
Sudipto Roy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5571465/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ciliary dynein arms: Cytoplasmic preassembly, intraflagellar transport, and axonemal docking. Journal of Cellular Physiology, 2022, 237, 2644-2653.	4.1	6
2	Discovery of a genetic module essential for assigning left–right asymmetry in humans and ancestral vertebrates. Nature Genetics, 2022, 54, 62-72.	21.4	16
3	Disruption of GMNC-MCIDAS multiciliogenesis program is critical in choroid plexus carcinoma development. Cell Death and Differentiation, 2022, 29, 1596-1610.	11.2	7
4	Control of meiotic chromosomal bouquet and germ cell morphogenesis by the zygotene cilium. Science, 2022, 376, eabh3104.	12.6	20
5	Editorial. Seminars in Cell and Developmental Biology, 2021, 110, 1.	5.0	0
6	Adolescent Idiopathic Scoliosis: Fishy Tales of Crooked Spines. Trends in Genetics, 2021, 37, 612-615.	6.7	9
7	Diversity and function of motile ciliated cell types within ependymal lineages of the zebrafish brain. Cell Reports, 2021, 37, 109775.	6.4	40
8	De novo identification of mammalian ciliary motility proteins using cryo-EM. Cell, 2021, 184, 5791-5806.e19.	28.9	73
9	Conservation as well as divergence in Mcidas function underlies the differentiation of multiciliated cells in vertebrates. Developmental Biology, 2020, 465, 168-177.	2.0	10
10	Reissner fibre-induced urotensin signalling from cerebrospinal fluid-contacting neurons prevents scoliosis of the vertebrate spine. Biology Open, 2020, 9, .	1.2	44
11	E2f5 is a versatile transcriptional activator required for spermatogenesis and multiciliated cell differentiation in zebrafish. PLoS Genetics, 2020, 16, e1008655.	3.5	28
12	Multiciliated Cells: Rise and Fall of the Deuterosomes. Trends in Cell Biology, 2020, 30, 259-262.	7.9	4
13	CFAP53 regulates mammalian cilia-type motility patterns through differential localization and recruitment of axonemal dynein components. PLoS Genetics, 2020, 16, e1009232.	3.5	17
14	Title is missing!. , 2020, 16, e1009232.		0
15	Title is missing!. , 2020, 16, e1009232.		0
16	Title is missing!. , 2020, 16, e1009232.		0
17	Title is missing!. , 2020, 16, e1009232.		0
18	Identification of Important Effector Proteins in the FOXJ1 Transcriptional Network Associated With Ciliogenesis and Ciliary Function. Frontiers in Genetics, 2019, 10, 23.	2.3	28

SUDIPTO ROY

#	Article	IF	CITATIONS
19	<i>Mcidas</i> mutant mice reveal a two-step process for the specification and differentiation of multiciliated cells in mammals. Development (Cambridge), 2019, 146, .	2.5	33
20	Defects in efferent duct multiciliogenesis underlie male infertility in GEMC1, MCIDAS or CCNO deficient mice. Development (Cambridge), 2019, 146, .	2.5	42
21	Cilia-driven cerebrospinal fluid flow directs expression of urotensin neuropeptides to straighten the vertebrate body axis. Nature Genetics, 2018, 50, 1666-1673.	21.4	106
22	Distinct requirements of E2f4 versus E2f5 activity for multiciliated cell development in the zebrafish embryo. Developmental Biology, 2018, 443, 165-172.	2.0	27
23	Myomaker is required for the fusion of fast-twitch myocytes in the zebrafish embryo. Developmental Biology, 2017, 423, 24-33.	2.0	53
24	Mutations in DZIP1L, which encodes a ciliary-transition-zone protein, cause autosomal recessive polycystic kidney disease. Nature Genetics, 2017, 49, 1025-1034.	21.4	148
25	CDK10 Mutations in Humans and Mice Cause Severe Growth Retardation, Spine Malformations, and Developmental Delays. American Journal of Human Genetics, 2017, 101, 391-403.	6.2	35
26	The zebrafish fast myosin light chain mylpfa:H2B-GFP transgene is a useful tool for inÂvivo imaging of myocyte fusion in the vertebrate embryo. Gene Expression Patterns, 2016, 20, 106-110.	0.8	9
27	Mutations in <i>CCDC11</i> , which Encodes a Coiled-Coil Containing Ciliary Protein, Causes <i>Situs Inversus</i> Due to Dysmotility of Monocilia in the Left-Right Organizer. Human Mutation, 2015, 36, 307-318.	2.5	39
28	A function for the Joubert syndrome protein Arl13b in ciliary membrane extension and ciliary length regulation. Developmental Biology, 2015, 397, 225-236.	2.0	70
29	SnapShot: Motile Cilia. Cell, 2015, 162, 224-224.e1.	28.9	25
30	Cilia: Organelles at the Heart of Heart Disease. Current Biology, 2015, 25, R559-R562.	3.9	6
31	Sonic hedgehog functions upstream of <i>disrupted-in-schizophrenia 1</i> (<i>disc1</i>): implications for mental illness. Biology Open, 2015, 4, 1336-1343.	1.2	26
32	Gmnc Is a Master Regulator of the Multiciliated Cell Differentiation Program. Current Biology, 2015, 25, 3267-3273.	3.9	83
33	Switching on cilia: transcriptional networks regulating ciliogenesis. Development (Cambridge), 2014, 141, 1427-1441.	2.5	273
34	Systematic discovery of novel ciliary genes through functional genomics in the zebrafish. Development (Cambridge), 2014, 141, 3410-3419.	2.5	97
35	Systematic discovery of novel ciliary genes through functional genomics in the zebrafish. Journal of Cell Science, 2014, 127, e1-e1.	2.0	0
36	Left–right asymmetry: cilia stir up new surprises in the node. Open Biology, 2013, 3, 130052.	3.6	70

SUDIPTO ROY

#	Article	IF	CITATIONS
37	Evolutionarily Ancient Association of the FoxJ1 Transcription Factor with the Motile Ciliogenic Program. PLoS Genetics, 2012, 8, e1003019.	3.5	54
38	Cilia and Hedgehog: When and how was their marriage solemnized?. Differentiation, 2012, 83, S43-S48.	1.9	24
39	Developmental Biology: Taking Flight. Current Biology, 2012, 22, R63-R65.	3.9	6
40	Cilia-driven fluid flow as an epigenetic cue for otolith biomineralization on sensory hair cells of the inner ear. Development (Cambridge), 2011, 138, 487-494.	2.5	54
41	The iguana/DZIP1 protein is a novel component of the ciliogenic pathway essential for axonemal biogenesis. Developmental Dynamics, 2010, 239, 527-534.	1.8	44
42	Myoblast fusion: When it takes more to make one. Developmental Biology, 2010, 341, 66-83.	2.0	217
43	The motile cilium in development and disease: emerging new insights. BioEssays, 2009, 31, 694-699.	2.5	37
44	Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nature Genetics, 2008, 40, 1445-1453.	21.4	395
45	Specification of vertebrate slow-twitch muscle fiber fate by the transcriptional regulator Blimp1. Developmental Biology, 2008, 324, 226-235.	2.0	23
46	A conserved molecular pathway mediates myoblast fusion in insects and vertebrates. Nature Genetics, 2007, 39, 781-786.	21.4	115
47	Blimp-1 is an essential component of the genetic program controlling development of the pectoral limb bud. Developmental Biology, 2006, 300, 623-634.	2.0	27
48	A homologue of the vertebrate SET domain and zinc finger protein Blimp-1 regulates terminal differentiation of the tracheal system in the Drosophila embryo. Development Genes and Evolution, 2006, 216, 243-252.	0.9	40
49	Genomewide Expression Profiling in the Zebrafish Embryo Identifies Target Genes Regulated by Hedgehog Signaling During Vertebrate Development. Genetics, 2006, 174, 735-752.	2.9	39
50	A homologue of the Drosophila kinesin-like protein Costal2 regulates Hedgehog signal transduction in the vertebrate embryo. Development (Cambridge), 2005, 132, 625-634.	2.5	78
51	iguana encodes a novel zinc-finger protein with coiled-coil domains essential for Hedgehog signal transduction in the zebrafish embryo. Genes and Development, 2004, 18, 1565-1576.	5.9	99
52	The B-cell maturation factor Blimp-1 specifies vertebrate slow-twitch muscle fiber identity in response to Hedgehog signaling. Nature Genetics, 2004, 36, 88-93.	21.4	167
53	Blimp-1 Specifies Neural Crest and Sensory Neuron Progenitors in the Zebrafish Embryo. Current Biology, 2004, 14, 1772-1777.	3.9	81
54	Multiple Muscle Cell Identities Induced by Distinct Levels and Timing of Hedgehog Activity in the Zebrafish Embryo. Current Biology, 2003, 13, 1169-1181.	3.9	252

#	Article	IF	CITATIONS
55	Muscle pattern diversification in Drosophila: the story of imaginal myogenesis. BioEssays, 1999, 21, 486-498.	2.5	75
56	Patterning Muscles Using Organizers: Larval Muscle Templates and Adult Myoblasts Actively Interact to Pattern the Dorsal Longitudinal Flight Muscles of Drosophila. Journal of Cell Biology, 1998, 141, 1135-1145.	5.2	63