Chong S Yoon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/557265/publications.pdf

Version: 2024-02-01

264 papers 22,065 citations

79 h-index 9103 144 g-index

270 all docs

270 docs citations

270 times ranked

13050 citing authors

#	Article	IF	CITATIONS
1	Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (xÂ=Â1/3, 0.5,) Tj ETQq1 121-130.	1 0.7843 7.8	14 rgBT /0\ 1,694
2	Capacity Fading of Ni-Rich Li[Ni _{<i>x</i>} Co _{<i>y</i>} Mn _{1â€"<i>x</i>â€"<i>y</i>}]O ₂ (0.6)	Ţj.ĘTQq0	0,0 rgBT /Ον 1,060
	Degradation?. Chemistry of Materials, 2018, 30, 1155-1163.		
3	Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives. ACS Energy Letters, 2017, 2, 196-223.	17.4	1,033
4	Nanostructured high-energy cathode materials for advanced lithium batteries. Nature Materials, 2012, 11, 942-947.	27.5	921
5	Comparative Study of LiNi0.5Mn1.5O4-Î′ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures:  Fd3Ì"m and P4332. Chemistry of Materials, 2004, 16, 906-914.	6.7	687
6	The Role of AlF ₃ Coatings in Improving Electrochemical Cycling of Liâ€Enriched Nickelâ€Manganese Oxide Electrodes for Liâ€Ion Batteries. Advanced Materials, 2012, 24, 1192-1196.	21.0	629
7	Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy and Environmental Science, 2011, 4, 1345.	30.8	433
8	Anatase Titania Nanorods as an Intercalation Anode Material for Rechargeable Sodium Batteries. Nano Letters, 2014, 14, 416-422.	9.1	422
9	Improved Cycling Stability of Li[Ni _{0.90} Co _{0.05} Mn _{0.05}]O ₂ Through Microstructure Modification by Boron Doping for Liâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1801202.	19.5	336
10	Critical Role of pH Evolution of Electrolyte in the Reaction Mechanism for Rechargeable Zinc Batteries. ChemSusChem, 2016, 9, 2948-2956.	6.8	332
11	Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. Energy and Environmental Science, 2018, 11, 1271-1279.	30.8	322
12	Highâ€Performance Carbonâ€LiMnPO ₄ Nanocomposite Cathode for Lithium Batteries. Advanced Functional Materials, 2010, 20, 3260-3265.	14.9	298
13	Capacity Fading of Ni-Rich NCA Cathodes: Effect of Microcracking Extent. ACS Energy Letters, 2019, 4, 2995-3001.	17.4	297
14	Structural Stability of LiNiO ₂ Cycled above 4.2 V. ACS Energy Letters, 2017, 2, 1150-1155.	17.4	292
15	Degradation Mechanism of Ni-Enriched NCA Cathode for Lithium Batteries: Are Microcracks Really Critical?. ACS Energy Letters, 2019, 4, 1394-1400.	17.4	290
16	Advanced Na[Ni _{0.25} Fe _{0.5} Mn _{0.25}]O ₂ /C–Fe ₃ O ₄ Godium-Ion Batteries Using EMS Electrolyte for Energy Storage. Nano Letters, 2014, 14, 1620-1626.	387p>	283
17	Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge. Nature Energy, 2020, 5, 860-869.	39.5	278
18	Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Scientific Reports, 2014, 4, 6066.	3.3	275

#	Article	IF	CITATIONS
19	High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni _{0.85} Co _{0.05} Mn _{0.10}]O ₂ cathode. Energy and Environmental Science, 2016, 9, 2152-2158.	30.8	269
20	Capacity Fading Mechanisms in Ni-Rich Single-Crystal NCM Cathodes. ACS Energy Letters, 2021, 6, 2726-2734.	17.4	258
21	A Novel Cathode Material with a Concentrationâ€Gradient for Highâ€Energy and Safe Lithiumâ€lon Batteries. Advanced Functional Materials, 2010, 20, 485-491.	14.9	252
22	Improvement of long-term cycling performance of Li[Ni0.8Co0.15Al0.05]O2 by AlF3 coating. Journal of Power Sources, 2013, 234, 201-207.	7.8	237
23	Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries. Energy and Environmental Science, 2013, 6, 2609.	30.8	221
24	Quaternary Layered Ni-Rich NCMA Cathode for Lithium-Ion Batteries. ACS Energy Letters, 2019, 4, 576-582.	17.4	217
25	High Electrochemical Performances of Microsphere C-TiO ₂ Anode for Sodium-Ion Battery. ACS Applied Materials & Diterfaces, 2014, 6, 11295-11301.	8.0	213
26	Synthesis and structural characterization of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode materials by ultrasonic spray pyrolysis method. Electrochimica Acta, 2004, 49, 557-563.	5.2	210
27	Significant Improvement of Electrochemical Performance of AIF[sub 3]-Coated Li[Ni[sub 0.8]Co[sub 0.1]Mn[sub 0.1]]O[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2007, 154, A1005.	2.9	199
28	Extracting maximum capacity from Ni-rich Li[Ni _{0.025}]O ₂ cathodes for high-energy-density lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 4126-4132.	10.3	199
29	High-Energy Ni-Rich Li[Ni _{<i>x</i>} Co _{<i>y</i>} Mn _{1<i>â€"xâ€"y</i>}]O ₂ Cathodes via Compositional Partitioning for Next-Generation Electric Vehicles. Chemistry of Materials, 2017, 29, 10436-10445.	6.7	189
30	Synthesis of Nanowire and Hollow LiFePO ₄ Cathodes for High-Performance Lithium Batteries. Chemistry of Materials, 2008, 20, 4560-4564.	6.7	176
31	Suppressing detrimental phase transitions <i>via</i> tungsten doping of LiNiO ₂ cathode for next-generation lithium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18580-18588.	10.3	175
32	Microstructureâ€Controlled Niâ€Rich Cathode Material by Microscale Compositional Partition for Nextâ€Generation Electric Vehicles. Advanced Energy Materials, 2019, 9, 1803902.	19.5	175
33	Reducing cobalt from lithium-ion batteries for the electric vehicle era. Energy and Environmental Science, 2021, 14, 844-852.	30.8	174
34	Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries. Nature Communications, 2021, 12, 6552.	12.8	167
35	A highly stabilized Ni-rich NCA cathode for high-energy lithium-ion batteries. Materials Today, 2020, 36, 73-82.	14.2	163
36	Extending the Battery Life Using an Al-Doped Li[Ni _{0.76} Co _{0.09} Mn _{0.15}]O ₂ Cathode with Concentration Gradients for Lithium Ion Batteries. ACS Energy Letters, 2017, 2, 1848-1854.	17.4	162

#	Article	IF	CITATIONS
37	Self-Passivation of a LiNiO ₂ Cathode for a Lithium-lon Battery through Zr Doping. ACS Energy Letters, 2018, 3, 1634-1639.	17.4	161
38	Cation Ordering of Zr-Doped LiNiO ₂ Cathode for Lithium-Ion Batteries. Chemistry of Materials, 2018, 30, 1808-1814.	6.7	160
39	AlF[sub 3]-Coating to Improve High Voltage Cycling Performance of Li[Ni[sub 1â^•3]Co[sub 1â^•3]Mn[sub 1â^•3]]O[sub 2] Cathode Materials for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2007, 154, A168.	2.9	158
40	Nanostructured TiO ₂ and Its Application in Lithiumâ€lon Storage. Advanced Functional Materials, 2011, 21, 3231-3241.	14.9	154
41	Highâ€Capacity Concentration Gradient Li[Ni _{0.865} Co _{0.120} Al _{0.015}]O ₂ Cathode for Lithiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1703612.	19.5	154
42	Degradation Mechanism of Highly Ni-Rich Li[Ni _{<i>x</i>} Co _{<i>y</i>} Mn _{1â€"<i>x</i>ê"<i>y</i>}]O ₂ Cathodes with <i>x</i> > 0.9. ACS Applied Materials & amp; Interfaces, 2019, 11, 30936-30942.	8.0	152
43	Improvement of Electrochemical Performances of Li[Ni[sub 0.8]Co[sub 0.1]Mn[sub 0.1]]O[sub 2] Cathode Materials by Fluorine Substitution. Journal of the Electrochemical Society, 2007, 154, A649.	2.9	141
44	Cobaltâ€Free Highâ€Capacity Niâ€Rich Layered Li[Ni _{0.9} Mn _{0.1}]O ₂ Cathode. Advanced Energy Materials, 2020, 10, 1903179.	19.5	141
45	Cathode Material with Nanorod Structureâ€"An Application for Advanced High-Energy and Safe Lithium Batteries. Chemistry of Materials, 2013, 25, 2109-2115.	6.7	137
46	Compositionally Graded Cathode Material with Longâ€Term Cycling Stability for Electric Vehicles Application. Advanced Energy Materials, 2016, 6, 1601417.	19.5	137
47	Niâ€Rich Layered Cathode Materials with Electrochemoâ€Mechanically Compliant Microstructures for Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2020, 10, 1903360.	19.5	136
48	Improvement of High-Voltage Cycling Behavior of Surface-Modified Li[Ni[sub 1â-3]Co[sub 1â-3]Mn[sub 1â-3]]O[sub 2] Cathodes by Fluorine Substitution for Li-Ion Batteries. Journal of the Electrochemical Society, 2005, 152, A1707.	2.9	133
49	A method of increasing the energy density of layered Ni-rich $Li[Ni < ub > 1a^2 2x < sub > Co < sub > x < sub > Mn < sub > x < sub > Jo < sub > 2 < sub > cathodes (< i > x < / i > = 0.05, 0.1,) Tj E$	ΓQ φά. ₫ 0.1	78 431 4 rgBT
50	Customizing a Li–metal battery that survives practical operating conditions for electric vehicle applications. Energy and Environmental Science, 2019, 12, 2174-2184.	30.8	130
51	Advanced Concentration Gradient Cathode Material with Twoâ€Slope for Highâ€Energy and Safe Lithium Batteries. Advanced Functional Materials, 2015, 25, 4673-4680.	14.9	127
52	Reviewâ€"High-Capacity Li[Ni ₁₋ <i>_x</i> _{/2 162, A2483-A2489.}	2]C	 _{2< sub 127}
53	Surface structural change of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode materials at elevated temperatures. Electrochimica Acta, 2003, 48, 503-506.	5.2	123
54	High-Energy Density Core–Shell Structured Li[Ni _{0.95} Co _{0.025} Mn _{0.025}]O ₂ Cathode for Lithium-lon Batteries. Chemistry of Materials, 2017, 29, 5048-5052.	6.7	123

#	Article	IF	Citations
55	Li[Ni _{0.9} Co _{0.09} W _{0.01}]O ₂ : A New Type of Layered Oxide Cathode with High Cycling Stability. Advanced Energy Materials, 2019, 9, 1902698.	19.5	121
56	Tungsten doping for stabilization of Li[Ni0.90Co0.05Mn0.05]O2 cathode for Li-ion battery at high voltage. Journal of Power Sources, 2019, 442, 227242.	7.8	118
57	Compositionally and structurally redesigned high-energy Ni-rich layered cathode for next-generation lithium batteries. Materials Today, 2019, 23, 26-36.	14.2	118
58	New Class of Niâ€Rich Cathode Materials Li[Ni <i>_x</i> Co <i>_y</i> B _{1â^'} <i>_x</i> _{_{à^'}<i>_{for Next Lithium Batteries. Advanced Energy Materials, 2020, 10, 2000495.}</i>}	b> y.9/s ub>	<b i≀য]6O
59	Mesoporous Anatase TiO ₂ with High Surface Area and Controllable Pore Size by F ^{â^'} -lon Doping: Applications for High-Power Li-Ion Battery Anode. Journal of Physical Chemistry C, 2009, 113, 21258-21263.	3.1	113
60	Effect of Ti Substitution for Mn on the Structure of LiNi[sub 0.5]Mn[sub $1.5\hat{a}^2$ x]Ti[sub x]O[sub 4] and Their Electrochemical Properties as Lithium Insertion Material. Journal of the Electrochemical Society, 2004, 151, A1911.	2.9	112
61	Surface-Stabilized Amorphous Germanium Nanoparticles for Lithium-Storage Material. Journal of Physical Chemistry B, 2005, 109, 20719-20723.	2.6	112
62	A comprehensive study of the role of transition metals in O3-type layered Na[Ni _x Co _y Mn _z]O ₂ ($x = 1/3, 0.5, 0.6, and 0.8$) cathodes for sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 17952-17959.	10.3	110
63	Comparative Study of Ni-Rich Layered Cathodes for Rechargeable Lithium Batteries: Li[Ni _{0.85} Co _{0.11} Al _{0.04}]O ₂ and Li[Ni _{0.84} Co _{0.06} Mn _{0.09} Al _{0.01}]O ₂ With Two-Step Full Concentration Gradients, ACS Energy Letters, 2016, 1, 283-289.	17.4	110
64	Phase Transitions in Li[sub 1â^'Î]Ni[sub 0.5]Mn[sub 1.5]O[sub 4] during Cycling at 5 V. Electrochemical and Solid-State Letters, 2004, 7, A216.	2.2	109
65	Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries. Nano Energy, 2015, 12, 725-734.	16.0	109
66	A Transmission Electron Microscopy Study of the Electrochemical Process of Lithium–Oxygen Cells. Nano Letters, 2012, 12, 4333-4335.	9.1	107
67	Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23671-23680.	10.3	107
68	Optical and Field Emission Properties of Thin Single-Crystalline GaN Nanowires. Journal of Physical Chemistry B, 2005, 109, 11095-11099.	2.6	102
69	Effect of AIF ₃ Coating on Thermal Behavior of Chemically Delithiated Li _{0.35} [Ni _{1/3} Co _{1/3} Mn _{1/3}]O ₂ . Journal of Physical Chemistry C, 2010, 114, 4710-4718.	3.1	99
70	Toward High-Safety Potassium–Sulfur Batteries Using a Potassium Polysulfide Catholyte and Metal-Free Anode. ACS Energy Letters, 2018, 3, 540-541.	17.4	99
71	Characterization of Sputter-Deposited LiCoO ₂ Thin Film Grown on NASICON-type Electrolyte for Application in All-Solid-State Rechargeable Lithium Battery. ACS Applied Materials & Amp; Interfaces, 2017, 9, 16063-16070.	8.0	98
72	Novel Coreâ^'Shell-Structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2via Coprecipitation as Positive Electrode Material for Lithium Secondary Batteries. Journal of Physical Chemistry B, 2006, 110, 6810-6815.	2.6	97

#	Article	lF	CITATIONS
73	Synthesis of Nanostructured Li[Ni1/3Co1/3Mn1/3]O2via a Modified Carbonate Process. Chemistry of Materials, 2005, 17, 6-8.	6.7	96
74	Enhanced electrochemical performance of carbon–LiMn1â"Fe PO4 nanocomposite cathode for lithium-ion batteries. Journal of Power Sources, 2011, 196, 6924-6928.	7.8	95
75	High-Energy W-Doped Li[Ni0.95Co0.04Al0.01]O2 Cathodes for Next-Generation Electric Vehicles. Energy Storage Materials, 2020, 33, 399-407.	18.0	88
76	Microstructural Degradation of Niâ€Rich Li[Ni <i>>_x</i> Co <i>>_y</i> Mn ₁ <i>_{â~'xâ~'y}</i>)O ₂ Cathodes During Accelerated Calendar Aging. Small, 2018, 14, e1803179.	10.0	86
77	Cation ordered Ni-rich layered cathode for ultra-long battery life. Energy and Environmental Science, 2021, 14, 1573-1583.	30.8	83
78	Nanoporous Structured LiFePO[sub 4] with Spherical Microscale Particles Having High Volumetric Capacity for Lithium Batteries. Electrochemical and Solid-State Letters, 2009, 12, A181.	2.2	82
79	Stabilization of Lithium-Metal Batteries Based on the in Situ Formation of a Stable Solid Electrolyte Interphase Layer. ACS Applied Materials & Interfaces, 2018, 10, 17985-17993.	8.0	82
80	Capacity Degradation Mechanism and Cycling Stability Enhancement of AlF ₃ -Coated Nanorod Gradient Na[Ni _{0.65} Co _{0.08} Mn _{0.27}]O ₂ Cathode for Sodium-Ion Batteries. ACS Nano, 2018, 12, 12912-12922.	14.6	82
81	Microstrain Alleviation in High-Energy Ni-Rich NCMA Cathode for Long Battery Life. ACS Energy Letters, 2021, 6, 216-223.	17.4	82
82	Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries. Energy and Environmental Science, 2021, 14, 6616-6626.	30.8	82
83	Variation of Electronic Conductivity within Secondary Particles Revealing a Capacity-Fading Mechanism of Layered Ni-Rich Cathode. ACS Energy Letters, 2018, 3, 3002-3007.	17.4	80
84	Low-temperature sintering and microwave dielectric properties of Ba5Nb4O15–BaNb2O6 mixtures for LTCC applications. Journal of the European Ceramic Society, 2003, 23, 2597-2601.	5.7	78
85	Novel Cathode Materials for Naâ€lon Batteries Composed of Spokeâ€Like Nanorods of Na[Ni _{0.61} Co _{0.12} Mn _{0.27}]O ₂ Assembled in Spherical Secondary Particles. Advanced Functional Materials, 2016, 26, 8083-8093.	14.9	78
86	Microstructure Engineered Niâ€Rich Layered Cathode for Electric Vehicle Batteries. Advanced Energy Materials, 2021, 11, 2100884.	19.5	76
87	Effect of sulfur and nickel doping on morphology and electrochemical performance of LiNi0.5Mn1.5O4â^'xSx spinel material in 3-V region. Journal of Power Sources, 2006, 161, 19-26.	7.8	75
88	Role of AlF[sub 3] Coating on LiCoO[sub 2] Particles during Cycling to Cutoff Voltage above 4.5 V. Journal of the Electrochemical Society, 2009, 156, A1005.	2.9	70
89	High Temperature Performance of Surface-Treated Li[sub 1.1](Ni[sub 0.15]Co[sub 0.1]Mn[sub 0.55])O[sub 1.95] Layered Oxide. Journal of the Electrochemical Society, 2010, 157, A1035.	2.9	69
90	Ordered Mesoporous Carbon Electrodes for Li–O ₂ Batteries. ACS Applied Materials & lnterfaces, 2013, 5, 13426-13431.	8.0	69

#	Article	IF	CITATIONS
91	Degradation mechanism of spinel LiAl0.2Mn1.8O4 cathode materials on high temperature cycling. Journal of Materials Chemistry, 2001, 11, 2519-2522.	6.7	66
92	Influence of Temperature on Lithium–Oxygen Battery Behavior. Nano Letters, 2013, 13, 2971-2975.	9.1	63
93	Nanoconfinement of low-conductivity products in rechargeable sodium–air batteries. Nano Energy, 2015, 12, 123-130.	16.0	63
94	Microstructure Evolution of Concentration Gradient Li[Ni _{0.75} Co _{0.10} Mn _{0.15}]O ₂ Cathode for Lithiumâ€ion Batteries. Advanced Functional Materials, 2018, 28, 1802090.	14.9	62
95	Low-Temperature Synthesis of LixMn0.67Ni0.33O2 (0.2 $<$ x $<$ 0.33) Nanowires with a Hexagonal Layered Structure. Advanced Materials, 2005, 17, 2834-2837.	21.0	57
96	Polyvinylpyrrolidone-assisted synthesis of microscale C-LiFePO4 with high tap density as positive electrode materials for lithium batteries. Electrochimica Acta, 2010, 55, 1193-1199.	5.2	55
97	Synthesis of ultra-thin polypyrrole nanosheets for chemical sensor applications. Polymer, 2011, 52, 652-657.	3.8	53
98	Nickel oxalate dihydrate nanorods attached to reduced graphene oxide sheets as a high-capacity anode for rechargeable lithium batteries. NPG Asia Materials, 2016, 8, e270-e270.	7.9	53
99	High-performance Ni-rich Li[Ni _{0.9â€"<i>x</i>} Co _{0.1} Al _{<i>x</i>}]O ₂ cathodes <i>via</i> multi-stage microstructural tailoring from hydroxide precursor to the lithiated oxide. Energy and Environmental Science, 2021, 14, 5084-5095.	30.8	47
100	Structural Characterization of Li[Li[sub 0.1]Ni[sub 0.35]Mn[sub 0.55]]O[sub 2] Cathode Material for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2003, 150, A538.	2.9	46
101	High-Energy Cathodes via Precision Microstructure Tailoring for Next-Generation Electric Vehicles. ACS Energy Letters, 2021, 6, 4195-4202.	17.4	44
102	Highâ€Energy Niâ€Rich Cathode Materials for Longâ€Range and Longâ€Life Electric Vehicles. Advanced Energy Materials, 2022, 12, .	19.5	43
103	LiNi[sub 0.5]Mn[sub 1.5]O[sub 4] Showing Reversible Phase Transition on 3 V Region. Electrochemical and Solid-State Letters, 2005, 8, A163.	2.2	41
104	A Strategy for the Formation of Gold–Palladium Supra-Nanoparticles from Gold Nanoparticles of Various Shapes and Their Application to High-Performance H ₂ O ₂ Sensing. Journal of Physical Chemistry C, 2015, 119, 26164-26170.	3.1	40
105	Understanding on the structural and electrochemical performance of orthorhombic sodium manganese oxides. Journal of Materials Chemistry A, 2019, 7, 202-211.	10.3	39
106	Formation of gold nanoparticles embedded in a polyimide film for nanofloating gate memory. Applied Physics Letters, 2007, 90, 123118.	3.3	38
107	Improvement of High Voltage Cycling Performances of Li[Ni[sub 1/3]Co[sub 1/3]Mn[sub 1/3]]O[sub 2] at 55°C by a (NH[sub 4])[sub 3]AlF[sub 6] Coating. Electrochemical and Solid-State Letters, 2009, 12, A163.	2.2	38
108	New Insights Related to Rechargeable Lithium Batteries: Li Metal Anodes, Ni Rich LiNi _x Co _y Mn _z O ₂ Cathodes and Beyond Them. Journal of the Electrochemical Society, 2019, 166, A5265-A5274.	2.9	38

#	Article	IF	CITATIONS
109	Tungsten Oxide/Zirconia as a Functional Polysulfide Mediator for High-Performance Lithium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 3168-3175.	17.4	38
110	Enhanced cycling stability of Sn-doped Li[Ni0.90Co0.05Mn0.05]O2 via optimization of particle shape and orientation. Chemical Engineering Journal, 2021, 405, 126887.	12.7	38
111	Optimization of Layered Cathode Material with Full Concentration Gradient for Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 175-182.	3.1	37
112	Nano-compacted Li ₂ S/Graphene Composite Cathode for High-Energy Lithium–Sulfur Batteries. ACS Energy Letters, 2019, 4, 2787-2795.	17.4	37
113	Nonvolatile memory cell effect in multilayered Ni1â^'xFex self-assembled nanoparticle arrays in polyimide. Applied Physics Letters, 2006, 89, 022112.	3.3	36
114	Surface-plasmon resonance of Ag nanoparticles in polyimide. Journal of Applied Physics, 2005, 98, 084309.	2.5	35
115	Synthesis of nano-crystalline LiFeO2 material with advanced battery performance. Electrochemistry Communications, 2002, 4, 727-731.	4.7	34
116	Effect of Fluorine on the Electrochemical Properties of Layered Li[Ni[sub 0.43]Co[sub 0.22]Mn[sub 0.35]]O[sub 2] Cathode Materials via a Carbonate Process. Electrochemical and Solid-State Letters, 2005, 8, A559.	2.2	34
117	Synthesis and structural changes of LixFeyOz material prepared by a solid-state method. Journal of Power Sources, 2004, 134, 88-94.	7.8	33
118	Structural change and capacity loss mechanism in orthorhombic Li/LiFeO2 system during cycling. Electrochemistry Communications, 2003, 5, 549-554.	4.7	31
119	The effect of boron on the wear behavior of iron-based hardfacing alloys for nuclear power plants valves. Journal of Nuclear Materials, 2006, 352, 90-96.	2.7	31
120	Structural, optical, and magnetic properties of As-doped (Zn0.93Mn0.07)O thin films. Applied Physics Letters, 2006, 89, 022120.	3.3	31
121	Effect of Mn Content in Surface on the Electrochemical Properties of Core-Shell Structured Cathode Materials. Journal of the Electrochemical Society, 2011, 159, A1-A5.	2.9	31
122	Enhanced ferromagnetism in H2O2-treated p-(Zn0.93Mn0.07)O layer. Applied Physics Letters, 2010, 96, 042115.	3.3	30
123	Improved Performances of Li[Ni _{0.65} Co _{0.08} Mn _{0.27}]O ₂ Cathode Material with Full Concentration Gradient for Li-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A3059-A3063.	2.9	30
124	Ultrasonic spray pyrolysis of nano crystalline spinel LiMn2O4 showing good cycling performance in the 3V range. Electrochimica Acta, 2006, 51, 4089-4095.	5.2	27
125	Improved electrochemical performance of Li-doped natural graphite anode for lithium secondary batteries. Journal of Power Sources, 2005, 139, 230-234.	7.8	26
126	Microstructure of femtosecond laser-induced grating in amorphous silicon. Optics Express, 2005, 13, 6445.	3.4	26

#	Article	IF	CITATIONS
127	Deposition temperature dependence of titanium oxide thin films grown by remoteâ€plasma atomic layer deposition. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 276-284.	1.8	26
128	Selfâ€Assembly of Silver Nanoparticles Synthesized by using a Liquidâ€Crystalline Phospholipid Membrane. Advanced Materials, 2008, 20, 3404-3409.	21.0	24
129	Effect of outer layer thickness on full concentration gradient layered cathode material for lithium-ion batteries. Journal of Power Sources, 2015, 273, 663-669.	7.8	23
130	Electrochemical properties and structural characterization of layered Li[Ni0.5Mn0.5]O2 cathode materials. Electrochimica Acta, 2003, 48, 2589-2592.	5.2	22
131	Improvement of Electrochemical Properties of Lithium–Oxygen Batteries Using a Silver Electrode. Journal of Physical Chemistry C, 2015, 119, 15036-15040.	3.1	22
132	Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization. Applied Physics Letters, 2006, 89, 151907.	3.3	21
133	Periodically ordered inverse opal TiO2/polyaniline core/shell design for electrochemical energy storage applications. Journal of Alloys and Compounds, 2017, 694, 111-118.	5 . 5	21
134	Monolayer CoPt magnetic nanoparticle array using multiple thin film depositions. Applied Physics Letters, 2007, 90, 023117.	3.3	20
135	Amorphous Silicon Dioxide Nanowire Array Synthesized via Carbonization of Polyimide Thin Film. Journal of Physical Chemistry C, 2008, 112, 4463-4468.	3.1	20
136	Organic Single-Crystal Surface-Induced Polymerization of Conducting Polypyrroles. Langmuir, 2009, 25, 11420-11424.	3.5	20
137	Electrochemical albumin sensing based on silicon nanowires modified by gold nanoparticles. Applied Surface Science, 2011, 257, 4650-4654.	6.1	20
138	Fe-Fe ₃ O ₄ Composite Electrode for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2012, 159, A325-A329.	2.9	20
139	Critical behavior and magnetocaloric effect of Mn4.75Ge3(Co, Fe)0.25 alloys. Journal of Alloys and Compounds, 2017, 696, 931-937.	5. 5	20
140	Structural Transformation of Li[Ni[sub 0.5â^'x]Co[sub 2x]Mn[sub 0.5â^'x]]O[sub 2] (2xâ‰0.1) Charged in High-Voltage Range (4.5â€,V). Journal of the Electrochemical Society, 2007, 154, A520.	2.9	19
141	The catalytic effect of Pt nanoparticles supported on silicon oxide nanowire. Nanotechnology, 2009, 20, 235306.	2.6	19
142	Phase transitions and magnetocaloric effect of Ni1.7Co0.3Mn1+xAl1â^'x Heusler alloys. Journal of Alloys and Compounds, 2013, 557, 265-269.	5.5	19
143	Magnetocaloric effect of compositionally partitioned Mn5â [^] Ge3Ni alloys produced by solid state sintering. Journal of Alloys and Compounds, 2016, 681, 541-546.	5 . 5	19
144	Evolution of a Radially Aligned Microstructure in Boron-Doped Li[Ni _{0.95} Co _{0.04} Al _{0.01}]O ₂ Cathode Particles. ACS Applied Materials & Documents amp; Interfaces, 2022, 14, 17500-17508.	8.0	19

#	Article	IF	Citations
145	Dependence of ferromagnetic properties on conductivity for As-doped p-type (Zn0.93Mn0.07)O layers. Applied Physics Letters, 2008, 93, .	3.3	18
146	Room-temperature magnetocaloric effect of Ni–Co–Mn–Al Heusler alloys. Journal of Alloys and Compounds, 2014, 616, 66-70.	5.5	18
147	A new synthetic method of titanium oxyfluoride and its application as an anode material for rechargeable lithium batteries. Journal of Power Sources, 2015, 288, 376-383.	7.8	18
148	Reversible Size‶uning of Selfâ€Assembled Silver Nanoparticles in Phospholipid Membranes via Humidity Control. Small, 2009, 5, 1311-1317.	10.0	17
149	Interface morphology effect on the spin mixing conductance of Pt/Fe3O4 bilayers. Scientific Reports, 2018, 8, 13907.	3.3	17
150	Effect of manganese on the cavitation erosion resistance of iron–chromium–carbon–silicon alloys for replacing cobalt-base Stellite. Journal of Nuclear Materials, 2006, 352, 85-89.	2.7	16
151	Magnetocaloric refrigerant with wide operating temperature range based on Mn5â^Ge3(Co,Fe) composite. Journal of Alloys and Compounds, 2015, 644, 464-469.	5.5	16
152	Effect of Lithium in Transition Metal Layers of Ni-Rich Cathode Materials on Electrochemical Properties. Journal of the Electrochemical Society, 2015, 162, A2313-A2318.	2.9	16
153	Ultra-stable cycling of multi-doped (Zr,B) Li[Ni0.885Co0.100Al0.015]O2 cathode. Journal of Power Sources, 2021, 513, 230548.	7.8	16
154	Synthesis of low thermal expansion ceramics based on CaZr4(PO4)6–Li2O system. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 79, 6-10.	3.5	15
155	Characterization of Nanoparticles Fabricated by Oxidation of Ni80Fe20and Co80Fe20Thin Films during Imidization. Journal of Physical Chemistry B, 2004, 108, 18179-18184.	2.6	15
156	The effects of Mn and B on the cavitation erosion resistance of austenitic Fe-base hardfacing alloys. Materials Science & Department of the Community of the Co	5.6	15
157	Cycling behavior of selenium-doped LiMn2O4 spinel cathode material at 3 V for lithium secondary batteries. Journal of Power Sources, 2002, 109, 234-238.	7.8	14
158	Magnetocaloric effect of Mn5+xGe3â^'x alloys. Journal of Alloys and Compounds, 2015, 620, 164-167.	5.5	14
159	Adhesion of sputter-deposited Cu/Ti film on plasma-treated polymer substrate. Thin Solid Films, 2016, 600, 90-97.	1.8	14
160	Enhanced Curie temperature of InMnP:Znâ€"TCâ^1¼300K. Applied Physics Letters, 2004, 85, 1736-1738.	3.3	13
161	Clarification of Mn–Zn interaction for InMnP:Zn epilayer by photoluminescence and x-ray photoelectron spectroscopy. Applied Physics Letters, 2006, 89, 041905.	3.3	13
162	Magnetocaloric effect of Fe64Mn15â^'Co Si10B11 amorphous alloys. Journal of Alloys and Compounds, 2011, 509, 7764-7767.	5.5	13

#	Article	IF	CITATIONS
163	Effect of Crystal Structure and Grain Size on Photo-Catalytic Activities of Remote-Plasma Atomic Layer Deposited Titanium Oxide Thin Film. ECS Journal of Solid State Science and Technology, 2012, 1, Q63-Q69.	1.8	13
164	Multi-Doped (Ga,B) Li[Ni _{0.885} Co _{0.100} Al _{0.015}]O ₂ Cathode. Journal of the Electrochemical Society, 2020, 167, 100557.	2.9	13
165	High surface area, mesoporous carbon for low-polarization, catalyst-free lithium oxygen battery. Solid State Ionics, 2015, 278, 133-137.	2.7	12
166	Direct measurement of the magnetocaloric effect (Î"Tad) of Mn5â^' (Fe,Co) Ge3. Journal of Alloys and Compounds, 2017, 729, 603-606.	5.5	12
167	Microstructure and cycling behavior of LiAl0.1Mn1.9O4 cathode for lithium secondary batteries at 3 V. Journal of Power Sources, 2002, 108, 97-105.	7.8	11
168	Diluted magnetic semiconductor of p-type InMnP:Zn epilayer. Journal of Crystal Growth, 2005, 281, 501-507.	1.5	11
169	Spatially periodic magnetic structure produced by femtosecond laser-interference crystallization of amorphous Co2MnSi thin film. Journal of Applied Physics, 2006, 99, 08G311.	2.5	11
170	Enhanced photoluminescence of silicon oxide nanowires brought by prolonged thermal treatment during growth. Journal of Applied Physics, 2009, 105, 076102.	2.5	11
171	Direct deposition of size-tunable Au nanoparticles on silicon oxide nanowires. Journal of Colloid and Interface Science, 2009, 337, 289-293.	9.4	10
172	Shape-controlled fabrication of polypyrrole microstructures by replicating organic crystals through electrostatic interactions. Polymer, 2010, 51, 5400-5406.	3.8	10
173	Electrochemical Properties of Sol–Gel Prepared Li2ZrxTi1–x(PO4)3 Electrodes for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2011, 158, A396.	2.9	10
174	Structure and magnetic properties of low-temperature annealed Ni-Mn-Al alloys. Journal of Applied Physics, 2013, 113, .	2.5	10
175	Ferromagnetic formation of two phases due to MnP and InMn3 from InMnP:Zn implanted with Mn (10at.%). Applied Physics Letters, 2006, 88, 232511.	3.3	9
176	The study of structural, optical, and magnetic properties of undoped and p-type GaN implanted with Mn+ (10at.%). Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 146, 196-199.	3.5	9
177	The structural, optical and magnetic properties and anomalous Hall effect of InMnP:Zn epilayers. New Journal of Physics, 2008, 10, 115002.	2.9	9
178	Electrochemical behaviour of Heusler alloy Co2MnSi for secondary lithium batteries. Journal of Power Sources, 2009, 188, 281-285.	7.8	9
179	Structural and electrochemical characteristics of nano-structured Li0.53Na0.03MnO2manganese oxide prepared by the sol–gel method. Journal of Materials Chemistry, 2002, 12, 3827-3831.	6.7	8
180	Mono-layer of Ni100â^'xFex nanoparticles fabricated on a polyimide film under different curing atmospheres. Journal of Colloid and Interface Science, 2006, 295, 108-114.	9.4	8

#	Article	IF	CITATIONS
181	Monolayered Ni–Co alloy nanoparticles template fabricated using a Ni nanoparticle array. Applied Physics Letters, 2006, 88, 163102.	3.3	8
182	Comparison of Structural Changes in Fully Delithiated Li[sub x][Ni[sub $1\hat{a} \cdot 3$]Co[sub $1\hat{a} \cdot 3$]Mn[sub $1\hat{a} \cdot 3$]O[sub 2] and Li[sub x][Ni[sub 0.33]Co[sub 0.33]Mn[sub 0.30]Mg[sub 0.04]]O[sub 1.96]F[sub 0.04] Cathodes (x=0) upon Thermal Annealing. Journal of the Electrochemical Society, 2007, 154, A561.	2.9	8
183	Fabrication of CoPt nanoparticles with high coercivity on a polymer film. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 301, 419-424.	4.7	8
184	Surface Plasmon Resonance Tuning of Silver Nanoparticle Array Produced by Nanosphere Lithography Through Ion Etching and Thermal Annealing. Journal of Nanoscience and Nanotechnology, 2010, 10, 3118-3122.	0.9	8
185	Growth of ZnO-Nanorod Grating on the Seed Grating Produced by Femtosecond Laser Pulses. Japanese Journal of Applied Physics, 2010, 49, 105001.	1.5	8
186	Interaction of a solid supported liquid-crystalline phospholipid membrane with physical vapor deposited metal atoms. Chemical Communications, 2010, 46, 9238.	4.1	8
187	Thermodynamic Behavior of Excitonic Emission Properties in Manganese- and Zinc-Codoped Indium Phosphide Diluted Magnetic Semiconductor Layers. Journal of Physical Chemistry C, 2011, 115, 23564-23567.	3.1	8
188	Facile method of fabricating Sn nanoparticle monolayer using solid-supported liquid–crystalline phospholipid membrane. Applied Surface Science, 2011, 257, 8702-8711.	6.1	8
189	Batteries: The Role of AIF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries (Adv. Mater. 9/2012). Advanced Materials, 2012, 24, 1276-1276.	21.0	8
190	Preparation of SERS active Ag nanoparticles encapsulated by phospholipids. Journal of Raman Spectroscopy, 2014, 45, 292-298.	2.5	8
191	Surface and bulk structure investigation of fully delithiated bare and AlPO4-coated LixCoO2 (x=0) cathode materials annealed between 200 and 400°C. Journal of Power Sources, 2007, 174, 895-899.	7.8	7
192	Polypyrrole-modified graphitized carbon black as a catalyst support for methanol oxidation. Applied Catalysis A: General, 2011, 409-410, 156-161.	4.3	7
193	Annealing-induced enhancement of ferromagnetism in SnO2-core/Cu-shell coaxial nanowires. Metals and Materials International, 2011, 17, 641-647.	3.4	7
194	Clarification of enhanced ferromagnetism in Be-codoped InMnP fabricated using Mn/InP:Be bilayers grown by molecular beam epitaxy. Applied Physics Letters, 2011, 99, .	3.3	7
195	Structure of solid-supported lipid membrane probed by noble metal nanoparticle deposition. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 2884-2891.	2.6	7
196	Mn5â°' <i>x</i> Ge3Ni <i>x</i> refrigerant for active magnetic refrigeration. Journal of Applied Physics, 2020, 128, .	2.5	7
197	Effect of the Ti-underlayer microstructure on the texture of Al thin films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 856.	1.6	6
198	Effect of Li-Doping on Electrochemical Performance of Natural Graphite Anode for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2004, 151, A1728.	2.9	6

#	Article	IF	Citations
199	Synthesis of monolayered Ni–Fe alloy nanoparticles based on nanotemplate approach. Journal of Magnetism and Magnetic Materials, 2007, 310, 2402-2404.	2.3	6
200	Observation of ferromagnetic semiconductor behavior in manganese-oxide doped graphene. AIP Advances, 2014, 4, 087120.	1.3	6
201	Magnetic properties of NiFe/Ru(V)/NiFe synthetic ferrimagnetic layers. Physica Status Solidi A, 2004, 201, 1724-1727.	1.7	5
202	Synthesis of carbon-encapsulated gold nanoparticles in polyimide matrix. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 297-300.	4.7	5
203	Synthesis of duplex nanoparticles in polyimide by the reaction of polyamic acid with Cu–Zn alloy films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 321, 292-296.	4.7	5
204	Modification of magnetic properties of metal nanoparticles using nanotemplate approach. Thin Solid Films, 2008, 516, 4845-4850.	1.8	5
205	Effect of Temperature and Humidity on Coarsening Behavior of Au Nanoparticles Embedded in Liquid Crystalline Lipid Membrane. Langmuir, 2012, 28, 10980-10987.	3.5	5
206	Surface-enhanced Raman scattering substrate based on silver nanoparticle-deposited phospholipid multilayer. Applied Surface Science, 2013, 287, 369-374.	6.1	5
207	Characterization of Sputter-Deposited LiZr ₂ (PO ₄) ₃ Thin Film Solid Electrolyte. Journal of the Electrochemical Society, 2015, 162, A2080-A2084.	2.9	5
208	Growing instead of confining. Nature Energy, 2017, 2, 768-769.	39.5	5
209	Microstructural Degradation: Microstructural Degradation of Niâ€Rich Li[Ni <i>>_x</i> Co <i>>_y</i> Mn ₁ <i>_{â°xâ°y}</i>]O ₂ Cathodes During Accelerated Calendar Aging (Small 45/2018). Small, 2018, 14, 1870207.	10.0	5
210	Enhanced electrical conductivity of Ag-mercaptosuccinic acid-redoped polyaniline nanoparticles during thermal cycling above 200°C. Polymer Degradation and Stability, 2009, 94, 208-212.	5.8	4
211	Phospholipid-driven long-range ordering of Fe3O4 nanoparticles. Applied Surface Science, 2011, 257, 3128-3134.	6.1	4
212	Formation of Ag Nanostrings Induced by Lyotropic Liquid–Crystalline Phospholipid Multilayer. Langmuir, 2012, 28, 259-263.	3.5	4
213	New optical transition, structural, and ferromagnetic properties of InCrP:Zn implanted with Cr. Journal of Luminescence, 2014, 154, 593-596.	3.1	4
214	Enhanced Curie temperature persisting between 100 and 200K ($\hat{a}^{-1}/450$ K by theory) with Mn ($\hat{a}^{-1}/40.290$ %) based on InMnP:Zn. Journal of Crystal Growth, 2006, 297, 289-293.	1.5	3
215	Magnetic ordering in Co78â^xMnxB10Si12 amorphous alloys studied using X-ray magnetic circular dichroism. Journal of Alloys and Compounds, 2007, 439, 171-175.	5.5	3
216	Hierarchical nanostructure generated by decorating SiO _{<i>x</i>} nanowires with CoPt nanoparticles. Nanotechnology, 2008, 19, 465601.	2.6	3

#	Article	IF	CITATIONS
217	Thermal Stability of Cu and Cu ₂ O Nanoparticles in a Polyimide Film. Journal of Nanoscience and Nanotechnology, 2008, 8, 4822-4825.	0.9	3
218	Effect of plasma etching on photoluminescence of SnO /Sn nanoparticles deposited on DOPC lipid membrane. Journal of Colloid and Interface Science, 2012, 368, 257-262.	9.4	3
219	Synthesis and Electrochemical Characteristics of Li[sub 0.7][Ni[sub 1/6]Mn[sub 5/6]]O[sub 2] Cathode Materials. Journal of the Electrochemical Society, 2002, 149, A1250.	2.9	2
220	Electron-spin-resonance analysis of magnetic ordering in Co58Mn20B10Si12 amorphous alloy. Journal of Applied Physics, 2005, 98, 083902.	2.5	2
221	Co–Pt alloy nanoparticles produced using a template of nanoparticle array. Journal of Colloid and Interface Science, 2006, 303, 131-136.	9.4	2
222	Area-selective growth of amorphous carbon nanofibers via catalytic decomposition of polyimide thin film. Chemical Communications, 2007, , 4018.	4.1	2
223	Co nanoparticle monolayer prepared by multiple diffusive incorporations onto a pre-existing nanoparticle template. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 293, 101-104.	4.7	2
224	The appearance of clear ferromagnetism for p-type InMnP:Zn implanted with Mn of 1at.%. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 146, 220-224.	3.5	2
225	Formation of periodic magnetic structure by localized amorphization of crystalline Co2MnSi using femtosecond laser. Journal of Applied Physics, 2008, 103, 07E701.	2.5	2
226	Magnetic grating produced by localized crystallization of amorphous Cu2MnSn thin film using femtosecond laser pulses. Journal of Applied Physics, 2009, 105, .	2.5	2
227	Thermally Annealed Co[sub 2]MnAl Thin-Film Electrode for Lithium Secondary Batteries. Journal of the Electrochemical Society, 2010, 157, A636.	2.9	2
228	Optical and Structural Properties of Ag:Ta ₂ O ₅ Nanocomposites. Journal of Nanoscience and Nanotechnology, 2013, 13, 3451-3454.	0.9	2
229	Molecular dynamics simulation of interlayer water embedded in phospholipid bilayer. Materials Science and Engineering C, 2014, 36, 49-56.	7.3	2
230	Enhanced ferromagnetism by preventing antiferromagnetic MnO2 in InP:Be/Mn/InP:Be triple layers fabricated using molecular beam epitaxy. Current Applied Physics, 2014, 14, 558-562.	2.4	2
231	The reaction mechanism revealed. Nature Nanotechnology, 2017, 12, 503-504.	31.5	2
232	Non-Enzymatic Sensing of Hydrogen Peroxide Using Directly Deposited Au Nanoparticles on Solid-Supported Phospholipid Film. Journal of the Electrochemical Society, 2017, 164, B753-B757.	2.9	2
233	Magnetocaloric properties of Nd Gd5-Si4Mn0.5Cr0.5 (xÂ= 0.5, 1, 1.5). Journal of Alloys and Compounds, 2020, 827, 154302.	5.5	2
234	Mn Fe5â^'Si3 for active magnetic regenerative refrigeration at room temperature. Journal of Magnetism and Magnetic Materials, 2021, 530, 167952.	2.3	2

#	Article	IF	CITATIONS
235	Interdiffusion in Exchange Biased NiFe/IrMn/CoFe Electrode in Magnetic Tunnel Junctions. Materials Research Society Symposia Proceedings, 2001, 690, F3.9.1.	0.1	1
236	Fabrication of metallic nanoparticle mono-layer made from selective reaction of Ni100â^'xFex thin films with polyamic acid during its imidization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 284-285, 350-354.	4.7	1
237	High-frequency electromagnetic properties of soft magnetic metal–polyimide hybrid thin films. Journal of Magnetism and Magnetic Materials, 2007, 316, e893-e895.	2.3	1
238	Hierarchical Nanostructure Produced by Growing Carbon Nanotubes on Silicon Oxide Nanowires. Electrochemical and Solid-State Letters, 2009, 12, K67.	2.2	1
239	Formation of the ferromagnetic semiconductor InMnP:Zn through low-temperature annealing by using Mn/InP:Zn bilayer. Journal of the Korean Physical Society, 2012, 61, 1065-1069.	0.7	1
240	Deposition of Metal Nanoparticles on Phospholipid Multilayer Membranes Modified by Gramicidin. Langmuir, 2013, 29, 13251-13257.	3.5	1
241	Effect of in-situ application of ultrasonic waves during formation of silver nanoparticles embedded in phospholipid membrane. Journal of Applied Physics, 2013, 114, 144702.	2.5	1
242	Stabilization of Solid-Supported Phospholipid Multilayer against Water by Gramicidin Addition. Journal of Physical Chemistry B, 2014, 118, 3035-3040.	2.6	1
243	Lithium-Ion Batteries: Compositionally Graded Cathode Material with Long-Term Cycling Stability for Electric Vehicles Application (Adv. Energy Mater. 22/2016). Advanced Energy Materials, 2016, 6, .	19.5	1
244	Charging and discharging mechanims of vertically stacked Ni <inf>1-x</inf> Fe <inf>x</inf> self-assembled nanoparticle arrays embedded in polyimide layers. , 2006, , .		0
245	Characteristics of diluted magnetic semiconductor for p-type InMnP : Zn epilayer. Thin Solid Films, 2006, 505, 129-132.	1.8	O
246	Optical, structural, and magnetic properties of p-type InMnP:Zn implanted with the Mn (1 and 10Âat.%). Solid State Communications, 2007, 144, 128-133.	1.9	0
247	Crystallization of Co58â^'xMn20GexB10Si12 (x=5, 10) metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 531-534.	5.6	0
248	Effect of Ag under-layer on patterning of periodic magnetic structure using femtosecond laser-induced crystallization. Journal of Magnetism and Magnetic Materials, 2007, 310, 1581-1583.	2.3	0
249	Relevant, systematic variation of morphology and magnetism according to annealing in InMnP:Zn. Applied Surface Science, 2007, 254, 494-498.	6.1	0
250	Hierarchical Nanostructure Produced by Growing Carbon Nanotubes on Silicon Oxide Nanowires. ECS Transactions, 2009, 25, 991-996.	0.5	0
251	Synthesis of $f L_{0}\$ (FePt) $f = 100{-}{m X}$ -Au $f = 100{-}{m X}$ Nanoparticle Monolayer on Polyimide Film. IEEE Transactions on Magnetics, 2009, 45, 2467-2470.	2.1	0
252	Self-assembly of iron oxide nanoparticles mediated by phospholipids. , 2010, , .		0

#	Article	IF	CITATIONS
253	Metal nanoparticles formed by direct deposition on liquid-crystalline phospholipid membrane. , 2010, , .		0
254	Fabrication of Nanocrystalline Silicon Gratings Embedded within a Silicon Nitride Matrix by Femtosecond Laser-Induced Crystallization. Japanese Journal of Applied Physics, 2010, 49, 015502.	1.5	0
255	Electrical Bistability Mechanisms of Organic Bistable Devices Fabricated Utilizing Ni1-xFexSelf-Assembled Nanoparticles Embedded in a Polyimide Layer. Japanese Journal of Applied Physics, 2010, 49, 01AD03.	1.5	0
256	Deposition of Sn/SnO <inf>x</inf> core-shell nanoparticles on phospholipid membrane. , 2010, , .		0
257	Effect of hydration on Ag nanoparticles embedded in lyotropic phospholipid membrane. , 2011, , .		0
258	Photoluminescence from SnO <inf>x</inf> /Sn nanoparticle monolayer on solid-supported liquid-crystalline phopholipid membranes: Dioleoylphosphocholine, dioleoylphosphatidylethanolamine, dioleoyltrimethylammonium-propane., 2011,,.		0
259	Coarsening of Au nanoparticles embedded in liquid crystalline phospholipid membrane. , 2011, , .		O
260	Coarsening of Au nanoparticles embedded in solid-supported lipid membrane at 80°C under different humidity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409, 138-142.	4.7	0
261	Systematic and consistent ferromagnetism in InMnP:Zn bilayers for various Mn concentrations and annealing temperatures. Journal of the Korean Physical Society, 2013, 63, 2158-2164.	0.7	0
262	Coalescence and Polygonization of Au Nanoparticles Embedded in Liquid-Crystalline Lipid Membrane. Journal of Nanoscience and Nanotechnology, 2013, 13, 6150-6152.	0.9	0
263	Unusual flow behavior of Fe-based soft magnetic amorphous ribbons under high temperature tensile loading. Current Applied Physics, 2018, 18, 411-416.	2.4	0
264	Structural, Optical, and Magnetic Characteristics of an InMnP:Zn Epilayer. Journal of the Korean Physical Society, 2007, 50, 814.	0.7	0