016, 198, 80-92.	5.1	47
136	Climate change is expected to increase yield and water use efficiency of wheat in the North China Plain. Agricultural Water Management, 2019, 222, 193-203.	5.6	47
137	Simulating soil N2O emissions and heterotrophic CO2 respiration in arable systems using FASSET and MoBiLE-DNDC. Plant and Soil, 2011, 343, 139-160.	3.7	46
138	Farm nitrogen balances in six European landscapes as an indicator for nitrogen losses and basis for improved management. Biogeosciences, 2012, 9, 5303-5321.	3.3	46
139	Traits in Spring Wheat Cultivars Associated with Yield Loss Caused by a Heat Stress Episode after Anthesis. Journal of Agronomy and Crop Science, 2015, 201, 32-48.	3.5	46
140	Modelling soil organic carbon in Danish agricultural soils suggests low potential for future carbon sequestration. Agricultural Systems, 2016, 145, 83-89.	6.1	46
141	Nitrogen balances in organic and conventional arable crop rotations and their relations to nitrogen yield and nitrate leaching losses. Agriculture, Ecosystems and Environment, 2018, 265, 350-362.	5.3	46
142	Temperature thresholds of ecosystem respiration at a global scale. Nature Ecology and Evolution, 2021, 5, 487-494.	7.8	46
143	Nitrate Leaching, Yields and Carbon Sequestration after Noninversion Tillage, Catch Crops, and Straw Retention. Journal of Environmental Quality, 2015, 44, 868-881.	2.0	45
144	Adapting maize production to drought in the Northeast Farming Region of China. European Journal of Agronomy, 2016, 77, 47-58.	4.1	44

#	Article	IF	CITATIONS
145	Changing regional weather-crop yield relationships across Europe between 1901 and 2012. Climate Research, 2016, 70, 195-214.	1.1	44
146	A probabilistic assessment of climate change impacts on yield and nitrogen leaching from winter wheat in Denmark. Natural Hazards and Earth System Sciences, 2011, 11, 2541-2553.	3.6	43
147	Climate change increases deoxynivalenol contamination of wheat in north-western Europe. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1593-1604.	2.3	43
148	Performance of process-based models for simulation of grain N in crop rotations across Europe. Agricultural Systems, 2017, 154, 63-77.	6.1	43
149	Experimental warming-driven soil drying reduced N2O emissions from fertilized crop rotations of winter wheat–soybean/fallow, 2009–2014. Agriculture, Ecosystems and Environment, 2016, 219, 71-82.	5.3	42
150	Shared socio-economic pathways extended for the Baltic Sea: exploring long-term environmental problems. Regional Environmental Change, 2019, 19, 1073-1086.	2.9	42
151	Nitrogen cycling in organic farming systems with rotational grass-clover and arable crops. Soil Use and Management, 2006, 22, 197-208.	4.9	41
152	Large uncertainty in soil carbon modelling related to method of calculation of plant carbon input in agricultural systems. European Journal of Soil Science, 2017, 68, 953-963.	3.9	41
153	Risk factors for European winter oilseed rape production under climate change. Agricultural and Forest Meteorology, 2019, 272-273, 30-39.	4.8	41
154	A Passive Flux Sampler for Measuring Ammonia Volatilization from Manure Storage Facilities. Journal of Environmental Quality, 1996, 25, 241-247.	2.0	40
155	Irrigation strategy, nitrogen application and fungicide control in winter wheat on a sandy soil. II. Radiation interception and conversion. Journal of Agricultural Science, 2000, 134, 13-23.	1.3	40
156	Nitrogen balances of innovative cropping systems for feedstock production to future biorefineries. Science of the Total Environment, 2018, 633, 372-390.	8.0	40
157	Acclimation to higher VPD and temperature minimized negative effects on assimilation and grain yield of wheat. Agricultural and Forest Meteorology, 2018, 248, 119-129.	4.8	40
158	Crop nitrogen demand and canopy area expansion in winter wheat during vegetative growth. European Journal of Agronomy, 2002, 16, 279-294.	4.1	39
159	Effect of climate change on greenhouse gas emissions from arable crop rotations. Nutrient Cycling in Agroecosystems, 2004, 70, 147-160.	2.2	39
160	Long-term effects of cropping system on N2O emission potential. Soil Biology and Biochemistry, 2013, 57, 706-712.	8.8	39
161	A flexible tool for simulation of soil carbon turnover. Ecological Modelling, 2002, 151, 1-14.	2.5	38
162	Mechanical control of clover improves nitrogen supply and growth of wheat in winter wheat/white clover intercropping. European Journal of Agronomy, 2006, 24, 149-155.	4.1	38

#	Article	IF	CITATIONS
163	<i>Apera spicaâ€venti</i> population dynamics and impact on crop yield as affected by tillage, crop rotation, location and herbicide programmes. Weed Research, 2008, 48, 48-57.	1.7	38
164	Effects of climatic factors, drought risk and irrigation requirement on maize yield in the Northeast Farming Region of China. Journal of Agricultural Science, 2016, 154, 1171-1189.	1.3	38
165	Consolidating soil carbon turnover models by improved estimates of belowground carbon input. Scientific Reports, 2016, 6, 32568.	3.3	38
166	Decreased rhizodeposition, but increased microbial carbon stabilization with soil depth down to 3.6Âm. Soil Biology and Biochemistry, 2020, 150, 108008.	8.8	38
167	Future socioeconomic conditions may have a larger impact than climate change on nutrient loads to the Baltic Sea. Ambio, 2019, 48, 1325-1336.	5.5	37
168	Input and mineralization of carbon and nitrogen in soil from legume-based cover crops. Nutrient Cycling in Agroecosystems, 2020, 116, 1-18.	2.2	37
169	Predicting nitrous oxide emissions from manure properties and soil moisture: An incubation experiment. Soil Biology and Biochemistry, 2016, 97, 112-120.	8.8	36
170	Biological nitrogen fixation in three long-term organic and conventional arable crop rotation experiments in Denmark. European Journal of Agronomy, 2017, 90, 87-95.	4.1	36
171	Physical robustness of canopy temperature models for crop heat stress simulation across environments and production conditions. Field Crops Research, 2018, 216, 75-88.	5.1	36
172	Effects of rates and timing of nitrogen fertilizer on disease control by fungicides in winter wheat. 2. Crop growth and disease development. Journal of Agricultural Science, 2003, 140, 15-29.	1.3	35
173	Effects of farm heterogeneity and methods for upscaling on modelled nitrogen losses in agricultural landscapes. Environmental Pollution, 2011, 159, 3183-3192.	7.5	35
174	Multi-model uncertainty analysis in predicting grain N for crop rotations in Europe. European Journal of Agronomy, 2017, 84, 152-165.	4.1	35
175	Comparison of regression techniques to predict response of oilseed rape yield to variation in climatic conditions in Denmark. European Journal of Agronomy, 2017, 82, 11-20.	4.1	35
176	Priority questions in multidisciplinary drought research. Climate Research, 2018, 75, 241-260.	1.1	35
177	Design of an Organic Farming Crop-Rotation Experiment. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2000, 50, 13-21.	0.6	34
178	Spatial Variation of Temperature and Precipitation in Bhutan and Links to Vegetation and Land Cover. Mountain Research and Development, 2016, 36, 66.	1.0	34
179	Assessing ways to combat eutrophication in a Chinese drinking water reservoir using SWAT. Marine and Freshwater Research, 2013, 64, 475.	1.3	33
180	Productivity of organic and conventional arable cropping systems in long-term experiments in Denmark. European Journal of Agronomy, 2017, 90, 12-22.	4.1	33

#	Article	IF	CITATIONS
181	Climate effects on crop yields in the Northeast Farming Region of China during 1961–2010. Journal of Agricultural Science, 2016, 154, 1190-1208.	1.3	32
182	Potential benefits of a spatially targeted regulation based on detailed N-reduction maps to decrease N-load from agriculture in a small groundwater dominated catchment. Science of the Total Environment, 2017, 595, 325-336.	8.0	32
183	Nitrate leaching losses from two Baltic Sea catchments under scenarios of changes in land use, land management and climate. Ambio, 2019, 48, 1252-1263.	5.5	32
184	Can mulching of maize straw complement deficit irrigation to improve water use efficiency and productivity of winter wheat in North China Plain?. Agricultural Water Management, 2019, 213, 1-11.	5.6	32
185	A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration. Agricultural and Forest Meteorology, 2015, 214-215, 483-493.	4.8	31
186	Limits of agricultural greenhouse gas calculators to predict soil N2O and CH4 fluxes in tropical agriculture. Scientific Reports, 2016, 6, 26279.	3.3	31
187	The chaos in calibrating crop models: Lessons learned from a multi-model calibration exercise. Environmental Modelling and Software, 2021, 145, 105206.	4.5	31
188	Soil carbon varies between different organic and conventional management schemes in arable agriculture. European Journal of Agronomy, 2018, 94, 79-88.	4.1	30
189	Manipulating cover crop growth by adjusting sowing time and cereal inter-row spacing to enhance residual nitrogen effects. Field Crops Research, 2019, 234, 15-25.	5.1	30
190	Predicting field N2O emissions from crop residues based on their biochemical composition: A meta-analytical approach. Science of the Total Environment, 2022, 812, 152532.	8.0	30
191	Ammoniated straw incorporation increases wheat yield, yield stability, soil organic carbon and soil total nitrogen content. Field Crops Research, 2022, 284, 108558.	5.1	30
192	Crop growth and nitrogen turnover under increased temperatures and low autumn and winter light intensity. Agriculture, Ecosystems and Environment, 2010, 139, 187-194.	5.3	29
193	Quantifying the effect of interactions between disease control, nitrogen supply and land use change on the greenhouse gas emissions associated with wheat production. Plant Pathology, 2010, 59, 753-763.	2.4	29
194	Impacts of changing society and climate on nutrient loading to the Baltic Sea. Science of the Total Environment, 2020, 731, 138935.	8.0	29
195	Agricultural Biogas Production—Climate and Environmental Impacts. Sustainability, 2022, 14, 1849.	3.2	29
196	A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Science of the Total Environment, 2022, 828, 154388.	8.0	29
197	Global wheat production could benefit from closing the genetic yield gap. Nature Food, 2022, 3, 532-541.	14.0	29
198	Impacts of Climate Change and Variability on European Agriculture. Annals of the New York Academy of Sciences, 2008, 1146, 338-353.	3.8	28

#	Article	IF	CITATIONS
199	Sources of Nitrogen for Winter Wheat in Organic Cropping Systems. Soil Science Society of America Journal, 2013, 77, 155-165.	2.2	28
200	Simulating soil fertility management effects on crop yield and soil nitrogen dynamics in field trials under organic farming in Europe. Field Crops Research, 2019, 233, 1-11.	5.1	28
201	Spatially differentiated regulation: Can it save the Baltic Sea from excessive N-loads?. Ambio, 2019, 48, 1278-1289.	5.5	27
202	Legacy effects of leguminous green manure crops on the weed seed bank in organic crop rotations. Agriculture, Ecosystems and Environment, 2020, 302, 107078.	5.3	27
203	How well do crop modeling groups predict wheat phenology, given calibration data from the target population?. European Journal of Agronomy, 2021, 124, 126195.	4.1	27
204	Climate change impacts on natural toxins in food production systems, exemplified by deoxynivalenol in wheat and diarrhetic shellfish toxins. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1647-1659.	2.3	25
205	Incompatibility between fertility building measures and the management of perennial weeds in organic cropping systems. Agriculture, Ecosystems and Environment, 2016, 220, 184-192.	5.3	25
206	Annual variation in δ13C values of maize and wheat: Effect on estimates of decadal scale soil carbon turnover. Soil Biology and Biochemistry, 2011, 43, 1961-1967.	8.8	24
207	Controls of nitrous oxide emission after simulated cattle urine deposition. Agriculture, Ecosystems and Environment, 2014, 188, 103-110.	5.3	24
208	Nitrogen release from differently aged <i>Raphanus sativus</i> L. nitrate catch crops during mineralization at autumn temperatures. Soil Use and Management, 2016, 32, 183-191.	4.9	24
209	Combining organic and inorganic nitrogen fertilisation reduces N2O emissions from cereal crops: a comparative analysis of China and Zimbabwe. Mitigation and Adaptation Strategies for Global Change, 2017, 22, 233-245.	2.1	24
210	Impacts of projected climate change on productivity and nitrogen leaching of crop rotations in arable and pig farming systems in Denmark. Journal of Agricultural Science, 2014, 152, 75-92.	1.3	23
211	Impact of heat-wave at high and low VPD on photosynthetic components of wheat and their recovery. Environmental and Experimental Botany, 2018, 147, 138-146.	4.2	23
212	Carbon mineralization and microbial activity in agricultural topsoil and subsoil as regulated by root nitrogen and recalcitrant carbon concentrations. Plant and Soil, 2018, 433, 65-82.	3.7	23
213	Associations between large-scale climate oscillations and land surface phenology in Iran. Agricultural and Forest Meteorology, 2019, 278, 107682.	4.8	23
214	Uncertainties in simulating N uptake, net N mineralization, soil mineral N and N leaching in European crop rotations using process-based models. Field Crops Research, 2020, 255, 107863.	5.1	23
215	Impact of Climate Change Effects on Contamination of Cereal Grains with Deoxynivalenol. PLoS ONE, 2013, 8, e73602.	2.5	23
216	Priority for climate adaptation measures in European crop production systems. European Journal of Agronomy, 2022, 138, 126516.	4.1	23

#	Article	IF	CITATIONS
217	Climate Change and CO2Effects on Productivity of Danish Agricultural Systems. Journal of Crop Improvement, 2005, 13, 257-274.	1.7	22
218	Spatially differentiated strategies for reducing nitrate loads from agriculture in two Danish catchments. Journal of Environmental Management, 2018, 208, 77-91.	7.8	22
219	Inter-row hoeing for weed control in organic spring cereals—Influence of inter-row spacing and nitrogen rate. European Journal of Agronomy, 2018, 101, 49-56.	4.1	22
220	Potential benefits of farm scale measures versus landscape measures for reducing nitrate loads in a Danish catchment. Science of the Total Environment, 2018, 637-638, 318-335.	8.0	22
221	Autumn-based vegetation indices for estimating nitrate leaching during autumn and winter in arable cropping systems. Agriculture, Ecosystems and Environment, 2020, 290, 106786.	5.3	22
222	Multi-Functional Land Use Is Not Self-Evident for European Farmers: A Critical Review. Frontiers in Environmental Science, 2020, 8, .	3.3	22
223	Biogeochemical functioning of the Baltic Sea. Earth System Dynamics, 2022, 13, 633-685.	7.1	22
224	Whole-rotation dry matter and nitrogen grain yields from the first course of an organic farming crop rotation experiment. Journal of Agricultural Science, 2002, 139, 361-370.	1.3	21
225	Water balance in the complex mountainous terrain of Bhutan and linkages to land use. Journal of Hydrology: Regional Studies, 2016, 7, 55-68.	2.4	21
226	Simulation of Soil Organic Carbon Effects on Long-Term Winter Wheat (Triticum aestivum) Production Under Varying Fertilizer Inputs. Frontiers in Plant Science, 2018, 9, 1158.	3.6	21
227	Long-term soil quality effects of soil and crop management in organic and conventional arable cropping systems. Geoderma, 2021, 403, 115383.	5.1	21
228	Effects of white clover cultivars on biomass and yield in oat/clover intercrops. Journal of Agricultural Science, 2002, 138, 261-267.	1.3	20
229	Spatial and temporal variability of nitrous oxide emissions in a mixed farming landscape of Denmark. Biogeosciences, 2012, 9, 2989-3002.	3.3	20
230	Enabling food security by verifying agricultural carbon. Nature Climate Change, 2014, 4, 309-311.	18.8	20
231	Elytrigia repens population dynamics under different management schemes in organic cropping systems on coarse sand. European Journal of Agronomy, 2014, 58, 18-27.	4.1	20
232	Knowledge Asymmetries Between Research and Practice: A Social Systems Approach to Implementation Barriers in Organic Arable Farming. Sociologia Ruralis, 2015, 55, 460-482.	3.4	20
233	Optimizing irrigation schedule in a large agricultural region under different hydrologic scenarios. Agricultural Water Management, 2021, 245, 106575.	5.6	20
234	Deep-rooted perennial crops differ in capacity to stabilize C inputs in deep soil layers. Scientific Reports, 2022, 12, 5952.	3.3	20

#	Article	IF	CITATIONS
235	Modelling development of broccoli (<i>Brassica oleracea</i> L. var. <i>italica</i>) from transplanting to head initiation. Journal of Horticultural Science and Biotechnology, 1999, 74, 698-705.	1.9	19
236	Simulating residual effects of animal manures using 15N isotopes. Plant and Soil, 2007, 290, 173-187.	3.7	19
237	Projections of future soil temperature in northeast Iran. Geoderma, 2019, 349, 11-24.	5.1	19
238	Quantifying water footprint of winter wheat – summer maize cropping system under manure application and limited irrigation: An integrated approach. Resources, Conservation and Recycling, 2022, 183, 106375.	10.8	19
239	Nutrient availability affects carbon turnover and microbial physiology differently in topsoil and subsoil under a temperate grassland. Geoderma, 2019, 336, 22-30.	5.1	18
240	Cover crop mixtures including legumes can self-regulate to optimize N2 fixation while reducing nitrate leaching. Agriculture, Ecosystems and Environment, 2021, 309, 107287.	5.3	18
241	A simplified modelling approach for quantifying tillage effects on soil carbon stocks. European Journal of Soil Science, 2009, 60, 924-934.	3.9	17
242	N-utilization in non-inversion tillage systems. Soil and Tillage Research, 2011, 113, 55-60.	5.6	17
243	Selection of climate change scenario data for impact modelling. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1502-1513.	2.3	17
244	Biogas in organic agriculture—effects on productivity, energy self-sufficiency and greenhouse gas emissions. Renewable Agriculture and Food Systems, 2014, 29, 28-41.	1.8	17
245	Carbon dynamics in topsoil and subsoil along a cultivated toposequence. Catena, 2014, 120, 20-28.	5.0	17
246	The long-term effect of climate change on productivity of winter wheat in Denmark: a scenario analysis using three crop models. Journal of Agricultural Science, 2017, 155, 733-750.	1.3	17
247	Multi-model evaluation of phenology prediction for wheat in Australia. Agricultural and Forest Meteorology, 2021, 298-299, 108289.	4.8	17
248	Short-term cover crop carbon inputs to soil as affected by long-term cropping system management and soil fertility. Agriculture, Ecosystems and Environment, 2021, 311, 107339.	5.3	17
249	Simulating trends in crop yield and soil carbon in a long-term experiment—effects of rising CO2, N deposition and improved cultivation. Plant and Soil, 2006, 287, 235-245.	3.7	16
250	The impacts of local farming system development trajectories on greenhouse gas emissions in the northern mountains of Vietnam. Regional Environmental Change, 2007, 7, 187-208.	2.9	16
251	Food Security: Focus on Agriculture. Science, 2010, 328, 172-173.	12.6	16
252	Sensitivity of simulated crop yield and nitrate leaching of the wheat-maize cropping system in the North China Plain to model parameters. Agricultural and Forest Meteorology, 2018, 263, 25-40.	4.8	16

#	Article	IF	CITATIONS
253	Converting temperate longâ€term arable land into semiâ€natural grassland: decadalâ€scale changes in topsoil C, N, ¹³ C and ¹⁵ N contents. European Journal of Soil Science, 2019, 70, 350-360.	3.9	16
254	Agricultural residues bioenergy potential that sustain soil carbon depends on energy conversion pathways. GCB Bioenergy, 2020, 12, 1002-1013.	5.6	16
255	Legacy effects of soil fertility management on cereal dry matter and nitrogen grain yield of organic arable cropping systems. European Journal of Agronomy, 2021, 122, 126169.	4.1	16
256	Interactive effects of straw management, tillage, and a cover crop on nitrous oxide emissions and nitrate leaching from a sandy loam soil. Science of the Total Environment, 2022, 828, 154316.	8.0	16
257	Farm-scale practical strategies to increase nitrogen use efficiency and reduce nitrogen footprint in crop production across the North China Plain. Field Crops Research, 2022, 283, 108526.	5.1	16
258	Fungicide treatments affect yield and moisture content of grain and straw in winter wheat. Crop Protection, 2002, 21, 1023-1032.	2.1	15
259	Turning climate change information into economic and health impacts. Climatic Change, 2007, 81, 145-162.	3.6	15
260	Possibilities for near-term bioenergy production and GHG-mitigation through sustainable intensification of agriculture and forestry in Denmark. Environmental Research Letters, 2017, 12, 114032.	5.2	15
261	Exposing Deep Roots: A Rhizobox Laboratory. Trends in Plant Science, 2020, 25, 418-419.	8.8	15
262	Visiting dark sides of model simulation of carbon stocks in European temperate agricultural soils: allometric function and model initialization. Plant and Soil, 2020, 450, 255-272.	3.7	15
263	Impacts of land use, climate change and hydrological model structure on nitrate fluxes: Magnitudes and uncertainties. Science of the Total Environment, 2022, 830, 154671.	8.0	15
264	Depth-dependent responses of soil organic carbon stock under annual and perennial cropping systems. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	15
265	Root and soil carbon distribution at shoulderslope and footslope positions of temperate toposequences cropped to winter wheat. Catena, 2014, 123, 99-105.	5.0	14
266	Inorganic Nitrogen Leaching from Organic and Conventional Rice Production on a Newly Claimed Calciustoll in Central Asia. PLoS ONE, 2014, 9, e98138.	2.5	14
267	Modeling nitrous oxide emissions from organic and conventional cereal-based cropping systems under different management, soil and climate factors. European Journal of Agronomy, 2015, 66, 8-20.	4.1	13
268	Effect of warming and nitrogen addition on evapotranspiration and water use efficiency in a wheat-soybean/fallow rotation from 2010 to 2014. Climatic Change, 2016, 139, 565-578.	3.6	13
269	Simulation of biomass yield of regular and chilling tolerant Miscanthus cultivars and reed canary grass in different climates of Europe. Industrial Crops and Products, 2016, 86, 329-333.	5.2	13
270	Long-term simulation of temporal change of soil organic carbon in Denmark: comparison of three model performances under climate change. Journal of Agricultural Science, 2018, 156, 139-150.	1.3	13

#	Article	IF	CITATIONS
271	Plants with lengthened phenophases increase their dominance under warming in an alpine plant community. Science of the Total Environment, 2020, 728, 138891.	8.0	13
272	Longâ€ŧerm effect of tillage and straw retention in conservation agriculture systems on soil carbon storage. Soil Science Society of America Journal, 2021, 85, 1465-1478.	2.2	13
273	Introduction to the Assessment—Characteristics of the Region. Regional Climate Studies, 2016, , 1-52.	1.2	13
274	Sensitivity of crop yield and N losses in winter wheat to changes in mean and variability of temperature and precipitation in Denmark using the FASSET model. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2012, 62, 335-351.	0.6	12
275	Effects of winter wheat N status on assimilate and N partitioning in the mechanistic agroecosystem model DAISY. Journal of Agronomy and Crop Science, 2020, 206, 784-805.	3.5	12
276	Nitrate leaching from suction cup data: Influence of method of drainage calculation and concentration interpolation. Journal of Environmental Quality, 2020, 49, 440-449.	2.0	12
277	The effects of temperature and plant developmental stage on the occurrence of the curd quality defects "bracting―and "riciness―in cauliflower. Journal of Horticultural Science and Biotechnology, 2003, 78, 638-646.	1.9	11
278	Performance of 13 crop simulation models and their ensemble for simulating four field crops in Central Europe. Journal of Agricultural Science, 2021, 159, 69-89.	1.3	11
279	Differential Responses of Soil Extracellular Enzyme Activities to Salinization: Implications for Soil Carbon Cycling in Tidal Wetlands. Global Biogeochemical Cycles, 2022, 36, .	4.9	11
280	Can crop-climate models be accurate and precise? A case study for wheat production in Denmark. Agricultural and Forest Meteorology, 2015, 202, 51-60.	4.8	10
281	Long-term modelling of crop yield, nitrogen losses and GHG balance in organic cropping systems. Science of the Total Environment, 2020, 710, 134597.	8.0	10
282	Investigation of satellite-related precipitation products for modeling of rainfed wheat production systems. Agricultural Water Management, 2021, 258, 107222.	5.6	10
283	Agronomic and environmental factors influencing the marginal increase in nitrate leaching by adding extra mineral nitrogen fertilizer. Agriculture, Ecosystems and Environment, 2022, 327, 107808.	5.3	10
284	Simulation of winter wheat response to variable sowing dates and densities in a high-yielding environment. Journal of Experimental Botany, 2022, 73, 5715-5729.	4.8	10
285	Estimating organic carbon stocks of mineral soils in Denmark: Impact of bulk density and content of rock fragments. Geoderma Regional, 2022, 30, e00560.	2.1	10
286	Can Agricultural Cultivation Methods Influence the Healthfulness of Crops for Foods?. Journal of Agricultural and Food Chemistry, 2012, 60, 6383-6390.	5.2	9
287	Temperature-based prediction of harvest date in winter and spring cereals as a basis for assessing viability for growing cover crops. Field Crops Research, 2021, 264, 108085.	5.1	9
288	NLES5 – An empirical model for estimating nitrate leaching from the root zone of agricultural land. European Journal of Agronomy, 2022, 134, 126465.	4.1	9

#	Article	IF	CITATIONS
289	Greenhouse gas mitigation with scarce land: The potential contribution of increased nitrogen input. Mitigation and Adaptation Strategies for Global Change, 2013, 18, 921-932.	2.1	8
290	Reducing uncertainty of estimated nitrogen load reductions to aquatic systems through spatially targeting agricultural mitigation measures using groundwater nitrogen reduction. Journal of Environmental Management, 2018, 218, 451-464.	7.8	8
291	CLIMATE CHANGE IMPACTS AND ADAPTATION FOR CROP MANAGEMENT OF WINTER WHEAT AND MAIZE IN THE SEMIâ€ARID REGION OF IRAN. Irrigation and Drainage, 2019, 68, 841-856.	1.7	8
292	Nitrous oxide emissions from red clover and winter wheat residues depend on interacting effects of distribution, soil N availability and moisture level. Plant and Soil, 2021, 466, 121-138.	3.7	8
293	Evaluation of multiple gridded solar radiation data for crop modeling. European Journal of Agronomy, 2022, 133, 126419.	4.1	8
294	Reply to Snowdon et al. and Piepho: Genetic response diversity to provide yield stability of cultivar groups deserves attention. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10627-10629.	7.1	7
295	Assessment of nine gridded temperature data for modeling of wheat production systems. Computers and Electronics in Agriculture, 2022, 199, 107189.	7.7	7
296	Data requirements for crop modelling—Applying the learning curve approach to the simulation of winter wheat flowering time under climate change. European Journal of Agronomy, 2018, 95, 33-44.	4.1	6
297	Contributions from carbon and nitrogen in roots to closing the yield gap between conventional and organic cropping systems. Soil Use and Management, 2018, 34, 335-342.	4.9	6
298	Development and evaluation of HUME-OSR: A dynamic crop growth model for winter oilseed rape. Field Crops Research, 2020, 246, 107679.	5.1	6
299	Nitrogen and phosphorus coâ€limit mineralization of labile carbon in deep subsoil. European Journal of Soil Science, 2021, 72, 1879-1884.	3.9	6
300	Methodology to assess the changing risk of yield failure due to heat and drought stress under climate change. Environmental Research Letters, 2021, 16, 104033.	5.2	6
301	Model sensitivity of simulated yield of winter oilseed rape to climate change scenarios in Europe. European Journal of Agronomy, 2021, 129, 126341.	4.1	6
302	Productivity, light interception and radiation use efficiency of organic and conventional arable cropping systems. European Journal of Agronomy, 2022, 132, 126407.	4.1	6
303	Expected effects of climate change on the production and water use of crop rotation management reproduced by crop model ensemble for Czech Republic sites. European Journal of Agronomy, 2022, 134, 126446.	4.1	6
304	Are maps of nitrate reduction in groundwater altered by climate and land use changes?. Hydrology and Earth System Sciences, 2022, 26, 955-973.	4.9	6
305	Specific antibiotics and nematode trophic groups agree in assessing fungal:bacterial activity in agricultural soil. Soil Biology and Biochemistry, 2012, 55, 17-19.	8.8	5
306	Regional greenhouse gas emissions from cultivation of winter wheat and winter rapeseed for biofuels in Denmark. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2013, 63, 219-230.	0.6	5

#	Article	IF	CITATIONS
307	Release of carbon and nitrogen from fodder radish (Raphanus sativus) shoots and roots incubated in soils with different management history. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2018, 68, 749-756.	0.6	5
308	Future agroclimatic conditions and implications for European grasslands. Biologia Plantarum, 0, 64, 865-880.	1.9	5
309	Effect of wind speed variation on rainfed wheat production evaluated by the CERES-Wheat model. International Journal of Biometeorology, 2022, 66, 225-233.	3.0	5
310	Carbon Dioxide in Arable Soil Profiles: A Comparison of Automated and Manual Measuring Systems. Communications in Soil Science and Plant Analysis, 2014, 45, 1278-1291.	1.4	4
311	Calibrating AquaCrop model using genetic algorithm with multiâ€objective functions applying different weight factors. Agronomy Journal, 2021, 113, 1420-1438.	1.8	4
312	Potential for the adoption of measures to reduce N2O emissions from crop residues in Denmark. Science of the Total Environment, 2022, 835, 155510.	8.0	4
313	A Meteorological Model for Calculating the Moisture Content of Ripe Spring Barley. Acta Agriculturae Scandinavica, 1985, 35, 369-374.	0.3	3
314	Post-Cold-Storage Conditioning Time Affects Soil Denitrifying Enzyme Activity. Communications in Soil Science and Plant Analysis, 2011, 42, 2160-2167.	1.4	3
315	Targeted management of organic resources for sustainably increasing soil organic carbon: Observations and perspectives for resource use and climate adaptations in northern Ghana. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2016, 66, 178-190.	0.6	3
316	Targeted set-aside: Benefits from reduced nitrogen loading in Danish aquatic environments. Journal of Environmental Management, 2019, 247, 633-643.	7.8	3
317	Field scale agronomic and environmental consequences of overlapping N fertilizer application by disc spreaders. Field Crops Research, 2020, 255, 107901.	5.1	3
318	Soil N2O emission from organic and conventional cotton farming in Northern Tanzania. Science of the Total Environment, 2021, 785, 147301.	8.0	3
319	Yield and Profitability of Cotton Grown Under Smallholder Organic and Conventional Cotton Farming Systems in Meatu District, Tanzania. , 2020, , 175-200.		3
320	Socio-economic Impacts—Agricultural Systems. Regional Climate Studies, 2016, , 397-407.	1.2	3
321	Biofuels: Putting Current Practices in Perspective. Science, 2008, 320, 1421-1422.	12.6	2
322	Summer fallow soil management – impact on rainfed winter wheat. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2014, 64, 398-407.	0.6	2
323	Land-use and agriculture in Denmark around year 1900 and the quest for EU Water Framework Directive reference conditions in coastal waters. Ambio, 2021, 50, 1882-1893.	5.5	2
324	The Possibility of Consensus Regarding Climate Change Adaptation Policies in Agriculture and Forestry among Stakeholder Groups in the Czech Republic. Environmental Management, 2021, , 1.	2.7	2

#	Article	IF	CITATIONS
325	Reconciling adaptation and mitigation to climate change in agriculture*. European Physical Journal Special Topics, 2006, 139, 403-411.	0.2	1
326	The 7 Aarhus Statements on Climate Change. IOP Conference Series: Earth and Environmental Science, 2009, 8, 011002.	0.3	1
327	Extraction and Enzymatic Assay of Glucose in Soils with Contrasting pH, Clay, and Organic Carbon Contents. Communications in Soil Science and Plant Analysis, 2020, 51, 380-391.	1.4	1
328	What does framing theory add to our understanding of collective decision making in nitrogen management?. Landscape Ecology, 2023, 38, 4139-4155.	4.2	1
329	DNMARK: Danish Nitrogen Mitigation Assessment: Research and Know-how for a Sustainable, Low-Nitrogen Food Production. , 2020, , 363-376.		1
330	Achieving Sustainable Nitrogen Management in Mixed Farming Landscapes Based on Collaborative Planning. Sustainability, 2021, 13, 2140.	3.2	0
331	Simulation of Effects of Climatic Change on Cauliflower Production. , 1994, , 127-137.		0