List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5569900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRAF proteins as key regulators of plant development and stress responses. Journal of Integrative Plant Biology, 2022, 64, 431-448.	8.5	12
2	Phosphatidic acid modulates MPK3- and MPK6-mediated hypoxia signaling in Arabidopsis. Plant Cell, 2022, 34, 889-909.	6.6	31
3	Plant elicitor peptide signalling confers rice resistance to piercingâ€sucking insect herbivores and pathogens. Plant Biotechnology Journal, 2022, 20, 991-1005.	8.3	15
4	The plant ESCRT component FREE1 regulates peroxisome-mediated turnover of lipid droplets in germinating <i>Arabidopsis</i> seedlings. Plant Cell, 2022, 34, 4255-4273.	6.6	9
5	Plasma membrane-nucleo-cytoplasmic coordination of a receptor-like cytoplasmic kinase promotes EDS1-dependent plant immunity. Nature Plants, 2022, 8, 802-816.	9.3	30
6	Autophagy in plants: Physiological roles and postâ€ŧranslational regulation. Journal of Integrative Plant Biology, 2021, 63, 161-179.	8.5	72
7	New insights into the role of lipids in plant hypoxia responses. Progress in Lipid Research, 2021, 81, 101072.	11.6	37
8	Biological aqua crust mitigates metal(loid) pollution and the underlying immobilization mechanisms. Water Research, 2021, 190, 116736.	11.3	17
9	The receptor-like cytoplasmic kinase CDG1 negatively regulates Arabidopsis pattern-triggered immunity and is involved in AvrRpm1-induced RIN4 phosphorylation. Plant Cell, 2021, 33, 1341-1360.	6.6	15
10	Phloem unloading via the apoplastic pathway is essential for shoot distribution of root-synthesized cytokinins. Plant Physiology, 2021, 186, 2111-2123.	4.8	16
11	The immune components ENHANCED DISEASE SUSCEPTIBILITY 1 and PHYTOALEXIN DEFICIENT 4 are required for cell death caused by overaccumulation of ceramides in Arabidopsis. Plant Journal, 2021, 107, 1447-1465.	5.7	19
12	Jasmonates modulate sphingolipid metabolism and accelerate cell death in the ceramide kinase mutant <i>acd5</i> . Plant Physiology, 2021, 187, 1713-1727.	4.8	8
13	Polyunsaturated linolenoylâ€CoA modulates ERFâ€VIIâ€mediated hypoxia signaling in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2020, 62, 330-348.	8.5	32
14	Arabidopsis SINAT Proteins Control Autophagy by Mediating Ubiquitylation and Degradation of ATG13. Plant Cell, 2020, 32, 263-284.	6.6	53
15	Brassinosteroids Antagonize Jasmonate-Activated Plant Defense Responses through BRI1-EMS-SUPPRESSOR1 (BES1). Plant Physiology, 2020, 182, 1066-1082.	4.8	48
16	Full-Length Transcript-Based Proteogenomics of Rice Improves Its Genome and Proteome Annotation. Plant Physiology, 2020, 182, 1510-1526.	4.8	53
17	The Anaerobic Product Ethanol Promotes Autophagy-Dependent Submergence Tolerance in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 7361.	4.1	10
18	SINAT E3 Ubiquitin Ligases Mediate FREE1 and VPS23A Degradation to Modulate Abscisic Acid Signaling. Plant Cell, 2020, 32, 3290-3310.	6.6	46

#	Article	IF	CITATIONS
19	SINAT E3 ligases regulate the stability of the ESCRT component FREE1 in response to iron deficiency in plants. Journal of Integrative Plant Biology, 2020, 62, 1399-1417.	8.5	25
20	Evolution and Expression of the Membrane Attack Complex and Perforin Gene Family in the Poaceae. International Journal of Molecular Sciences, 2020, 21, 5736.	4.1	14
21	Identification and Expression of the Multidrug and Toxic Compound Extrusion (MATE) Gene Family in Capsicum annuum and Solanum tuberosum. Plants, 2020, 9, 1448.	3.5	12
22	Long-Chain acyl-CoA Synthetase LACS2 Contributes to Submergence Tolerance by Modulating Cuticle Permeability in Arabidopsis. Plants, 2020, 9, 262.	3.5	20
23	The β-ketoacyl-CoA synthase KCS13 regulates the cold response in cotton by modulating lipid and oxylipin biosynthesis. Journal of Experimental Botany, 2020, 71, 5615-5630.	4.8	12
24	Genetic Analyses of the Arabidopsis ATG1 Kinase Complex Reveal Both Kinase-Dependent and Independent Autophagic Routes during Fixed-Carbon Starvation. Plant Cell, 2019, 31, 2973-2995.	6.6	97
25	Arabidopsis thaliana Plants Engineered To Produce Astaxanthin Show Enhanced Oxidative Stress Tolerance and Bacterial Pathogen Resistance. Journal of Agricultural and Food Chemistry, 2019, 67, 12590-12598.	5.2	5
26	Autophagy regulates glucose-mediated root meristem activity by modulating ROS production in <i>Arabidopsis</i> . Autophagy, 2019, 15, 407-422.	9.1	102
27	Alternative splicing and translation play important roles in hypoxic germination in rice. Journal of Experimental Botany, 2019, 70, 817-833.	4.8	51
28	<i>Arabidopsis HSP70â€16</i> is required for flower opening under normal or mild heat stress temperatures. Plant, Cell and Environment, 2019, 42, 1190-1204.	5.7	30
29	Natural variation in the promoter of rice calcineurin Bâ€ŀike protein10 (Os <scp>CBL</scp> 10) affects flooding tolerance during seed germination among rice subspecies. Plant Journal, 2018, 94, 612-625.	5.7	42
30	Loss of alkaline ceramidase inhibits autophagy in Arabidopsis and plays an important role during environmental stress response. Plant, Cell and Environment, 2018, 41, 837-849.	5.7	30
31	DIACYLGLYCEROL ACYLTRANSFERASE and DIACYLGLYCEROL KINASE Modulate Triacylglycerol and Phosphatidic Acid Production in the Plant Response to Freezing Stress. Plant Physiology, 2018, 177, 1303-1318.	4.8	108
32	S-Nitrosylation Targets GSNO Reductase for Selective Autophagy during Hypoxia Responses in Plants. Molecular Cell, 2018, 71, 142-154.e6.	9.7	135
33	OsCER1 Plays a Pivotal Role in Very-Long-Chain Alkane Biosynthesis and Affects Plastid Development and Programmed Cell Death of Tapetum in Rice (Oryza sativa L.). Frontiers in Plant Science, 2018, 9, 1217.	3.6	51
34	SWATH-MS quantitative proteomic investigation of nitrogen starvation in Arabidopsis reveals new aspects of plant nitrogen stress responses. Journal of Proteomics, 2018, 187, 161-170.	2.4	32
35	Jasmonate Regulates Plant Responses to Postsubmergence Reoxygenation through Transcriptional Activation of Antioxidant Synthesis. Plant Physiology, 2017, 173, 1864-1880.	4.8	98
36	Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytologist, 2017, 214, 1403-1407.	7.3	146

#	Article	IF	CITATIONS
37	The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling. Plant Physiology, 2017, 173, 2294-2307.	4.8	98
38	Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization. Chemosphere, 2017, 175, 275-285.	8.2	42
39	Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant Journal, 2017, 91, 518-533.	5.7	156
40	TRAF Family Proteins Regulate Autophagy Dynamics by Modulating AUTOPHAGY PROTEIN6 Stability in Arabidopsis. Plant Cell, 2017, 29, 890-911.	6.6	108
41	Mitigation of Cd accumulation in paddy rice (Oryza sativa L.) by Fe fertilization. Environmental Pollution, 2017, 231, 549-559.	7.5	68
42	Analysis of Plant Autophagy. Methods in Molecular Biology, 2017, 1662, 267-280.	0.9	7
43	The AMP-Activated Protein Kinase KIN10 Is Involved in the Regulation of Autophagy in Arabidopsis. Frontiers in Plant Science, 2017, 8, 1201.	3.6	118
44	OsARM1, an R2R3 MYB Transcription Factor, Is Involved in Regulation of the Response to Arsenic Stress in Rice. Frontiers in Plant Science, 2017, 8, 1868.	3.6	150
45	Transgenic Arabidopsis thaliana containing increased levels of ATP and sucrose is more susceptible to Pseudomonas syringae. PLoS ONE, 2017, 12, e0171040.	2.5	9
46	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
47	Jasmonate complements the function of Arabidopsis lipoxygenase3 in salinity stress response. Plant Science, 2016, 244, 1-7.	3.6	64
48	Arabidopsis acylâ€ <scp>C</scp> o <scp>A</scp> â€binding protein <scp>ACBP</scp> 3 participates in plant response to hypoxia by modulating veryâ€longâ€chain fatty acid metabolism. Plant Journal, 2015, 81, 53-67.	5.7	84
49	Fast-Suppressor Screening for New Components in Protein Trafficking, Organelle Biogenesis and Silencing Pathway in Arabidopsis thaliana Using DEX-Inducible FREE1-RNAi Plants. Journal of Genetics and Genomics, 2015, 42, 319-330.	3.9	18
50	Autophagy contributes to regulation of the hypoxia response during submergence in <i>Arabidopsis thaliana</i> . Autophagy, 2015, 11, 2233-2246.	9.1	143
51	Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance. Molecular Plant, 2015, 8, 1536-1549.	8.3	55
52	Unsaturation of Very-Long-Chain Ceramides Protects Plant from Hypoxia-Induced Damages by Modulating Ethylene Signaling in Arabidopsis. PLoS Genetics, 2015, 11, e1005143.	3.5	86
53	Potential role of salicylic acid in modulating diacylglycerol homeostasis in response to freezing temperatures in <i>Arabidopsis</i> . Plant Signaling and Behavior, 2015, 10, e1082698.	2.4	2
54	Arabidopsis membrane-associated acyl-CoA-binding protein ACBP1 is involved in stem cuticle formation. Journal of Experimental Botany, 2014, 65, 5473-5483.	4.8	74

#	Article	IF	CITATIONS
55	Comparative transcriptome analysis of transporters, phytohormone and lipid metabolism pathways in response to arsenic stress in rice (<i>Oryza sativa</i>). New Phytologist, 2012, 195, 97-112.	7.3	193
56	Overexpression of Arabidopsis ACBP3 Enhances NPR1-Dependent Plant Resistance to <i>Pseudomonas syringe</i> pv <i>tomato</i> DC3000 Â Â. Plant Physiology, 2011, 156, 2069-2081.	4.8	101
57	Overexpression of <i>Arabidopsis</i> Acyl-CoA Binding Protein ACBP3 Promotes Starvation-Induced and Age-Dependent Leaf Senescence Â. Plant Cell, 2010, 22, 1463-1482.	6.6	225
58	Overexpression of the Arabidopsis 10-Kilodalton Acyl-Coenzyme A-Binding Protein ACBP6 Enhances Freezing Tolerance. Plant Physiology, 2008, 148, 304-315.	4.8	146
59	COS1: An Arabidopsis coronatine insensitive1 Suppressor Essential for Regulation of Jasmonate-Mediated Plant Defense and Senescence. Plant Cell, 2004, 16, 1132-1142.	6.6	163