
Phillip Miklas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5571623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New genomic regions associated with white mold resistance in dry bean using a MAGIC population. Plant Genome, 2022, 15, e20190.	2.8	3
2	The Common Bean V Gene Encodes Flavonoid 3′5′ Hydroxylase: A Major Mutational Target for Flavonoid Diversity in Angiosperms. Frontiers in Plant Science, 2022, 13, 869582.	3.6	7
3	The genetics and physiology of seed dormancy, a crucial trait in common bean domestication. BMC Plant Biology, 2021, 21, 58.	3.6	24
4	A common bean truncated CRINKLY4 kinase controls gene-for-gene resistance to the fungus <i>Colletotrichum lindemuthianum</i> . Journal of Experimental Botany, 2021, 72, 3569-3581.	4.8	21
5	NAC Candidate Gene Marker for bgm-1 and Interaction With QTL for Resistance to Bean Golden Yellow Mosaic Virus in Common Bean. Frontiers in Plant Science, 2021, 12, 628443.	3.6	12
6	GWAS of pod morphological and color characters in common bean. BMC Plant Biology, 2021, 21, 184.	3.6	20
7	Common bean (<scp><i>Phaseolus vulgaris</i></scp> L.) with increased cysteine and methionine concentration. , 2021, 3, e103.		7
8	Genome-Wide Association Mapping of bc-1 and bc-u Reveals Candidate Genes and New Adjustments to the Host-Pathogen Interaction for Resistance to Bean Common Mosaic Necrosis Virus in Common Bean. Frontiers in Plant Science, 2021, 12, 699569.	3.6	10
9	Coding Mutations in Vacuolar Protein-Sorting 4 AAA+ ATPase Endosomal Sorting Complexes Required for Transport Protein Homologs Underlie bc-2 and New bc-4 Gene Conferring Resistance to Bean Common Mosaic Virus in Common Bean. Frontiers in Plant Science, 2021, 12, 769247.	3.6	12
10	Induction of seed coat darkening in common beans (Phaseolus vulgaris L.) and the association with cooking time after storage. Australian Journal of Crop Science, 2020, , 21-27.	0.3	8
11	Description of Baetaoâ€Manteiga 41 and â€~Yunguilla' superior Andean common beans for Tanzanian production environments. Journal of Plant Registrations, 2020, 14, 234-241.	0.5	0
12	Genetic Associations in Four Decades of Multienvironment Trials Reveal Agronomic Trait Evolution in Common Bean. Genetics, 2020, 215, 267-284.	2.9	26
13	Agronomic performance and cooking quality characteristics for slowâ€darkening pinto beans. Crop Science, 2020, 60, 2317-2327.	1.8	11
14	Generation and validation of genetic markers for the selection of carioca dry bean genotypes with the slow-darkening seed coat trait. Euphytica, 2019, 215, 1.	1.2	11
15	Unmanned aerial system and satellite-based high resolution imagery for high-throughput phenotyping in dry bean. Computers and Electronics in Agriculture, 2019, 165, 104965.	7.7	40
16	Seedling root architecture and its relationship with seed yield across diverse environments in Phaseolus vulgaris. Field Crops Research, 2019, 237, 53-64.	5.1	76
17	Irrigated pinto bean crop stress and yield assessment using ground based low altitude remote sensing technology. Information Processing in Agriculture, 2019, 6, 502-514.	4.1	17
18	The role of genotype and production environment in determining the cooking time of dry beans (<scp><i>Phaseolus vulgaris</i></scp> L.). , 2019, 1, e13.		27

PHILLIP MIKLAS

#	Article	IF	CITATIONS
19	Single and Multi-trait GWAS Identify Genetic Factors Associated with Production Traits in Common Bean Under Abiotic Stress Environments. G3: Genes, Genomes, Genetics, 2019, 9, 1881-1892.	1.8	76
20	The impact of tillage on pinto bean cultivar response to drought induced by deficit irrigation. Soil and Tillage Research, 2018, 180, 63-72.	5.6	7
21	Low altitude remote sensing technologies for crop stress monitoring: a case study on spatial and temporal monitoring of irrigated pinto bean. Precision Agriculture, 2018, 19, 555-569.	6.0	37
22	Prediction of Cooking Time for Soaked and Unsoaked Dry Beans (<i>Phaseolus vulgaris</i> L.) Using Hyperspectral Imaging Technology. The Plant Phenome Journal, 2018, 1, 1-9.	2.0	9
23	A New Slowâ€Darkening Pinto Bean with Improved Agronomic Performance: Registration of â€~NDâ€Palomino'. Journal of Plant Registrations, 2018, 12, 25-30.	0.5	15
24	Registration of â€~Cayenne' Small Red Bean. Journal of Plant Registrations, 2018, 12, 194-198.	0.5	2
25	High-throughput field phenotyping in dry bean using small unmanned aerial vehicle based multispectral imagery. Computers and Electronics in Agriculture, 2018, 151, 84-92.	7.7	50
26	Genome-Wide Linkage and Association Mapping of Halo Blight Resistance in Common Bean to Race 6 of the Globally Important Bacterial Pathogen. Frontiers in Plant Science, 2017, 8, 1170.	3.6	57
27	Meta-QTL for resistance to white mold in common bean. PLoS ONE, 2017, 12, e0171685.	2.5	52
28	Phenotypic Diversity for Seed Mineral Concentration in North American Dry Bean Germplasm of Middle American Ancestry. Crop Science, 2017, 57, 3129-3144.	1.8	29
29	Pinto Bean Cultivars Blackfoot, Nez Perce, and Twin Falls. Journal of Plant Registrations, 2017, 11, 212-217.	0.5	1
30	Common Bacterial Blight Resistance QTL BC420 and SU91 Effect on Seed Yield, Seed Weight, and Canning Quality in Dry Bean. Crop Science, 2017, 57, 802-811.	1.8	6
31	Targeted Analysis of Dry Bean Growth Habit: Interrelationship among Architectural, Phenological, and Yield Components. Crop Science, 2016, 56, 3005-3015.	1.8	34
32	Sequenceâ€Based Introgression Mapping Identifies Candidate White Mold Tolerance Genes in Common Bean. Plant Genome, 2016, 9, plantgenome2015.09.0092.	2.8	10
33	Selective Phenotyping Traits Related to Multiple Stress and Drought Response in Dry Bean. Crop Science, 2016, 56, 1460-1472.	1.8	42
34	Genomeâ€Wide Association Study Identifies Candidate Loci Underlying Agronomic Traits in a Middle American Diversity Panel of Common Bean. Plant Genome, 2016, 9, plantgenome2016.02.0012.	2.8	136
35	Evaluation of ground, proximal and aerial remote sensing technologies for crop stress monitoring. IFAC-PapersOnLine, 2016, 49, 22-26.	0.9	15
36	Quantitative Trait Loci for Yield under Multiple Stress and Drought Conditions in a Dry Bean Population. Crop Science, 2015, 55, 1596-1607.	1.8	59

PHILLIP MIKLAS

#	Article	IF	CITATIONS
37	A <i>Phaseolus vulgaris</i> Diversity Panel for Andean Bean Improvement. Crop Science, 2015, 55, 2149-2160.	1.8	133
38	Breeding Common Bean for Resistance to Common Blight: A Review. Crop Science, 2015, 55, 971-984.	1.8	33
39	Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. European Journal of Agronomy, 2015, 70, 112-123.	4.1	380
40	Registration of â€~Desert Song' Flor de Junio and â€~Gypsy Rose' Flor de Mayo Common Bean Cultivars. Journal of Plant Registrations, 2015, 9, 133-137.	0.5	0
41	A New Common Bacterial Blight Resistance QTL in VAX 1 Common Bean and Interaction of the New QTL, SAP6, and SU91 with Bacterial Strains. Crop Science, 2014, 54, 1598-1608.	1.8	30
42	New Loci Including Pseâ€6 Conferring Resistance to Halo Bacterial Blight on Chromosome Pv04 in Common Bean. Crop Science, 2014, 54, 2099-2108.	1.8	24
43	Progress in Breeding Andean Common Bean for Resistance to Common Bacterial Blight. Crop Science, 2014, 54, 2084-2092.	1.8	12
44	Application of in silico bulked segregant analysis for rapid development of markers linked to Bean common mosaic virusresistance in common bean. BMC Genomics, 2014, 15, 903.	2.8	58
45	A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 2014, 46, 707-713.	21.4	1,159
46	Registration of Pinto Bean Germplasm Line USPT-WM-12 with Partial White Mold Resistance. Journal of Plant Registrations, 2014, 8, 183-186.	0.5	14
47	Characterization of white mold disease avoidance in common bean. European Journal of Plant Pathology, 2013, 135, 525-543.	1.7	84
48	Simple Sequence Repeats Linked with Slow Darkening Trait in Pinto Bean Discovered by Single Nucleotide Polymorphism Assay and Whole Genome Sequencing. Crop Science, 2012, 52, 1600-1608.	1.8	25
49	Development of candidate gene markers associated to common bacterial blight resistance in common bean. Theoretical and Applied Genetics, 2012, 125, 1525-1537.	3.6	13
50	Registration of â€~Krimson' Cranberry Bean. Journal of Plant Registrations, 2012, 6, 11-14.	0.5	2
51	Mapping quantitative trait loci conferring partial physiological resistance to white mold in the common bean RIL population XanaÂ×ACornell 49242. Molecular Breeding, 2012, 29, 31-41.	2.1	28
52	Comparative QTL Map for White Mold Resistance in Common Bean, and Characterization of Partial Resistance in Dry Bean Lines VA19 and I9365â€3. Crop Science, 2011, 51, 123-139.	1.8	57
53	Genetic Characterization and Molecular Mapping <i>Pseâ€2</i> Gene for Resistance to Halo Blight in Common Bean. Crop Science, 2011, 51, 2439-2448.	1.8	22
54	Registration of â€~Croissant' Pinto Bean. Journal of Plant Registrations, 2011, 5, 299-303.	0.5	6

Phillip Miklas

#	Article	IF	CITATIONS
55	Two Independent Quantitative Trait Loci Are Responsible for Novel Resistance to <i>Beet curly top virus</i> in Common Bean Landrace G122. Phytopathology, 2010, 100, 972-978.	2.2	9
56	A dominant gene for garnet brown seed coats at the Rk locus in â€~Dorado' common bean and mapping Rk to linkage group 1. Euphytica, 2010, 176, 281-290.	1.2	5
57	Screening Common Bean for Resistance to Four <i>Sclerotinia sclerotiorum</i> Isolates Collected in Northern Spain. Plant Disease, 2010, 94, 885-890.	1.4	30
58	Tagging and Mapping <i>Pseâ€1</i> Gene for Resistance to Halo Blight in Common Bean Differential Cultivar Ulâ€3. Crop Science, 2009, 49, 41-48.	1.8	27
59	A Strain of <i>Clover yellow vein virus</i> that Causes Severe Pod Necrosis Disease in Snap Bean. Plant Disease, 2008, 92, 1026-1032.	1.4	17
60	Registration of White Mold Resistant Dry Bean Germplasm Line A 195. Journal of Plant Registrations, 2007, 1, 62-63.	0.5	44
61	Marker-Assisted Backcrossing QTL for Partial Resistance to Sclerotinia White Mold in Dry Bean. Crop Science, 2007, 47, 935-942.	1.8	50
62	QTL Analysis of ICA Bunsiâ€Derived Resistance to White Mold in a Pinto × Navy Bean Cross. Crop Science, 2007, 47, 174-179.	1.8	30
63	Seventy-five Years of Breeding Dry Bean of the Western USA. Crop Science, 2007, 47, 981-989.	1.8	65
64	Common Bean. , 2007, , 1-31.		9
65	Potential Application of TRAP (Targeted Region Amplified Polymorphism) Markers for Mapping and Tagging Disease Resistance Traits in Common Bean. Crop Science, 2006, 46, 910-916.	1.8	60
66	Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica, 2006, 147, 105-131.	1.2	448
67	Resistance Gene Analog Polymorphism (RGAP) Markers Co-Localize with Disease Resistance Genes and QTL in Common Bean. Molecular Breeding, 2006, 17, 127-135.	2.1	37
68	Genotyping Common Bean for the Potyvirus Resistance Alleles I and bc-12 with a Multiplex Real-Time Polymerase Chain Reaction Assay. Phytopathology, 2005, 95, 499-505.	2.2	16
69	NL-3 K Strain Is a Stable and Naturally Occurring Interspecific Recombinant Derived from Bean common mosaic necrosis virus and Bean common mosaic virus. Phytopathology, 2005, 95, 1037-1042.	2.2	75
70	Inheritance of ICA Bunsiâ€Derived Resistance to White Mold in a Navy × Pinto Bean Cross. Crop Science, 2004, 44, 1584-1588.	1.8	40
71	Generation and Molecular Mapping of a Sequence Characterized Amplified Region Marker Linked with the Bct Gene for Resistance to Beet curly top virus in Common Bean. Phytopathology, 2004, 94, 320-325.	2.2	45

72 Title is missing!. Euphytica, 2003, 131, 137-146.

1.2 81

PHILLIP MIKLAS

#	Article	IF	CITATIONS
73	New Alleles, rkcd and rkp, at the Red Kidney Locus for Seedcoat Color in Common Bean. Journal of the American Society for Horticultural Science, 2003, 128, 552-558.	1.0	4
74	Identification of QTL Conditioning Resistance to White Mold in Snap Bean. Journal of the American Society for Horticultural Science, 2003, 128, 564-570.	1.0	65
75	Title is missing!. Molecular Breeding, 2002, 10, 193-201.	2.1	11
76	QTL Conditioning Physiological Resistance and Avoidance to White Mold in Dry Bean. Crop Science, 2001, 41, 309-315.	1.8	129
77	Title is missing!. Euphytica, 2000, 116, 211-219.	1.2	72
78	Selection for Bean Golden Mosaic Resistance in Intra―and Interracial Bean Populations. Crop Science, 2000, 40, 1565-1572.	1.8	38
79	Bacterial, Fungal, and Viral Disease Resistance Loci Mapped in a Recombinant Inbred Common Bean Population (Dorado'/XAN 176). Journal of the American Society for Horticultural Science, 2000, 125, 476-481.	1.0	92
80	Using a Subsample of the Core Collection to Identify New Sources of Resistance to White Mold in Common Bean. Crop Science, 1999, 39, 569-573.	1.8	43
81	Inheritance of Resistance to Common Bacterial Blight in Four Tepary Bean Lines. Journal of the American Society for Horticultural Science, 1999, 124, 24-27.	1.0	30
82	The role of RAPD markers in breeding for disease resistance in common bean. Molecular Breeding, 1998, 4, 1-11.	2.1	87
83	Inheritance and QTL Analysis of Field Resistance to Ashy Stem Blight in Common Bean. Crop Science, 1998, 38, 916-921.	1.8	39
84	Specific Genomic Regions in Common Bean Condition Resistance to Multiple Pathogens. Hortscience: A Publication of the American Society for Hortcultural Science, 1997, 32, 451E-451.	1.0	1
85	Selective Mapping of QTL Conditioning Disease Resistance in Common Bean. Crop Science, 1996, 36, 1344-1351.	1.8	84
86	A Codominant Randomly Amplified Polymorphic DNA (RAPD) Marker Useful for Indirect Selection of Bean Golden Mosaic Virus Resistance in Common Bean. Journal of the American Society for Horticultural Science, 1996, 121, 1035-1039.	1.0	56
87	Random Amplified Polymorphic DNA (RAPD) Marker Variability between and within Gene Pools of Common Bean. Journal of the American Society for Horticultural Science, 1994, 119, 122-125.	1.0	61
88	Estimating Phenylalanine Ammonia-lyase Activity in Common Beans Inoculated with Sclerotinia sclerotiorum. Hortscience: A Publication of the American Society for Hortcultural Science, 1993, 28, 937-938.	1.0	6
89	Inheritance of Partial Resistance to White Mold in Inbred Populations of Dry Bean. Crop Science, 1992, 32, 943-948.	1.8	35