Jeffrey M Rosen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5572326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Breast cancer heterogeneity through the lens of single-cell analysis and spatial pathologies. Seminars in Cancer Biology, 2022, 82, 3-10.	9.6	23
2	Single-Cell Analysis Unveils the Role of the Tumor Immune Microenvironment and Notch Signaling in Dormant Minimal Residual Disease. Cancer Research, 2022, 82, 885-899.	0.9	14
3	Chemotherapy Coupled to Macrophage Inhibition Induces T-cell and B-cell Infiltration and Durable Regression in Triple-Negative Breast Cancer. Cancer Research, 2022, 82, 2281-2297.	0.9	22
4	Spliceosome-targeted therapies trigger an antiviral immune response in triple-negative breast cancer. Cell, 2021, 184, 384-403.e21.	28.9	94
5	CD8+ T cells inhibit metastasis and CXCL4 regulates its function. British Journal of Cancer, 2021, 125, 176-189.	6.4	21
6	Morphological screening of mesenchymal mammary tumor organoids to identify drugs that reverse epithelial-mesenchymal transition. Nature Communications, 2021, 12, 4262.	12.8	24
7	TIME Is a Great Healer—Targeting Myeloid Cells in the Tumor Immune Microenvironment to Improve Triple-Negative Breast Cancer Outcomes. Cells, 2021, 10, 11.	4.1	13
8	Replication stress response defects are associated with response to immune checkpoint blockade in nonhypermutated cancers. Science Translational Medicine, 2021, 13, eabe6201.	12.4	19
9	Tumor Suppressor PLK2 May Serve as a Biomarker in Triple-Negative Breast Cancer for Improved Response to PLK1 Therapeutics. Cancer Research Communications, 2021, 1, 178-193.	1.7	8
10	The SINEB1 element in the long non-coding RNA Malat1 is necessary for TDP-43 proteostasis. Nucleic Acids Research, 2020, 48, 2621-2642.	14.5	40
11	Protein quality control through endoplasmic reticulum-associated degradation maintains haematopoietic stem cell identity and niche interactions. Nature Cell Biology, 2020, 22, 1162-1169.	10.3	32
12	New twists on long noncoding RNAs: from mobile elements to motile cancer cells. RNA Biology, 2020, 17, 1535-1549.	3.1	4
13	Resistance to natural killer cell immunosurveillance confers a selective advantage to polyclonal metastasis. Nature Cancer, 2020, 1, 709-722.	13.2	77
14	C/EBPß Isoform Specific Gene Regulation: It's a Lot more Complicated than you Think!. Journal of Mammary Gland Biology and Neoplasia, 2020, 25, 1-12.	2.7	14
15	Orthotopic Transplantation of Breast Tumors as Preclinical Models for Breast Cancer. Journal of Visualized Experiments, 2020, , .	0.3	8
16	Alterations in Wnt- and/or STAT3 signaling pathways and the immune microenvironment during metastatic progression. Oncogene, 2019, 38, 5942-5958.	5.9	10
17	Immuno-subtyping of breast cancer reveals distinct myeloid cell profiles and immunotherapy resistance mechanisms. Nature Cell Biology, 2019, 21, 1113-1126.	10.3	202
18	The MMTV-Wnt1 murine model produces two phenotypically distinct subtypes of mammary tumors with unique therapeutic responses to an EGFR inhibitor. DMM Disease Models and Mechanisms, 2019, 12, .	2.4	8

#	Article	IF	CITATIONS
19	Targeting the Interplay between Epithelial-to-Mesenchymal-Transition and the Immune System for Effective Immunotherapy. Cancers, 2019, 11, 714.	3.7	79
20	Metastasis Organotropism: Redefining the Congenial Soil. Developmental Cell, 2019, 49, 375-391.	7.0	202
21	GSK3β regulates epithelial-mesenchymal transition and cancer stem cell properties in triple-negative breast cancer. Breast Cancer Research, 2019, 21, 37.	5.0	102
22	A Comparison of Treatment Effects for Nonsurgical Therapies and the Minimum Clinically Important Difference in Knee Osteoarthritis. JBJS Reviews, 2019, 7, e5-e5.	2.0	28
23	Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. Journal of Clinical Investigation, 2018, 128, 1283-1299.	8.2	163
24	miR-205 Regulates Basal Cell Identity and Stem Cell Regenerative Potential During Mammary Reconstitution. Stem Cells, 2018, 36, 1875-1889.	3.2	11
25	FGFR1-Activated Translation of WNT Pathway Components with Structured 5′ UTRs Is Vulnerable to Inhibition of EIF4A-Dependent Translation Initiation. Cancer Research, 2018, 78, 4229-4240.	0.9	22
26	Notch Signaling as a Regulator of the Tumor Immune Response: To Target or Not To Target?. Frontiers in Immunology, 2018, 9, 1649.	4.8	85
27	Repurposing Antiestrogens for Tumor Immunotherapy. Cancer Discovery, 2017, 7, 17-19.	9.4	19
28	The Cellular Origin and Evolution of Breast Cancer. Cold Spring Harbor Perspectives in Medicine, 2017, 7, a027128.	6.2	67
29	WNT-Mediated Regulation of FOXO1 Constitutes a Critical Axis Maintaining Pubertal Mammary Stem Cell Homeostasis. Developmental Cell, 2017, 43, 436-448.e6.	7.0	38
30	Genome-wide identification and differential analysis of translational initiation. Nature Communications, 2017, 8, 1749.	12.8	100
31	Ror2-mediated alternative Wnt signaling regulates cell fate and adhesion during mammary tumor progression. Oncogene, 2017, 36, 5958-5968.	5.9	46
32	TAp63 suppresses mammary tumorigenesis through regulation of the Hippo pathway. Oncogene, 2017, 36, 2377-2393.	5.9	30
33	Genomic profiling of murine mammary tumors identifies potential personalized drug targets for p53 deficient mammary cancers. DMM Disease Models and Mechanisms, 2016, 9, 749-57.	2.4	25
34	The Z-cad dual fluorescent sensor detects dynamic changes between the epithelial and mesenchymal cellular states. BMC Biology, 2016, 14, 47.	3.8	34
35	Oncogenic mTOR signalling recruits myeloid-derived suppressor cells to promote tumour initiation. Nature Cell Biology, 2016, 18, 632-644.	10.3	174
36	Fatal attraction: TICs and MDSCs. Cell Cycle, 2016, 15, 2545-2546.	2.6	2

#	Article	IF	CITATIONS
37	Phosphorylation of serine 367 of FOXC2 by p38 regulates ZEB1 and breast cancer metastasis, without impacting primary tumor growth. Oncogene, 2016, 35, 5977-5988.	5.9	48
38	PTEN is required to maintain luminal epithelial homeostasis and integrity in the adult mammary gland. Developmental Biology, 2016, 409, 202-217.	2.0	12
39	A Geometrically-Constrained Mathematical Model of Mammary Gland Ductal Elongation Reveals Novel Cellular Dynamics within the Terminal End Bud. PLoS Computational Biology, 2016, 12, e1004839.	3.2	47
40	Upregulation of EGFR signaling is correlated with tumor stroma remodeling and tumor recurrence in FGFR1-driven breast cancer. Breast Cancer Research, 2015, 17, 141.	5.0	55
41	Developmental Insights into Breast Cancer Intratumoral Heterogeneity. Trends in Cancer, 2015, 1, 242-251.	7.4	16
42	Mammary Stem Cells and Tumor-Initiating Cells Are More Resistant to Apoptosis and Exhibit Increased DNA Repair Activity in Response to DNA Damage. Stem Cell Reports, 2015, 5, 378-391.	4.8	78
43	Ror2 regulates branching, differentiation, and actin-cytoskeletal dynamics within the mammary epithelium. Journal of Cell Biology, 2015, 208, 351-366.	5.2	45
44	The Osteogenic Niche Promotes Early-Stage Bone Colonization of Disseminated Breast Cancer Cells. Cancer Cell, 2015, 27, 193-210.	16.8	308
45	Intratumoral Heterogeneity in a <i>Trp53</i> Null Mouse Model of Human Breast Cancer. Cancer Discovery, 2015, 5, 520-533.	9.4	62
46	Expression of miR-200c in claudin-low breast cancer alters stem cell functionality, enhances chemosensitivity and reduces metastatic potential. Oncogene, 2015, 34, 5997-6006.	5.9	100
47	Cross-species DNA copy number analyses identifies multiple 1q21-q23 subtype-specific driver genes for breast cancer. Breast Cancer Research and Treatment, 2015, 152, 347-356.	2.5	38
48	The mammary stem cell hierarchy: a looking glass into heterogeneous breast cancer landscapes. Endocrine-Related Cancer, 2015, 22, T161-T176.	3.1	45
49	The Oncogenic STP Axis Promotes Triple-Negative Breast Cancer via Degradation of the REST Tumor Suppressor. Cell Reports, 2014, 9, 1318-1332.	6.4	24
50	Paracrine signaling in mammary gland development: what can we learn about intratumoral heterogeneity?. Breast Cancer Research, 2014, 16, 202.	5.0	20
51	Wnt-Responsive Cancer Stem Cells Are Located Close to Distorted Blood Vessels and Not in Hypoxic Regions in a p53-Null Mouse Model of Human Breast Cancer. Stem Cells Translational Medicine, 2014, 3, 857-866.	3.3	8
52	STAT3 Signaling Is Activated Preferentially in Tumor-Initiating Cells in Claudin-Low Models of Human Breast Cancer. Stem Cells, 2014, 32, 2571-2582.	3.2	91
53	Regulation of mammary epithelial cell homeostasis by IncRNAs. International Journal of Biochemistry and Cell Biology, 2014, 54, 318-330.	2.8	24
54	Mouse models to study cancer stem cells in osteosarcoma Journal of Clinical Oncology, 2014, 32, 10543-10543.	1.6	0

#	Article	IF	CITATIONS
55	Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biology, 2013, 14, R125.	9.6	188
56	Fibroblast Growth Factor Receptor Signaling Is Essential for Normal Mammary Gland Development and Stem Cell Function. Stem Cells, 2013, 31, 178-189.	3.2	80
57	FOXC2 Expression Links Epithelial–Mesenchymal Transition and Stem Cell Properties in Breast Cancer. Cancer Research, 2013, 73, 1981-1992.	0.9	242
58	Separation by Cell Size Enriches for Mammary Stem Cell Repopulation Activity. Stem Cells Translational Medicine, 2013, 2, 199-203.	3.3	16
59	Three-dimensional vasculature reconstruction of tumour microenvironment via local clustering and classification. Interface Focus, 2013, 3, 20130015.	3.0	7
60	Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties. Scientific Reports, 2013, 3, 2687.	3.3	104
61	Novel Strategy for Lineage Tracing of Cancer Stem Cells. FASEB Journal, 2013, 27, 609.2.	0.5	0
62	Abstract IA13: Wnt and Fgf signaling in mammary stem cells and breast cancer. , 2013, , .		0
63	Abstract A039: The role of long noncoding RNAs in epithelial to mesenchymal transition and cancer stem cells. , 2013, , .		0
64	Pregnancy-Induced Noncoding RNA (PINC) Associates with Polycomb Repressive Complex 2 and Regulates Mammary Epithelial Differentiation. PLoS Genetics, 2012, 8, e1002840.	3.5	59
65	On Murine Mammary Epithelial Stem Cells: Discovery, Function, and Current Status. Cold Spring Harbor Perspectives in Biology, 2012, 4, a013268-a013268.	5.5	4
66	Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2778-2783.	7.1	187
67	Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma. Cancer Gene Therapy, 2012, 19, 212-217.	4.6	87
68	The chromatin landscape of the casein gene locus. Hormone Molecular Biology and Clinical Investigation, 2012, 10, 201-205.	0.7	4
69	On Hormone Action in the Mammary Gland. Cold Spring Harbor Perspectives in Biology, 2012, 4, a013086-a013086.	5.5	7
70	Noncoding RNAs Involved in Mammary Gland Development and Tumorigenesis: There's a Long Way to Go. Journal of Mammary Gland Biology and Neoplasia, 2012, 17, 43-58.	2.7	55
71	Mammary Gland Development & Breast Cancer; Connecting the Dots by Non-Coding RNAs. Journal of Mammary Gland Biology and Neoplasia, 2012, 17, 1-2.	2.7	0
72	Coupling Oriented Hidden Markov Random Field Model with Local Clustering for Segmenting Blood		4

#	Article	IF	CITATIONS
73	Altered differentiation and paracrine stimulation of mammary epithelial cell proliferation by conditionally activated Smoothened. Developmental Biology, 2011, 352, 116-127.	2.0	36
74	P190A RhoGAP is required for mammary gland development. Developmental Biology, 2011, 360, 1-10.	2.0	18
75	Progesterone Receptor Directly Inhibits β-Casein Gene Transcription in Mammary Epithelial Cells Through Promoting Promoter and Enhancer Repressive Chromatin Modifications. Molecular Endocrinology, 2011, 25, 955-968.	3.7	32
76	The pINDUCER lentiviral toolkit for inducible RNA interference in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3665-3670.	7.1	570
77	Identification and gene expression profiling of tumor-initiating cells isolated from human osteosarcoma cell lines in an orthotopic mouse model. Cancer Biology and Therapy, 2011, 12, 278-287.	3.4	35
78	Stem Cell Antigen-1 (Sca-1) Regulates Mammary Tumor Development and Cell Migration. PLoS ONE, 2011, 6, e27841.	2.5	30
79	The Epigenetic Landscape of Mammary Gland Development and Functional Differentiation. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 85-100.	2.7	88
80	Epithelial-Mesenchymal Transition (EMT) in Tumor-Initiating Cells and Its Clinical Implications in Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2010, 15, 253-260.	2.7	229
81	CCAAT/Enhancer Binding Protein Beta Regulates Stem Cell Activity and Specifies Luminal Cell Fate in the Mammary Gland. Stem Cells, 2010, 28, 535-544.	3.2	64
82	A putative role for microRNA-205 in mammary epithelial cell progenitors. Journal of Cell Science, 2010, 123, 606-618.	2.0	134
83	Selective targeting of radiation-resistant tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3522-3527.	7.1	198
84	Fibroblast Growth Factor Receptor Signaling Dramatically Accelerates Tumorigenesis and Enhances Oncoprotein Translation in the Mouse Mammary Tumor Virus–Wnt-1 Mouse Model of Breast Cancer. Cancer Research, 2010, 70, 4868-4879.	0.9	57
85	The ups and downs of miR-205: Identifying the roles of miR-205 in mammary gland development and breast cancer. RNA Biology, 2010, 7, 300-304.	3.1	79
86	Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15449-15454.	7.1	909
87	Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3728-3733.	7.1	53
88	P190B RhoGAP has pro-tumorigenic functions during MMTV-Neu mammary tumorigenesis and metastasis. Breast Cancer Research, 2010, 12, R73.	5.0	28
89	Wnt and mammary stem cells: hormones cannot fly wingless. Current Opinion in Pharmacology, 2010, 10, 643-649.	3.5	75
90	Thermal Enhancement with Optically Activated Gold Nanoshells Sensitizes Breast Cancer Stem Cells to Radiation Therapy. Science Translational Medicine, 2010, 2, 55ra79.	12.4	167

#	Article	IF	CITATIONS
91	Chk1 Haploinsufficiency Results in Anemia and Defective Erythropoiesis. PLoS ONE, 2010, 5, e8581.	2.5	30
92	Lactogenic Hormonal Induction of Long Distance Interactions between β-Casein Gene Regulatory Elements. Journal of Biological Chemistry, 2009, 284, 22815-22824.	3.4	60
93	Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13820-13825.	7.1	1,257
94	The Increasing Complexity of the Cancer Stem Cell Paradigm. Science, 2009, 324, 1670-1673.	12.6	630
95	Haploinsufficiency for p190B RhoGAP inhibits MMTV-Neu tumor progression. Breast Cancer Research, 2009, 11, R61.	5.0	24
96	Hormones and Mammary Cell Fate—What Will I Become When I Grow Up?. Endocrinology, 2008, 149, 4317-4321.	2.8	57
97	Intrinsic Resistance of Tumorigenic Breast Cancer Cells to Chemotherapy. Journal of the National Cancer Institute, 2008, 100, 672-679.	6.3	1,632
98	Identification of Tumor-Initiating Cells in a p53-Null Mouse Model of Breast Cancer. Cancer Research, 2008, 68, 4674-4682.	0.9	323
99	Chk1 Haploinsufficiency Results in Anemia and Defective Erythropoiesis. Blood, 2008, 112, 3457-3457.	1.4	0
100	Distinct Roles of Fibroblast Growth Factor Receptor 1 and 2 in Regulating Cell Survival and Epithelial-Mesenchymal Transition. Molecular Endocrinology, 2007, 21, 987-1000.	3.7	57
101	Crosstalk between the p190-B RhoGAP and IGF signaling pathways is required for embryonic mammary bud development. Developmental Biology, 2007, 309, 137-149.	2.0	38
102	WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proceedings of the United States of America, 2007, 104, 618-623.	7.1	599
103	Wnt/β-catenin mediates radiation resistance of Sca1+ progenitors in an immortalized mammary gland cell line. Journal of Cell Science, 2007, 120, 468-477.	2.0	170
104	Modelling breast cancer: one size does not fit all. Nature Reviews Cancer, 2007, 7, 659-672.	28.4	545
105	Therapeutic resistance and tumor-initiation: Molecular pathways involved in breast cancer stem cell self-renewal. Journal of Clinical Oncology, 2007, 25, 528-528.	1.6	2
106	Stem cells in the etiology and treatment of cancer. Current Opinion in Genetics and Development, 2006, 16, 60-64.	3.3	126
107	Integration of Prolactin and Glucocorticoid Signaling at the β-Casein Promoter and Enhancer by Ordered Recruitment of Specific Transcription Factors and Chromatin Modifiers. Molecular Endocrinology, 2006, 20, 2355-2368.	3.7	70
108	P190-B Rho GTPase-Activating Protein Overexpression Disrupts Ductal Morphogenesis and Induces Hyperplastic Lesions in the Developing Mammary Gland. Molecular Endocrinology, 2006, 20, 1391-1405.	3.7	42

#	Article	IF	CITATIONS
109	A noncoding RNA is a potential marker of cell fate during mammary gland development. Proceedings of the United States of America, 2006, 103, 5781-5786.	7.1	169
110	Stem/Progenitor Cells in Mouse Mammary Gland Development and Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2005, 10, 17-24.	2.7	67
111	Will cancer stem cells provide new therapeutic targets?. Carcinogenesis, 2005, 26, 703-711.	2.8	126
112	Cell Cycle Defects Contribute to a Block in Hormone-induced Mammary Gland Proliferation in CCAAT/Enhancer-binding Protein (C/EBPβ)-null Mice. Journal of Biological Chemistry, 2005, 280, 36301-36309.	3.4	31
113	Pleiotropic effects of FGFR1 on cell proliferation, survival, and migration in a 3D mammary epithelial cell model. Journal of Cell Biology, 2005, 171, 663-673.	5.2	139
114	The role of C/EBPbeta in mammary gland development and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 2003, 8, 191-204.	2.7	109
115	Transcription factors. Journal of Mammary Gland Biology and Neoplasia, 2003, 8, 143-144.	2.7	5
116	Striking it Rich by Data Mining. Cell, 2003, 114, 271-272.	28.9	3
117	Multispecies comparative analysis of a mammalian-specific genomic domain encoding secretory proteins. Genomics, 2003, 82, 417-432.	2.9	82
118	Pregnancy-induced changes in cell-fate in the mammary gland. Breast Cancer Research, 2003, 5, 192-7.	5.0	34
119	A β-catenin survival signal is required for normal lobular development in the mammary gland. Journal of Cell Science, 2003, 116, 1137-1149.	2.0	92
120	Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15853-15858.	7.1	486
121	Developmental and Hormonal Signals Dramatically Alter the Localization and Abundance of Insulin Receptor Substrate Proteins in the Mammary Gland. Endocrinology, 2003, 144, 2683-2694.	2.8	45
122	p190-B RhoGAP Regulates Mammary Ductal Morphogenesis. Molecular Endocrinology, 2003, 17, 1054-1065.	3.7	46
123	Hormone Receptor Patterning Plays a Critical Role in Normal Lobuloalveolar Development and Breast Cancer Progression. Breast Disease, 2003, 18, 3-9.	0.8	32
124	Inducible dimerization of FGFR1. Journal of Cell Biology, 2002, 157, 703-714.	5.2	132
125	Sca-1pos Cells in the Mouse Mammary Gland Represent an Enriched Progenitor Cell Population. Developmental Biology, 2002, 245, 42-56.	2.0	491
126	Disruption of Steroid and Prolactin Receptor Patterning in the Mammary Gland Correlates with a Block in Lobuloalveolar Development. Molecular Endocrinology, 2002, 16, 2675-2691.	3.7	105

#	Article	IF	CITATIONS
127	Jak2 Is an Essential Tyrosine Kinase Involved in Pregnancy-Mediated Development of Mammary Secretory Epithelium. Molecular Endocrinology, 2002, 16, 563-570.	3.7	12
128	Mechanisms of Hormonal Prevention of Breast Cancer. Annals of the New York Academy of Sciences, 2001, 952, 23-35.	3.8	42
129	Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. Journal of Cell Biology, 2001, 155, 531-542.	5.2	249
130	Persistent Changes in Gene Expression Induced by Estrogen and Progesterone in the Rat Mammary Gland. Molecular Endocrinology, 2001, 15, 1993-2009.	3.7	96
131	Persistent Changes in Gene Expression Induced by Estrogen and Progesterone in the Rat Mammary Gland. Molecular Endocrinology, 2001, 15, 1993-2009.	3.7	25
132	Adenovirus-Cre-mediated recombination in mammary epithelial early progenitor cells. Journal of Cell Science, 2001, 114, 3147-3153.	2.0	31
133	A role for CCAAT/enhancer binding protein beta-liver-enriched inhibitory protein in mammary epithelial cell proliferation. Cancer Research, 2001, 61, 261-9.	0.9	76
134	Adenovirus-Cre-mediated recombination in mammary epithelial early progenitor cells. Journal of Cell Science, 2001, 114, 3147-53.	2.0	25
135	Mutant p53 and genomic instability in a transgenic mouse model of breast cancer. Oncogene, 2000, 19, 1045-1051.	5.9	34
136	Cooperative interaction between mutant p53 and des(1-3)IGF-I accelerates mammary tumorigenesis. Oncogene, 2000, 19, 889-898.	5.9	87
137	C/EBPÎ ² (CCAAT/Enhancer Binding Protein) Controls Cell Fate Determination during Mammary Gland Development. Molecular Endocrinology, 2000, 14, 359-368.	3.7	146
138	A gain of function p53 mutant promotes both genomic instability and cell survival in a novel p53â€null mammary epithelial cell mode FASEB Journal, 2000, 14, 2291-2302.	0.5	91
139	P190-B, a Rho-GTPase-activating protein, is differentially expressed in terminal end buds and breast cancer. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 2000, 11, 343-54.	0.8	17
140	Bcl-2 expression delays mammary tumor development in dimethylbenz(a)anthracene-treated transgenic mice. Oncogene, 1999, 18, 6597-6604.	5.9	49
141	REGULATION OF MILK PROTEIN GENE EXPRESSION. Annual Review of Nutrition, 1999, 19, 407-436.	10.1	187
142	A transgenic mouse model for mammary carcinogenesis. Oncogene, 1998, 16, 997-1007.	5.9	93
143	C/EBPβ, but not C/EBPα, is essential for ductal morphogenesis, lobuloalveolar proliferation, and functional differentiation in the mouse mammary gland. Genes and Development, 1998, 12, 1917-1928. 	5.9	225
144	Composite response elements mediate hormonal and developmental regulation of milk protein gene expression. Biochemical Society Symposia, 1998, 63, 101-13.	2.7	17

#	Article	IF	CITATIONS
145	Mammary Gland Development Is Mediated by Both Stromal and Epithelial Progesterone Receptors. Molecular Endocrinology, 1997, 11, 801-811.	3.7	142
146	Overexpression of C/EBPÂ-LIP, a Naturally Occurring, Dominant-Negative Transcription Factor, in Human Breast Cancer. Journal of the National Cancer Institute, 1997, 89, 1887-1891.	6.3	129
147	Use of PRKO mice to study the role of progesterone in mammary gland development. Journal of Mammary Gland Biology and Neoplasia, 1997, 2, 343-354.	2.7	82
148	Introduction: Mammary Development and Function in Transgenic and Knockout Mouse Models. Journal of Mammary Gland Biology and Neoplasia, 1997, 2, 321-322.	2.7	1
149	Secretion of unprocessed human surfactant protein B in milk of transgenic mice. Transgenic Research, 1997, 6, 51-57.	2.4	8
150	Mammary Gland Development Is Mediated by Both Stromal and Epithelial Progesterone Receptors. Molecular Endocrinology, 1997, 11, 801-811.	3.7	39
151	The mammary gland as a bioreactor: factors regulating the efficient expression of milk protein-based transgenes. American Journal of Clinical Nutrition, 1996, 63, 627S-630S.	4.7	42
152	Individuals' rights and wrongs. Nature, 1996, 383, 474-474.	27.8	1
153	Expression of a translationally regulated, dominant-negative CCAAT/enhancer-binding protein beta isoform and up-regulation of the eukaryotic translation initiation factor 2alpha are correlated with neoplastic transformation of mammary epithelial cells. Cancer Research, 1996, 56, 4382-6.	0.9	94
154	Apoptosis in the terminal endbud of the murine mammary gland: a mechanism of ductal morphogenesis. Development (Cambridge), 1996, 122, 4013-22.	2.5	104
155	Delay of dimethylbenz[a]anthracene-induced mammary tumorigenesis in transgenic mice by apoptosis induced by an unusual mutant p53 protein. Molecular Carcinogenesis, 1995, 14, 75-83.	2.7	22
156	Developmentally and hormonally regulated CCAAT/enhancer-binding protein isoforms influence beta-casein gene expression Molecular Endocrinology, 1995, 9, 1223-1232.	3.7	110
157	The regulation of mammary gland development by hormones, growth factors, and oncogenes. Progress in Clinical and Biological Research, 1994, 387, 95-111.	0.2	15
158	Localization and Quantification of Wnt-2 Gene Expression in Mouse Mammary Development. Developmental Biology, 1993, 155, 87-96.	2.0	71
159	High-Level Expression of the Rat Whey Acidic Protein Gene Is Mediated by Elements in the Promoter and 3' Untranslated Region. Molecular and Cellular Biology, 1992, 12, 905-914.	2.3	26
160	Differential regulation of rat beta-casein-chloramphenicol acetyltransferase fusion gene expression in transgenic mice Molecular and Cellular Biology, 1989, 9, 560-565.	2.3	57
161	Differential Regulation of Rat β-Casein–Chloramphenicol Acetyltransferase Fusion Gene Expression in Transgenic Mice. Molecular and Cellular Biology, 1989, 9, 560-565.	2.3	21
162	Overlapping sites for constitutive and induced DNA binding factors involved in interferon-stimulated transcription. EMBO Journal, 1989, 8, 831-9.	7.8	48

#	Article	IF	CITATIONS
163	Mechanisms by which prolactin and glucocorticoids regulate casein gene expression. Biochemical Society Symposia, 1989, 55, 115-23.	2.7	5
164	Both Cell Substratum Regulation and Hormonal Regulation of Milk Protein Gene Expression Are Exerted Primarily at the Posttranscriptional Level. Molecular and Cellular Biology, 1988, 8, 3183-3190.	2.3	26
165	Evolution of the casein multigene family: conserved sequences in the 5′ flanking and exon regions. Nucleic Acids Research, 1986, 14, 1883-1902.	14.5	110
166	HORMONAL REGULATION OF MILK PROTEIN GENE EXPRESSION. Biochemical Society Transactions, 1981, 9, 112P-112P.	3.4	1
167	Mammary tumour virus and casein gene transcription during mouse mammary development. Nature, 1978, 275, 455-457.	27.8	23
168	Detection of Mouse Mammary Tumor Virus RNA in BALB/c Tumor Cell Lines of Nonviral Etiologies. Journal of Virology, 1978, 28, 743-752.	3.4	38
169	Prolactin induction of casein mRNA in organ culture. A model system for studying peptide hormone regulation of gene expression. Journal of Biological Chemistry, 1978, 253, 2343-7.	3.4	86
170	Detection of casein messenger RNA in hormone-dependent mammary cancer by molecular hybridisation. Nature, 1977, 269, 83-86.	27.8	15