Jaekook Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5572527/publications.pdf

Version: 2024-02-01

53794 40979 9,199 126 45 93 citations h-index g-index papers 127 127 127 7078 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Electrochemically Induced Structural Transformation in a \hat{I}^3 -MnO $<$ sub $>2<$ /sub $>$ Cathode of a High Capacity Zinc-Ion Battery System. Chemistry of Materials, 2015, 27, 3609-3620.	6.7	788
2	Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-lon Battery Cathode. Chemistry of Materials, 2017, 29, 1684-1694.	6.7	479
3	Na ₂ V ₆ O ₁₆ Â<3H ₂ O Barnesite Nanorod: An Open Door to Display a Stable and High Energy for Aqueous Rechargeable Zn-lon Batteries as Cathodes. Nano Letters, 2018, 18, 2402-2410.	9.1	461
4	A layered Î-MnO 2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochemistry Communications, 2015, 60, 121-125.	4.7	434
5	Synthesis of LiFePO[sub 4] Nanoparticles in Polyol Medium and Their Electrochemical Properties. Electrochemical and Solid-State Letters, 2006, 9, A439.	2.2	331
6	Enhanced reversible divalent zinc storage in a structurally stable \hat{l}_{\pm} -MnO2 nanorod electrode. Journal of Power Sources, 2015, 288, 320-327.	7.8	322
7	Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. ACS Energy Letters, 2020, 5, 2376-2400.	17.4	303
8	Facile synthesis and the exploration of the zinc storage mechanism of \hat{l}^2 -MnO ₂ nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23299-23309.	10.3	297
9	Aqueous rechargeable Zn-ion batteries: an imperishable and high-energy Zn ₂ V ₂ O ₇ nanowire cathode through intercalation regulation. Journal of Materials Chemistry A, 2018, 6, 3850-3856.	10.3	293
10	Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochimica Acta, 2018, 276, 1-11.	5.2	220
11	Amorphous iron phosphate: potential host for various charge carrier ions. NPG Asia Materials, 2014, 6, e138-e138.	7.9	213
12	K ₂ V ₆ O ₁₆ Â \cdot 2.7H ₂ O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. Journal of Materials Chemistry A, 2018, 6, 15530-15539.	10.3	201
13	High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries. Journal of Materials Chemistry, 2012, 22, 20857.	6.7	182
14	The dominant role of Mn2+ additive on the electrochemical reaction in ZnMn2O4 cathode for aqueous zinc-ion batteries. Energy Storage Materials, 2020, 28, 407-417.	18.0	175
15	Self-Passivation of a LiNiO ₂ Cathode for a Lithium-Ion Battery through Zr Doping. ACS Energy Letters, 2018, 3, 1634-1639.	17.4	161
16	High performance of Co-doped NiO nanoparticle anode material forÂrechargeable lithium ion batteries. Journal of Power Sources, 2015, 292, 23-30.	7.8	159
17	Aqueous Magnesium Zinc Hybrid Battery: An Advanced High-Voltage and High-Energy MgMn ₂ O ₄ Cathode. ACS Energy Letters, 2018, 3, 1998-2004.	17.4	159
18	A high surface area tunnel-type α-MnO2 nanorod cathode by a simple solvent-free synthesis for rechargeable aqueous zinc-ion batteries. Chemical Physics Letters, 2016, 650, 64-68.	2.6	142

#	Article	IF	CITATIONS
19	Co ₃ V ₂ O ₈ Sponge Network Morphology Derived from Metal–Organic Framework as an Excellent Lithium Storage Anode Material. ACS Applied Materials & amp; Interfaces, 2016, 8, 8546-8553.	8.0	139
20	Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties. Applied Surface Science, 2017, 404, 435-442.	6.1	123
21	K ⁺ intercalated V ₂ O ₅ nanorods with exposed facets as advanced cathodes for high energy and high rate zinc-ion batteries. Journal of Materials Chemistry A, 2019, 7, 20335-20347.	10.3	116
22	Carbon-coated manganese dioxide nanoparticles and their enhanced electrochemical properties for zinc-ion battery applications. Journal of Energy Chemistry, 2017, 26, 815-819.	12.9	112
23	Toward the Sustainable Lithium Metal Batteries with a New Electrolyte Solvation Chemistry. Advanced Energy Materials, 2020, 10, 2000567.	19.5	111
24	Electrochemical study of NiO nanoparticles electrode for application in rechargeable lithium-ion batteries. Ceramics International, 2013, 39, 6611-6618.	4.8	105
25	High Rate Capability and Long Cycle Stability of Co ₃ 0 ₄ Nanocomposite as an Anode Material for High-Performance Secondary Lithium Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 11234-11243.	3.1	100
26	A carbon-coated Li3V2(PO4)3 cathode material with an enhanced high-rate capability and long lifespan for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 2508.	10.3	98
27	Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries. Electrochimica Acta, 2013, 90, 112-118.	5.2	98
28	An analysis of the electrochemical mechanism of manganese oxides in aqueous zinc batteries. CheM, 2022, 8, 924-946.	11.7	92
29	In Situ Oriented Mn Deficient ZnMn ₂ O ₄ @C Nanoarchitecture for Durable Rechargeable Aqueous Zincâ€lon Batteries. Advanced Science, 2021, 8, 2002636.	11.2	90
30	Variation of Electronic Conductivity within Secondary Particles Revealing a Capacity-Fading Mechanism of Layered Ni-Rich Cathode. ACS Energy Letters, 2018, 3, 3002-3007.	17.4	80
31	Hierarchical porous anatase TiO ₂ derived from a titanium metal–organic framework as a superior anode material for lithium ion batteries. Chemical Communications, 2015, 51, 12274-12277.	4.1	73
32	Electrochemical properties of NaxCoO2 (x~0.71) cathode for rechargeable sodium-ion batteries. Ceramics International, 2014, 40, 2411-2417.	4.8	68
33	Zn3V2O8 porous morphology derived through a facile and green approach as an excellent anode for high-energy lithium ion batteries. Chemical Engineering Journal, 2017, 328, 454-463.	12.7	67
34	Metal–organic framework-combustion: a new, cost-effective and one-pot technique to produce a porous Co ₃ V ₂ O ₈ microsphere anode for high energy lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 14605-14613.	10.3	64
35	Fully activated Li2MnO3 nanoparticles by oxidation reaction. Journal of Materials Chemistry, 2012, 22, 11772.	6.7	63
36	A new P2-type layered oxide cathode with superior full-cell performances for K-ion batteries. Journal of Materials Chemistry A, 2019, 7, 21362-21370.	10.3	61

#	Article	IF	CITATIONS
37	High rate performance of a NaTi ₂ (PO ₄) ₃ /rGO composite electrode via pyro synthesis for sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 7815-7822.	10.3	60
38	Facile synthesis of reduced graphene oxide by modified Hummer's method as anode material for Li-, Na-and K-ion secondary batteries. Royal Society Open Science, 2019, 6, 181978.	2.4	60
39	Chromium doping into NASICON-structured Na3V2(PO4)3 cathode for high-power Na-ion batteries. Chemical Engineering Journal, 2021, 422, 130052.	12.7	58
40	Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries. Scientific Reports, 2014, 4, 4047.	3.3	57
41	First principles calculations study of $\hat{l}\pm$ -MnO $<$ sub $>$ 2 $<$ /sub $>$ as a potential cathode for Al-ion battery application. Journal of Materials Chemistry A, 2019, 7, 26966-26974.	10.3	52
42	A new rechargeable battery based on a zinc anode and a NaV ₆ O ₁₅ nanorod cathode. Chemical Communications, 2019, 55, 3793-3796.	4.1	51
43	Investigation of Li-ion storage properties of earth abundant \hat{I}^2 -Mn 2 V 2 O 7 prepared using facile green strategy. Journal of Power Sources, 2017, 350, 80-86.	7.8	50
44	Facile synthesis of pyrite (FeS ₂ /C) nanoparticles as an electrode material for non-aqueous hybrid electrochemical capacitors. Nanoscale, 2018, 10, 5938-5949.	5.6	48
45	Multidimensional Na ₄ VMn _{0.9} Cu _{0.1} (PO ₄) ₃ /C cotton-candy cathode materials for high energy Na-ion batteries. Journal of Materials Chemistry A, 2020, 8, 12055-12068.	10.3	48
46	Pyrosynthesis of Na ₃ V ₂ (PO ₄) ₃ @C Cathodes for Safe and Lowâ€Cost Aqueous Hybrid Batteries. ChemSusChem, 2018, 11, 2239-2247.	6.8	47
47	Enhanced electrochemical performance of novel K-doped Co ₃ O ₄ as the anode material for secondary lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 6966-6975.	10.3	45
48	Initial investigation and evaluation of potassium metal as an anode for rechargeable potassium batteries. Journal of Materials Chemistry A, 2020, 8, 16718-16737.	10.3	44
49	Pyro-Synthesis of Functional Nanocrystals. Scientific Reports, 2012, 2, 946.	3.3	42
50	Pyro-Synthesis of Nanostructured Spinel ZnMn2O4/C as Negative Electrode for Rechargeable Lithium-Ion Batteries. Electrochimica Acta, 2015, 151, 558-564.	5.2	42
51	Bitter gourd-shaped Ni3V2O8 anode developed by a one-pot metal-organic framework-combustion technique for advanced Li-ion batteries. Ceramics International, 2017, 43, 13224-13232.	4.8	42
52	Oneâ€Step Pyroâ€Synthesis of a Nanostructured Mn ₃ O ₄ /C Electrode with Long Cycle Stability for Rechargeable Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2016, 22, 2039-2045.	3.3	40
53	Porous TiN nanoparticles embedded in a N-doped carbon composite derived from metal–organic frameworks as a superior anode in lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 4706-4710.	10.3	39
54	Facile green synthesis of a Co $3V2O8$ nanoparticle electrode for high energy lithium-ion battery applications. Journal of Colloid and Interface Science, 2017, 501, 133-141.	9.4	39

#	Article	IF	Citations
55	Advancement in graphene-based nanocomposites as high capacity anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 2628-2661.	10.3	39
56	Phase-pure Na3V2(PO4)2F3 embedded in carbon matrix through a facile polyol synthesis as a potential cathode for high performance sodium-ion batteries. Nano Research, 2019, 12, 911-917.	10.4	38
57	Tungsten Oxide/Zirconia as a Functional Polysulfide Mediator for High-Performance Lithium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 3168-3175.	17.4	38
58	Hyper oxidized V6O13+ \hat{A} ·nH2O layered cathode for aqueous rechargeable Zn battery: Effect on dual carriers transportation and parasitic reactions. Energy Storage Materials, 2021, 35, 47-61.	18.0	38
59	Fabrication of 1D mesoporous NiO nano-rods as high capacity and long-life anode material for lithium ion batteries. Journal of Alloys and Compounds, 2021, 850, 156755.	5.5	38
60	Dandelion-shaped manganese sulfide in ether-based electrolyte for enhanced performance sodium-ion batteries. Communications Chemistry, 2018, 1 , .	4.5	37
61	Coupling of a conductive Ni ₃ (2,3,6,7,10,11-hexaiminotriphenylene) ₂ metal–organic framework with silicon nanoparticles for use in high-capacity lithium-ion batteries. Nanoscale, 2020, 12, 1629-1642.	5.6	37
62	An Enhanced High-Rate Na ₃ V ₂ (PO ₄) ₃ -Ni ₂ P Nanocomposite Cathode with Stable Lifetime for Sodium-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2016, 8, 35235-35242.	8.0	35
63	Potassium-doped copper oxide nanoparticles synthesized by a solvothermal method as an anode material for high-performance lithium ion secondary battery. Applied Surface Science, 2014, 305, 617-625.	6.1	32
64	Stable Solid Electrolyte Interphase for Long-Life Potassium Metal Batteries. ACS Energy Letters, 2022, 7, 401-409.	17.4	32
65	A sponge network-shaped Mn ₃ O ₄ /C anode derived from a simple, one-pot metal organic framework-combustion technique for improved lithium ion storage. Inorganic Chemistry Frontiers, 2016, 3, 1609-1615.	6.0	31
66	A new material discovery platform of stable layered oxide cathodes for K-ion batteries. Energy and Environmental Science, 2021, 14, 5864-5874.	30.8	30
67	A Versatile Pyramidal Hauerite Anode in Congeniality Diglymeâ€Based Electrolytes for Boosting Performance of Li―and Naâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1900710.	19.5	29
68	A zero fading sodium ion battery: High compatibility microspherical patronite in ether-based electrolyte. Energy Storage Materials, 2019, 19, 270-280.	18.0	29
69	State-of-the-art anodes of potassium-ion batteries: synthesis, chemistry, and applications. Chemical Science, 2021, 12, 7623-7655.	7.4	28
70	Electrochemical lithium storage of a ZnFe ₂ O ₄ /graphene nanocomposite as an anode material for rechargeable lithium ion batteries. RSC Advances, 2014, 4, 47087-47095.	3.6	27
71	Ni3V2O8 nanoparticles as an excellent anode material for high-energy lithium-ion batteries. Journal of Electroanalytical Chemistry, 2018, 810, 34-40.	3.8	27
72	Multiscale Understanding of Covalently Fixed Sulfur–Polyacrylonitrile Composite as Advanced Cathode for Metal–Sulfur Batteries. Advanced Science, 2021, 8, e2101123.	11.2	27

#	Article	IF	CITATIONS
73	Effects of cobalt-intercalation and polyaniline coating on electrochemical performance of layered manganese oxides. Journal of Materials Chemistry, 2011, 21, 5282.	6.7	25
74	A two-step solid state synthesis of LiFePO4/C cathode with varying carbon contents for Li-ion batteries. Ceramics International, 2014, 40, 1561-1567.	4.8	25
75	C-Na3V1.96Fe0.04(PO4)3/Fe2P nanoclusters with stable charge-transfer interface for high-power sodium ion batteries. Chemical Engineering Journal, 2021, 404, 126974.	12.7	25
76	Morphology-controlled LiFePO4 cathodes by a simple polyol reaction for Li-ion batteries. Materials Characterization, 2014, 89, 93-101.	4.4	24
77	Quasi-solid-state zinc-ion battery based on α-MnO2 cathode with husk-like morphology. Electrochimica Acta, 2020, 345, 136189.	5. 2	24
78	Low-cost LiFePO4using Fe metal precursor. Journal of Materials Chemistry, 2012, 22, 2624-2631.	6.7	23
79	Simple, robust metal fluoride coating on layered Li1.23Ni0.13Co0.14Mn0.56O2 and its effects on enhanced electrochemical properties. Electrochimica Acta, 2013, 100, 10-17.	5. 2	23
80	A Sodium Manganese Oxide Cathode by Facile Reduction for Sodium Batteries. Chemistry - an Asian Journal, 2014, 9, 1550-1556.	3.3	23
81	A rapid polyol combustion strategy towards scalable synthesis of nanostructured LiFePO4/C cathodes for Li-ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 1557-1567.	2.5	23
82	Li3V2(PO4)3/graphene nanocomposite as a high performance cathode material for lithium ion battery. Ceramics International, 2015, 41, 389-396.	4.8	23
83	Triggering the theoretical capacity of Na1.1V3O7.9 nanorod cathode by polypyrrole coating for high-energy zinc-ion batteries. Chemical Engineering Journal, 2022, 446, 137069.	12.7	23
84	Density Functional Theory Investigation of Mixed Transition Metals in Olivine and Tavorite Cathode Materials for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 16376-16386.	8.0	22
85	Nanostructured iron ((iii) oxyhydroxide/(vi) oxide) composite as a reversible Li, Na and K-ion insertion electrode for energy storage devices. Journal of Materials Chemistry A, 2013, 1, 7185.	10.3	21
86	Biowaste Orange Peelâ€Derived Mesoporous Carbon as a Costâ€Effective Anode Material with Ultraâ€Stable Cyclability for Potassiumâ€ion Batteries. Batteries and Supercaps, 2020, 3, 1099-1111.	4.7	21
87	Synthesis of LiFePO4Nanoparticles and Crystal Formation Mechanism during Solvothermal Reaction. Journal of the Electrochemical Society, 2012, 159, A479-A484.	2.9	20
88	Na _{2.3} Cu _{1.1} Mn ₂ O _{7$\hat{a}^{\hat{a}}$(} nanoflakes as enhanced cathode materials for high-energy sodium-ion batteries achieved by a rapid pyrosynthesis approach. Journal of Materials Chemistry A, 2020, 8, 770-778.	10.3	20
89	Bimetallic Layered Hydroxide Nitrate@Graphene Oxide as an Electrocatalyst for Efficient Non-Enzymatic Glucose Sensors: Tuning Sensitivity by Hydroxide-Regulated M ₂ (OH) _{4â€"<i>n</i>} (A ^{<i>n</i>Engineering, ACS Sustainable Chemistry and Engineering, 2022, 10, 1689-1701.}	6.7	18
90	Enhanced energy and O ₂ evolution efficiency using an in situ electrochemically N-doped carbon electrode in non-aqueous Li–O ₂ batteries. Journal of Materials Chemistry A, 2015, 3, 18843-18846.	10.3	17

#	Article	IF	CITATIONS
91	Monoclinic-Orthorhombic Na _{1.1} Li _{2.0} V ₂ (PO ₄) ₃ /C Composite Cathode for Na ⁺ /Li ⁺ Hybrid-Ion Batteries. Chemistry of Materials, 2017, 29, 6642-6652.	6.7	17
92	A composite cathode material encapsulated by amorphous garnet-type solid electrolyte and self-assembled La ₂ (Ni _{0.5} Li _{0.5})O ₄ nanoparticles for all-solid-state batteries. Journal of Materials Chemistry A, 2020, 8, 22893-22906.	10.3	17
93	Effect of Urea as Electrolyte Additive for Stabilization of Lithium Metal Electrodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 11123-11132.	6.7	17
94	Uniform Carbon Coated Na ₃ V ₂ F _{3–2<i>x</i>} F _{7<81>x} F _{33€"2<i>x</i>} F _{7<81>x} F _{86<% Sub>86<% Sub>9} 9 Nanoparticles for Sodium Ion Batteries as Cathode. ACS Sustainable Chemistry and Engineering, 2019, 7, 18826-18834.	/sub>	16
95	A high voltage LiMnPO4–LiMn2O4 nanocomposite cathode synthesized by a one-pot pyro synthesis for Li-ion batteries. RSC Advances, 2013, 3, 25640.	3.6	15
96	High lithium storage properties in a manganese sulfide anode <i>via</i> an intercalation-cum-conversion reaction. Journal of Materials Chemistry A, 2020, 8, 17537-17549.	10.3	15
97	Lithium-ion transport in inorganic active fillers used in PEO-based composite solid electrolyte sheets. RSC Advances, 2021, 11, 31855-31864.	3.6	15
98	Carbon-coated rhombohedral Li 2 NaV 2 (PO 4) 3 nanoflake cathode for Li-ion battery with excellent cycleability and rate capability. Chemical Physics Letters, $2017, 681, 44-49$.	2.6	14
99	Investigation of superior sodium storage and reversible Na ₂ S conversion reactions in a porous NiS ₂ @C composite using <i>in operando</i> i> X-ray diffraction. Journal of Materials Chemistry A, 2020, 8, 24401-24407.	10.3	14
100	Effects of praseodymium substitution on electrical properties of CaCu3Ti4O12 ceramics. Ceramics International, 2014, 40, 181-189.	4.8	13
101	One step pyro-synthesis process of nanostructured Li3V2(PO4)3/C cathode for rechargeable Li-ion batteries. Materials Today Communications, 2017, 10, 105-111.	1.9	13
102	Hierarchically nanorod structured Na2Ti6O13/Na2Ti3O7 nanocomposite as a superior anode for high-performance sodium ion battery. Journal of Electroanalytical Chemistry, 2020, 877, 114747.	3.8	13
103	Recent Developments and Future Challenges in Designing Rechargeable Potassium-Sulfur and Potassium-Selenium Batteries. Energies, 2020, 13, 2791.	3.1	13
104	Impact of glucose on the electrochemical performance of nano-LiCoPO4 cathode for Li-ion batteries. Journal of Solid State Electrochemistry, 2012, 16, 149-155.	2.5	12
105	Mesoporous manganese dioxide cathode prepared by an ambient temperature synthesis for Na-ion batteries. RSC Advances, 2013, 3, 26328.	3.6	12
106	One-pot pyro synthesis of a nanosized-LiMn ₂ O ₄ /C cathode with enhanced lithium storage properties. RSC Advances, 2019, 9, 24030-24038.	3.6	12
107	Mesoporous Mulberry-like CoMoO ₄ : A Highly Suitable Anode Material for Sodium Ion Batteries over Lithium Ion Batteries. ACS Applied Energy Materials, 2022, 5, 126-136.	5.1	12
108	One-pot pyro-synthesis of a high energy density LiFePO 4 -Li 3 V 2 (PO 4) 3 nanocomposite cathode for lithium-ion battery applications. Ceramics International, 2017, 43, 4288-4294.	4.8	11

#	Article	IF	Citations
109	Morphological dependent behaviour of CoMoO4 anode: Lithium vs. sodium ion batteries. Journal of Alloys and Compounds, 2022, 920, 165925.	5.5	11
110	Sodium manganese oxide electrodes accompanying self-ion exchange for lithium/sodium hybrid ion batteries. Electrochimica Acta, 2018, 261, 42-48.	5.2	10
111	High-voltage cathode materials by combustion-based preparative approaches for Li-ion batteries application. Journal of Power Sources, 2020, 472, 228368.	7.8	10
112	Validating the Structural (In)stability of P3- and P2-Na _{0.67} Mg _{0.1} Mn _{0.9} O ₂ -Layered Cathodes for Sodium-Ion Batteries: A Time-Decisive Approach. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53877-53891.	8.0	10
113	A review on carbon nanomaterials for <scp>Kâ€ion</scp> battery anode: Progress and perspectives. International Journal of Energy Research, 2022, 46, 4033-4070.	4.5	9
114	<i>In Situ</i> Generation of Silicon Oxycarbide Phases on Reduced Graphene Oxide for Li-lon Battery Anode. ChemistrySelect, 2016, 1, 6429-6433.	1.5	8
115	Microwave-Assisted Rapid Synthesis of NH4V4O10 Layered Oxide: A High Energy Cathode for Aqueous Rechargeable Zinc Ion Batteries. Nanomaterials, 2021, 11, 1905.	4.1	8
116	Nucleation and Growth Controlled Polyol Synthesis of Size-Focused Nanocrystalline LiFePO4Cathode for High Performance Li-lon Batteries. Journal of the Electrochemical Society, 2014, 161, A1468-A1473.	2.9	7
117	An in-situ gas chromatography investigation into the suppression of oxygen gas evolution by coated amorphous cobalt-phosphate nanoparticles on oxide electrode. Scientific Reports, 2016, 6, 23394.	3.3	6
118	A new telluriumâ€based Ni ₃ TeO ₆ â€carbon nanotubes composite anode for Naâ€ion battery. International Journal of Energy Research, 2022, 46, 16041-16049.	4.5	6
119	Carbon Coated CoO Electrode Synthesized by Urea-Assisted Auto Combustion for Rechargeable Lithium Battery. Journal of Nanoscience and Nanotechnology, 2015, 15, 540-543.	0.9	5
120	Recent Achievements in Experimental and Computational Studies of Positive Electrode Materials for Nonaqueous Ca- and Al-Ion Batteries. Journal of Physical Chemistry C, 2022, 126, 9209-9227.	3.1	5
121	Structural and electrochemical behavior of a NiMnO ₃ /Mn ₂ O ₃ nanocomposite as an anode for high rate and long cycle lithium ion batteries. New Journal of Chemistry, 2019, 43, 12916-12922.	2.8	4
122	Investigation of K-ion storage performances in a bismuth sulfide-carbon nanotube composite anode. RSC Advances, 2020, 10, 6536-6539.	3.6	4
123	Pneumatochemical Immittance Spectroscopy for Hydrogen Storage Kinetics. Journal of Physical Chemistry C, 2013, 117, 19786-19808.	3.1	3
124	Effect of a self-assembling La ₂ (Ni _{0.5} Li _{0.5})O ₄ and amorphous garnet <i>-</i> type solid electrolyte composite on a layered cathode material in all-solid-state batteries. RSC Advances, 2022, 12, 14209-14222.	3.6	3
125	Chemical Diffusivity for Hydrogen Storage: Pneumatochemical Intermittent Titration Technique. Journal of Physical Chemistry C, 2013, 117, 19771-19785.	3.1	2
126	Recent Developments of Zinc-Ion Batteries. , 2021, , 27-57.		1