
Shekhar C Mande

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5570465/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure–sequence features based prediction of phosphosites of serine/threonine protein kinases of <scp><i>Mycobacterium tuberculosis</i></scp> . Proteins: Structure, Function and Bioinformatics, 2022, 90, 131-141.	2.6	3
2	Structural aspects of lesional and non-lesional skin microbiota reveal key community changes in leprosy patients from India. Scientific Reports, 2021, 11, 3294.	3.3	6
3	Chaperonin Abundance Enhances Bacterial Fitness. Frontiers in Molecular Biosciences, 2021, 8, 669996.	3.5	2
4	A novel function of MycobacteriumÂtuberculosis chaperonin paralog GroEL1 in copper homeostasis. FEBS Letters, 2020, 594, 3305-3323.	2.8	9
5	Role of S&T organisations in mitigation of Covid-19: CSIR as a case study. Indian Chemical Engineer, 2020, 62, 333-342.	1.5	2
6	CoRNeA: A Pipeline to Decrypt the Inter-Protein Interfaces from Amino Acid Sequence Information. Biomolecules, 2020, 10, 938.	4.0	6
7	16S rDNA based skin microbiome data of healthy individuals and leprosy patients from India. Scientific Data, 2019, 6, 225.	5.3	9
8	Spatially conserved motifs in complement control protein domains determine functionality in regulators of complement activation-family proteins. Communications Biology, 2019, 2, 290.	4.4	11
9	Structural basis of hypoxic gene regulation by the Rv0081 transcription factor of <i>MycobacteriumAtuberculosis</i> . FEBS Letters, 2019, 593, 982-995.	2.8	8
10	Rewiring of Metabolic Network in Mycobacterium tuberculosis During Adaptation to Different Stresses. Frontiers in Microbiology, 2019, 10, 2417.	3.5	30
11	A Climpse Into the Structure and Function of Atypical Type I Chaperonins. Frontiers in Molecular Biosciences, 2018, 5, 31.	3.5	13
12	Functional Diversity in Mycobacterial Chaperonins: The Generalists and the Specialists. Heat Shock Proteins, 2017, , 67-80.	0.2	1
13	Nobel Prize in Physiology or Medicine 2016. Resonance, 2017, 22, 829-833.	0.3	2
14	Towards understanding the biological function of the unusual chaperonin Cpn60.1 (GroEL1) of Mycobacterium tuberculosis. Tuberculosis, 2016, 97, 137-146.	1.9	23
15	GroEL2 of Mycobacterium tuberculosis Reveals the Importance of Structural Pliability in Chaperonin Function. Journal of Bacteriology, 2016, 198, 486-497.	2.2	8
16	Biology across Scales:Historical Perspective on Some Indian Contributions. Current Science, 2016, 110, 529.	0.8	0
17	Multiple chaperonins in bacteria—novel functions and non-canonical behaviors. Cell Stress and Chaperones, 2015, 20, 555-574.	2.9	49
18	From System-Wide Differential Gene Expression to Perturbed Regulatory Factors: A Combinatorial Approach. PLoS ONE, 2015, 10, e0142147.	2.5	2

SHEKHAR C MANDE

#	Article	IF	CITATIONS
19	Early developments in crystallography. Resonance, 2014, 19, 1077-1086.	0.3	1
20	Differential enrichment of regulatory motifs in the composite network of protein-protein and gene regulatory interactions. BMC Systems Biology, 2014, 8, 26.	3.0	5
21	Probing Gene Regulatory Networks to Decipher Host–Pathogen Interactions. , 2013, , 37-54.		1
22	The Crystal Structure of <i>Mycobacterium tuberculosis</i> NrdH at 0.87 Ã Suggests a Possible Mode of Its Activity. Biochemistry, 2013, 52, 4056-4065.	2.5	12
23	Evolution of Bacterial Chaperonin 60 Paralogues and Moonlighting Activity. Heat Shock Proteins, 2013, , 101-121.	0.2	11
24	Understanding Communication Signals during Mycobacterial Latency through Predicted Genome-Wide Protein Interactions and Boolean Modeling. PLoS ONE, 2012, 7, e33893.	2.5	34
25	Structural biology of Mycobacterium tuberculosis proteins: The Indian efforts. Tuberculosis, 2011, 91, 456-468.	1.9	22
26	Delineation of key regulatory elements identifies points of vulnerability in the mitogen-activated signaling network. Genome Research, 2011, 21, 2067-2081.	5.5	3
27	Mapping Conformational Transitions in Cyclic AMP Receptor Protein: Crystal Structure and Normal-Mode Analysis of Mycobacterium tuberculosis apo-cAMP Receptor Protein. Biophysical Journal, 2010, 98, 305-314.	0.5	27
28	The PPE18 of <i>Mycobacterium tuberculosis</i> Interacts with TLR2 and Activates IL-10 Induction in Macrophage. Journal of Immunology, 2009, 183, 6269-6281.	0.8	189
29	A novel nucleoid-associated protein of Mycobacterium tuberculosis is a sequence homolog of GroEL. Nucleic Acids Research, 2009, 37, 4944-4954.	14.5	60
30	Facilitated Oligomerization of Mycobacterial GroEL: Evidence for Phosphorylation-Mediated Oligomerization. Journal of Bacteriology, 2009, 191, 6525-6538.	2.2	40
31	Prediction of conditional gene essentiality through graph theoretical analysis of genome-wide functional linkages. Molecular BioSystems, 2009, 5, 1936.	2.9	24
32	Exploiting 3D structural templates for detection of metalâ€binding sites in protein structures. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1206-1218.	2.6	45
33	<i>Mycobacterium tuberculosis</i> heat shock protein 60 modulates immune response to PPD by manipulating the surface expression of TLR2 on macrophages. Cellular Microbiology, 2008, 10, 1711-1722.	2.1	28
34	Crystal Structure of Mycobacterium tuberculosis YefM Antitoxin Reveals that it is Not an Intrinsically Unstructured Protein. Journal of Molecular Biology, 2008, 383, 482-493.	4.2	51
35	Dynamic Changes in Protein Functional Linkage Networks Revealed by Integration with Gene Expression Data. PLoS Computational Biology, 2008, 4, e1000237.	3.2	32
36	Functional Studies of Multiple Thioredoxins from <i>Mycobacterium tuberculosis</i> . Journal of Bacteriology, 2008, 190, 7087-7095.	2.2	54

SHEKHAR C MANDE

#	Article	IF	CITATIONS
37	Inferring genome-wide functional linkages in E. coli by combining improved genome context methods: Comparison with high-throughput experimental data. Genome Research, 2007, 17, 527-535.	5.5	57
38	Cation-Mediated Interplay of Loops in Chaperonin-10. Journal of Biomolecular Structure and Dynamics, 2006, 23, 365-375.	3.5	2
39	Multiple Gene Duplication and Rapid Evolution in the groEL Gene: Functional Implications. Journal of Molecular Evolution, 2006, 63, 781-787.	1.8	60
40	The unusual chaperonins of Mycobacterium tuberculosis. Tuberculosis, 2005, 85, 385-394.	1.9	61
41	Effect of alcohols on protein hydration: crystallographic analysis of hen egg-white lysozyme in the presence of alcohols. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1005-1008.	2.5	34
42	Conformational flexibility ofMycobacterium tuberculosisthioredoxin reductase: crystal structure and normal-mode analysis. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 1603-1611.	2.5	32
43	Crystal Structure of the 65-Kilodalton Heat Shock Protein, Chaperonin 60.2, of Mycobacterium tuberculosis. Journal of Bacteriology, 2004, 186, 8105-8113.	2.2	66
44	Expression, purification, crystallization and preliminary X-ray crystallographic studies ofMycobacterium tuberculosisthioredoxin reductase. Acta Crystallographica Section D: Biological Crystallography, 2004, 60, 777-779.	2.5	7
45	Mycobacterium tuberculosis GroEL Homologues Unusually Exist as Lower Oligomers and Retain the Ability to Suppress Aggregation of Substrate Proteins. Journal of Molecular Biology, 2004, 342, 605-617.	4.2	88
46	Chimeric <i>Vitreoscilla</i> Hemoglobin (VHb) Carrying a Flavoreductase Domain Relieves Nitrosative Stress in <i>Escherichia coli</i> : New Insight into the Functional Role of VHb. Applied and Environmental Microbiology, 2002, 68, 152-160.	3.1	68
47	Involvement of a Nine-residue Loop of Streptokinase in the Generation of Macromolecular Substrate Specificity by the Activator Complex through Interaction with Substrate Kringle Domains. Journal of Biological Chemistry, 2002, 277, 13257-13267.	3.4	26
48	Structure ofMycobacterium tuberculosischaperonin-10 at 3.5â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 2002, 58, 260-266.	2.5	20
49	Homology Model of a Novel Xylanase: Molecular Basis for High-Thermostability and Alkaline Stability. Journal of Biomolecular Structure and Dynamics, 2000, 18, 137-144.	3.5	3
50	Contributory presentations/posters. Journal of Biosciences, 1999, 24, 33-198.	1.1	0
51	Identification of the INO1 gene of Mycobacterium tuberculosis H37Rv reveals a novel class of inositol-1-phosphate synthase enzyme 1 1Edited by M. Yaniv. Journal of Molecular Biology, 1999, 291, 531-536.	4.2	63
52	Function of the central domain of streptokinase in substrate plasminogen docking and processing revealed by siteâ€directed mutagenesis. Protein Science, 1999, 8, 2791-2805.	7.6	37
53	Identification of an ABC transporter gene that exhibits mRNA level overexpression in fluoroquinolone-resistantMycobacterium smegmatis. FEBS Letters, 1998, 425, 151-156.	2.8	18
54	Hemoglobin Biosynthesis in <i>Vitreoscilla stercoraria</i> DW: Cloning, Expression, and Characterization of a New Homolog of a Bacterial Globin Gene. Applied and Environmental Microbiology, 1998, 64, 2220-2228.	3.1	17

SHEKHAR C MANDE

#	Article	IF	CITATIONS
55	Three hTIM Mutants that Provide New Insights on why TIM is a Dimer. Journal of Molecular Biology, 1996, 257, 441-456.	4.2	101
56	Crystal structure of recombinant triosephosphate isomerase from <i>bacillus stearothermophilus</i> . An analysis of potential thermostability factors in six isomerases with known threeâ€dimensional structures points to the importance of hydrophobic interactions. Protein Science, 1995, 4, 2594-2604.	7.6	117
57	Crystal structure of recombinant human triosephosphate isomerase at 2.8 Ã resolution. Triosephosphate isomeraseâ€related human genetic disorders and comparison with the trypanosomal enzyme. Protein Science, 1994, 3, 810-821.	7.6	110
58	Protein crystallography and infectious diseases. Protein Science, 1994, 3, 1670-1686.	7.6	48
59	Cloning and Overexpression of the Triosephosphate Isomerase Genes from Psychrophilic and Thermophilic Bacteria. Journal of Molecular Biology, 1993, 229, 85-93.	4.2	89