
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5571405/publications.pdf Version: 2024-02-01

TOMAS HEDREN

#	Article	IF	CITATIONS
1	The hidden half of the fine root differentiation in herbs: nonacquisitive belowground organs determine fineâ€root traits. Oikos, 2023, 2023, .	2.7	12
2	The effect of moisture, nutrients and disturbance on storage organ size and persistence in temperate herbs. Functional Ecology, 2022, 36, 314-325.	3.6	7
3	LOTVS: A global collection of permanent vegetation plots. Journal of Vegetation Science, 2022, 33, .	2.2	4
4	Shoot senescence in herbaceous perennials of the temperate zone: Identifying drivers of senescence pace and shape. Journal of Ecology, 2022, 110, 1296-1311.	4.0	2
5	The ecological drivers of growth form evolution in flowering plants. Journal of Ecology, 2022, 110, 1525-1536.	4.0	8
6	The shape of root systems in a mountain meadow: plastic responses or speciesâ€specific architectural blueprints?. New Phytologist, 2022, 235, 2223-2236.	7.3	7
7	Dynamics of a mountain grassland: Environment predicts longâ€ŧerm trends, while species' traits predict shortâ€ŧerm fluctuations. Journal of Vegetation Science, 2022, 33, .	2.2	2
8	Species abundance fluctuations over 31 years are associated with plant–soil feedback in a speciesâ€rich mountain meadow. Journal of Ecology, 2021, 109, 1511-1523.	4.0	23
9	Inflorescence preformation prior to winter: a surprisingly widespread strategy that drives phenology of temperate perennial herbs. New Phytologist, 2021, 229, 620-630.	7.3	16
10	Next-gen plant clonal ecology. Perspectives in Plant Ecology, Evolution and Systematics, 2021, 49, 125601.	2.7	15
11	Comparative analysis of root sprouting and its vigour in temperate herbs: anatomical correlates and environmental predictors. Annals of Botany, 2021, 127, 931-941.	2.9	17
12	Evolution of herbs: key to the conundrum might be tolerance not avoidance. Journal of Plant Ecology, 2021, 14, 911-919.	2.3	2
13	Incorporating clonality into the plant ecology research agenda. Trends in Plant Science, 2021, 26, 1236-1247.	8.8	25
14	Interspecific differences in maternal support in herbaceous plants: CNP contents in seeds varies to match expected nutrient limitation of seedlings. Oikos, 2021, 130, 1715-1725.	2.7	4
15	Growth plasticity in response to shading as a potential key to the evolution of angiosperm herbs. Plant Ecology, 2021, 222, 387-396.	1.6	6
16	Pladias Database of the Czech flora and vegetation. Preslia, 2021, 93, 1-87.	2.8	86
17	Evolution of clonal growth forms in angiosperms. New Phytologist, 2020, 225, 999-1010.	7.3	59
18	Disentangling phylogenetic and functional components of shape variation among shoot apical meristems of a wide range of herbaceous angiosperms. American Journal of Botany, 2020, 107, 20-30	1.7	5

#	Article	IF	CITATIONS
19	Synchrony matters more than species richness in plant community stability at a global scale. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24345-24351.	7.1	113
20	Effect of clonal growth form on the relative performance of species in experimental communities over time. Perspectives in Plant Ecology, Evolution and Systematics, 2020, 44, 125532.	2.7	6
21	Which traits predict pairwise interactions in a mountain grassland?. Journal of Vegetation Science, 2020, 31, 699-710.	2.2	3
22	Directional trends in species composition over time can lead to a widespread overemphasis of yearâ€toâ€year asynchrony. Journal of Vegetation Science, 2020, 31, 792-802.	2.2	15
23	Fineâ€scale root community structure in the field: Species aggregations change with root density. Journal of Ecology, 2020, 108, 1738-1749.	4.0	11
24	Reaching similar goals by different means – Differences in life-history strategies of clonal and non-clonal plants. Perspectives in Plant Ecology, Evolution and Systematics, 2020, 44, 125534.	2.7	12
25	Handbook of standardized protocols for collecting plant modularity traits. Perspectives in Plant Ecology, Evolution and Systematics, 2019, 40, 125485.	2.7	81
26	Nutrient patches are transient and unpredictable in an unproductive mountain grassland. Plant Ecology, 2019, 220, 111-123.	1.6	13
27	Changing disturbanceâ€diversity relationships in temperate ecosystems over the past 12000Âyears. Journal of Ecology, 2019, 107, 1678-1688.	4.0	16
28	Two dimensions of demographic differentiation of species in a mountain grassland community: An experimental test. Functional Ecology, 2019, 33, 1514-1523.	3.6	13
29	Temporal niche differentiation among species changes with habitat productivity and light conditions. Journal of Vegetation Science, 2019, 30, 438-447.	2.2	17
30	Heterospecific plant–soil feedback and its relationship to plant traits, species relatedness, and co-occurrence in natural communities. Oecologia, 2018, 187, 679-688.	2.0	17
31	Philip Grime's fourth corner: are there plant species adapted to high disturbance and low productivity?. Oikos, 2018, 127, 1125-1131.	2.7	14
32	Environmental drivers and phylogenetic constraints of growth phenologies across a large set of herbaceous species. Journal of Ecology, 2018, 106, 1621-1633.	4.0	16
33	Horizontal growth: An overlooked dimension in plant trait space. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 32, 18-21.	2.7	54
34	Vertical root distribution of individual species in a mountain grassland community: Does it respond to neighbours?. Journal of Ecology, 2018, 106, 1083-1095.	4.0	29
35	Effects of disturbance frequency and severity on plant traits: An assessment across a temperate flora. Functional Ecology, 2018, 32, 799-808.	3.6	76
36	Root:shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecology and Evolution, 2018, 8, 7143-7150.	1.9	88

#	Article	IF	CITATIONS
37	Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly. Methods in Ecology and Evolution, 2017, 8, 1200-1211.	5.2	81
38	<scp>CLO</scp> â€ <scp>PLA</scp> : a database of clonal and budâ€bank traits of the Central European flora. Ecology, 2017, 98, 1179-1179.	3.2	151
39	Longâ€ŧerm time series of legume cycles in a semiâ€natural montane grassland: evidence for nitrogenâ€driven grass dynamics?. Functional Ecology, 2017, 31, 1430-1440.	3.6	14
40	Phylogenetic patterns of tragedy of commons in intraspecific root competition. Plant and Soil, 2017, 417, 87-97.	3.7	14
41	Polyploid species rely on vegetative reproduction more than diploids: a re-examination of the old hypothesis. Annals of Botany, 2017, 120, 341-349.	2.9	67
42	Pollinator preferences and flower constancy: is it adaptive for plants to manipulate them?. Biological Journal of the Linnean Society, 2017, 121, 475-483.	1.6	5
43	On Plant Modularity Traits: Functions and Challenges. Trends in Plant Science, 2017, 22, 648-651.	8.8	57
44	Disturbance is an important factor in the evolution and distribution of root-sprouting species. Evolutionary Ecology, 2017, 31, 387-399.	1.2	26
45	Introduction to special issue on the ecology of clonal plants. Folia Geobotanica, 2017, 52, 265-267.	0.9	1
46	Accounting for clonality in comparative plant demography – growth or reproduction?. Folia Geobotanica, 2017, 52, 433-442.	0.9	11
47	Cytotype coexistence in the field cannot be explained by inter-cytotype hybridization alone: linking experiments and computer simulations in the sexual species Pilosella echioides (Asteraceae). BMC Evolutionary Biology, 2017, 17, 87.	3.2	19
48	Shoot apical meristem and plant body organization: a cross-species comparative study. Annals of Botany, 2017, 120, 833-843.	2.9	14
49	Root Foraging Performance and Life-History Traits. Frontiers in Plant Science, 2016, 7, 779.	3.6	28
50	Size asymmetry of resource competition and the structure of plant communities: Commentary on DeMalach <i>etÂal</i> . 2016. Journal of Ecology, 2016, 104, 911-912.	4.0	1
51	A quest for speciesâ€level indicator values for disturbance. Journal of Vegetation Science, 2016, 27, 628-636.	2.2	58
52	Herbs are different: clonal and bud bank traits can matter more than leaf–height–seed traits. New Phytologist, 2016, 210, 13-17.	7.3	75
53	Links between shoot and plant longevity and plant economics spectrum: Environmental and demographic implications. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 22, 55-62.	2.7	24
54	Reproduction by seed and clonality in plants: correlated syndromes or independent strategies?. Journal of Ecology, 2016, 104, 1696-1706.	4.0	17

#	Article	IF	CITATIONS
55	Reduced and unreduced gametes combine almost freely in a multiploidy system. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 18, 15-22.	2.7	13
56	Clonal and bud bank traits: patterns across temperate plant communities. Journal of Vegetation Science, 2015, 26, 243-253.	2.2	45
57	Senescence, ageing and death of the whole plant: morphological prerequisites and constraints of plant immortality. New Phytologist, 2015, 206, 14-18.	7.3	33
58	Clonal growth and sexual reproduction: tradeoffs and environmental constraints. Oikos, 2015, 124, 469-476.	2.7	70
59	Phylogenetic signal in growth and reproductive traits and in their plasticity: the <i>Descurainia</i> radiation in the Canary Islands. Botanical Journal of the Linnean Society, 2014, 174, 384-398.	1.6	6
60	Community assembly by limiting similarity vs. competitive hierarchies: testing the consequences of dispersion of individual traits. Journal of Ecology, 2014, 102, 156-166.	4.0	97
61	To resprout or not to resprout? Modeling population dynamics of a root-sprouting monocarpic plant under various disturbance regimes. Plant Ecology, 2014, 215, 1245-1254.	1.6	11
62	Clonal growth and plant species abundance. Annals of Botany, 2014, 114, 377-388.	2.9	38
63	Spatial patterns with memory: tree regeneration after standâ€replacing disturbance in <i><scp>P</scp>icea abies</i> mountain forests. Journal of Vegetation Science, 2014, 25, 1327-1340.	2.2	47
64	Historical habitat connectivity affects current genetic structure in a grassland species. Plant Biology, 2013, 15, 195-202.	3.8	44
65	Mutual replacement of species in space in a grassland community: is there an evidence for functional complementarity of replacement groups?. Oikos, 2013, 122, 111-121.	2.7	9
66	Comparing functional diversity in traits and demography of <scp>C</scp> entral <scp>E</scp> uropean vegetation. Journal of Vegetation Science, 2013, 24, 910-920.	2.2	4
67	Serious Research with Great Fun: the Strange Case of Jan Åuspa LepÅ; (and Other Plant Ecologists). Folia Geobotanica, 2013, 48, 297-306.	0.9	2
68	Ploidy frequencies in plants with ploidy heterogeneity: fitting a general gametic model to empirical population data. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122387.	2.6	30
69	Conspecific and Heterospecific Plant Densities at Small-Scale Can Drive Plant-Pollinator Interactions. PLoS ONE, 2013, 8, e77361.	2.5	18
70	Geometrical constraints in the scaling relationships between genome size, cell size and cell cycle length in herbaceous plants. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 867-875.	2.6	78
71	Ecological effects of cell-level processes: genome size, functional traits and regional abundance of herbaceous plant species. Annals of Botany, 2012, 110, 1357-1367.	2.9	37
72	Species traits and plant performance: functional tradeâ€offs in a large set of species in a botanical garden. Journal of Ecology, 2012, 100, 1522-1533.	4.0	50

#	Article	IF	CITATIONS
73	The Contrasting Roles of Growth Traits and Architectural Traits in Diversity Maintenance in Clonal Plant Communities. American Naturalist, 2012, 180, 693-706.	2.1	6
74	Can we predict performance and spatial structure of two-species mixtures using only single species information from monocultures?. Ecological Modelling, 2012, 234, 31-37.	2.5	7
75	Community-level effects of plant traits in a grassland community examined by multispecies model of clonal plant growth. Ecological Modelling, 2012, 234, 60-69.	2.5	13
76	From virtual plants to real communities: A review of modelling clonal growth. Ecological Modelling, 2012, 234, 3-19.	2.5	35
77	The role of longâ€distance seed dispersal in the local population dynamics of an invasive plant species. Diversity and Distributions, 2011, 17, 725-738.	4.1	43
78	Searching for the Relevance of Clonal and Bud Bank Traits Across Floras and Communities. Folia Geobotanica, 2011, 46, 109-115.	0.9	10
79	Predictions of Taylor's power law, density dependence and pink noise from a neutrally modeled time series. Journal of Theoretical Biology, 2010, 265, 78-86.	1.7	19
80	Spatial and temporal variation in dispersal pattern of an invasive pine. Biological Invasions, 2010, 12, 2471-2486.	2.4	16
81	Fight or flight: plastic behavior under self-generated heterogeneity. Evolutionary Ecology, 2010, 24, 1521-1536.	1.2	19
82	Restoration of Speciesâ€Rich, Nutrient‣imited Mountain Grassland by Mowing and Fertilization. Restoration Ecology, 2010, 18, 166-174.	2.9	33
83	Clonal mobility and its implications for spatio-temporal patterns of plant communities: what do we need to know next?. Oikos, 2010, 119, 802-806.	2.7	52
84	Invasibility of neutral communities. Basic and Applied Ecology, 2009, 10, 197-207.	2.7	7
85	Interspecific competition changes reproductive output but does not increase reproductive costs in a grassland perennial. Basic and Applied Ecology, 2009, 10, 525-534.	2.7	4
86	Ants accelerate succession from mountain grassland towards spruce forest. Journal of Vegetation Science, 2009, 20, 577-587.	2.2	5
87	Implications of self/non-self discrimination for spatial patterning of clonal plants. Evolutionary Ecology, 2008, 22, 337-350.	1.2	28
88	Effect of systemic diseases on clonal integration: modelling approach. Evolutionary Ecology, 2008, 22, 449-460.	1.2	16
89	Consistency vs. contingency of trait–performance linkages across taxa. Evolutionary Ecology, 2008, 22, 477-481.	1.2	11
90	Long-term changes of epiphytic lichen species composition over landscape gradients: an 18 year time series. Lichenologist, 2008, 40, 437-448.	0.8	25

#	Article	IF	CITATIONS
91	General patterns in plant invasions: a family of quasi-neutral models. , 2007, , 376-395.		1
92	Architectural and growth traits differ in effects on performance of clonal plants: an analysis using a fieldâ€parameterized simulation model. Oikos, 2007, 116, 836-852.	2.7	33
93	Fineâ€scale dynamics of rhizomes in a grassland community. Ecography, 2007, 30, 264-276.	4.5	28
94	Genetic differentiation of Agrostis capillaris in a grassland system with stable heterogeneity due to terricolous ants. Journal of Ecology, 2007, 95, 197-207.	4.0	5
95	Variation in plant performance in a grassland: Speciesâ€specific and neighbouring root mass effects. Journal of Vegetation Science, 2007, 18, 55-62.	2.2	13
96	Architectural and growth traits differ in effects on performance of clonal plants: an analysis using a field-parameterized simulation model. Oikos, 2007, 116, 836-852.	2.7	3
97	Ecological benefits of integration of Calamagrostis epigejos ramets under field conditions. Flora: Morphology, Distribution, Functional Ecology of Plants, 2006, 201, 461-467.	1.2	39
98	Long-term spatial dynamics of Succisa pratensis in a changing rural landscape: linking dynamical modelling with historical maps. Journal of Ecology, 2006, 94, 131-143.	4.0	72
99	Effects of neighbourhood structure and tussock dynamics on genet demography of Festuca rubra in a mountain meadow. Journal of Ecology, 2006, 94, 66-76.	4.0	13
100	Population dynamics and clonal growth of Spartocytisus supranubius (Fabaceae), a dominant shrub in the alpine zone of Tenerife, Canary Islands. Plant Ecology, 2006, 186, 97-108.	1.6	22
101	Metapopulation dynamics of a perennial plant, Succisa pratensis, in an agricultural landscape. Ecological Modelling, 2006, 199, 464-475.	2.5	28
102	Species pool size and invasibility of island communities: a null model of sampling effects. Ecology Letters, 2005, 8, 909-917.	6.4	42
103	The ghost of hybridization past: niche pre-emption is not the only explanation of apparent monophyly in island endemics Journal of Ecology, 2005, 93, 572-575.	4.0	40
104	Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations. Oecologia, 2005, 145, 1-8.	2.0	169
105	POPULATION VIABILITY AND REINTRODUCTION STRATEGIES: A SPATIALLY EXPLICIT LANDSCAPE-LEVEL APPROACH. , 2005, 15, 1377-1386.		46
106	Ramet performance in two tussock plants — Do the tussock-level parameters matter?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2005, 200, 275-284.	1.2	17
107	Ant-induced soil modification and its effect on plant below-ground biomass. Pedobiologia, 2005, 49, 127-137.	1.2	113
108	Identification of suitable unoccupied habitats in metapopulation studies using co-occurrence of species. Oikos, 2004, 105, 408-414.	2.7	80

#	Article	IF	CITATIONS
109	Physiological integration affects growth form and competitive ability in clonal plants. Evolutionary Ecology, 2004, 18, 493-520.	1.2	49
110	An under-appreciated difficulty: sampling of plant populations for analysis using molecular markers. Evolutionary Ecology, 2004, 18, 625-646.	1.2	13
111	Horizontal and vertical distribution of root absorption zones of four common grass species in a mountain grassland. New Phytologist, 2004, 161, 303-312.	7.3	17
112	INVASIBILITY AND SPECIES RICHNESS OF A COMMUNITY: A NEUTRAL MODEL AND A SURVEY OF PUBLISHED DATA. Ecology, 2004, 85, 3223-3233.	3.2	126
113	Year-to-year variation in plant competition in a mountain grassland. Journal of Ecology, 2003, 91, 103-113.	4.0	52
114	Spatial Pattern Formation in Plant Communities. , 2003, , 223-235.		25
115	A simulation study of the effects of architectural constraints and resource translocation on population structure and competition in clonal plants. , 2002, , 181-201.		8
116	Neighborhood effects and genetic structure in a clonal grass: The role of the spatial structure of the environment. Plant Species Biology, 2001, 16, 1-11.	1.0	11
117	Clone-specific response of Festuca rubra to natural variation in biomass and species composition of neighbours. Oikos, 2001, 95, 43-52.	2.7	13
118	Patch dynamics and local succession in a sandstone area with frequent disturbance. Journal of Vegetation Science, 2001, 12, 533-544.	2.2	24
119	A simulation study of the effects of architectural constraints and resource translocation on population structure and competition in clonal plants. Evolutionary Ecology, 2001, 15, 403-423.	1.2	42
120	Title is missing!. Plant Ecology, 2001, 156, 215-227.	1.6	27
121	Vegetation changes following sheep grazing in abandoned mountain meadows. Applied Vegetation Science, 2001, 4, 97-102.	1.9	107
122	Correlation between richness per unit area and the species pool cannot be used to demonstrate the species pool effect. Journal of Vegetation Science, 2000, 11, 123-126.	2.2	37
123	Ecology ofPhragmites populations in the changing landscape. Folia Geobotanica, 2000, 35, 351-351.	0.9	2
124	Spatio-temporal Patterns in Grassland Communities. , 2000, , 48-64.		26
125	Speciesâ€specific spatial pattern of belowâ€ground plant parts in a montane grassland community. Journal of Ecology, 1999, 87, 569-582.	4.0	47
126	Size and spatial pattern of Festuca rubra genets in a mountain grassland: its relevance to genet establishment and dynamics. Journal of Ecology, 1999, 87, 942-954.	4.0	29

#	Article	IF	CITATIONS
127	Mechanistic explanations of community structure: Introduction. Journal of Vegetation Science, 1999, 10, 147-150.	2.2	7
128	Grassland canopy composition and spatial heterogeneity in the light quality. Plant Ecology, 1999, 143, 129-139.	1.6	39
129	Non-Manipulative Estimates of Competition Coefficients in a Montane Grassland Community. Journal of Ecology, 1997, 85, 505.	4.0	57
130	Fine-Scale Species Interactions of Clonal Plants in a Mountain Grassland: A Removal Experiment. Oikos, 1997, 78, 299.	2.7	27
131	Fine-scale spatio-temporal patterns in a mountain grassland: do species replace each other in a regular fashion?. Journal of Vegetation Science, 1997, 8, 217-224.	2.2	25
132	Shoot growth dynamics and sizeâ€dependent shoot fate of a clonal plant, <i>Festuca rubra</i> , in a mountain grassland. Researches on Population Ecology, 1997, 39, 83-93.	0.9	15
133	Within population genetic differentiation in traits affecting clonal growth:. Journal of Evolutionary Biology, 1997, 10, 383.	1.7	44
134	Permanent plots as tools for plant community ecology. Journal of Vegetation Science, 1996, 7, 195-202.	2.2	34
135	Species coexistence in grasslands: questionnaire on techniques and spatio-temporal scales. Journal of Vegetation Science, 1996, 7, 293-296.	2.2	0
136	Spatiotemporal dynamics in mountain grasslands: Species autocorrelations in space and time. Folia Geobotanica Et Phytotaxonomica, 1995, 30, 185-196.	0.4	52
137	Climatic Variability and Grassland Community Composition over 10 Years: Separating Effects on Module Biomass and Number of Modules. Functional Ecology, 1995, 9, 767.	3.6	32
138	Plant clonality: Biology and diversity. Folia Geobotanica Et Phytotaxonomica, 1994, 29, 113-122.	0.4	30
139	Is a grassland community composed of coexisting species with low and high spatial mobility?. Folia Geobotanica Et Phytotaxonomica, 1994, 29, 459-468.	0.4	38
140	Morphological Constraints of Shoot Demography of a Clonal Plant: Extra- and Intravaginal Tillers of Festuca rubra. Plant Species Biology, 1994, 9, 183-189.	1.0	7
141	Small-scale variability as a mechanism for large-scale stability in mountain grasslands. Journal of Vegetation Science, 1993, 4, 163-170.	2.2	82
142	Small-scale spatial dynamics of plant species in a grassland community over six years. Journal of Vegetation Science, 1993, 4, 171-178.	2.2	116
143	Which habitat parameters are most important for the persistence of a bryophyte species on patchy, temporary substrates?. Biological Conservation, 1992, 59, 121-126.	4.1	39
144	Spore Establishment Probability and the Persistence of the Fugitive Invading Moss, Orthodontium Lineare: A Spatial Simulation Model. Oikos, 1991, 60, 215.	2.7	33

#	Article	IF	CITATIONS
145	Competitive Hierarchies, Reversals of Rank Order and the de Wit Approach: Are They Compatible?. Oikos, 1990, 58, 254.	2.7	31
146	Correlations of liverwort species on an intermediate landscape scale. Journal of Vegetation Science, 1990, 1, 623-628.	2.2	3
147	Ecology of the invading moss speciesOrthodontium linearein Sweden: substrate preference and interactions with other species. Journal of Bryology, 1989, 15, 565-581.	1.2	13
148	Bryophytes in grassland vegetation sample plots: What is their correlation with vascular plants?. Folia Geobotanica Et Phytotaxonomica, 1987, 22, 35-41.	0.4	28
149	A Simulation Study on the Effect of Flora Composition, Study Design and Index Choice on the Predictive Power of Lichen Bioindication. Lichenologist, 1986, 18, 349-362.	0.8	10
150	The Use of Average number of Neighbours for Predicting Lichen Sensitivity: a Case Study. Lichenologist, 1984, 16, 289-296.	0.8	3
151	Demographic correction—A tool for inference from individuals to populations. Functional Ecology, 0, , .	3.6	1