
Caroline Gutjahr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/556980/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sculpting the soil microbiota. Plant Journal, 2022, 109, 508-522.	5.7	28
2	KAI2 promotes Arabidopsis root hair elongation at low external phosphate by controlling local accumulation of AUX1 and PIN2. Current Biology, 2022, 32, 228-236.e3.	3.9	29
3	PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis. Nature Communications, 2022, 13, 477.	12.8	81
4	Old dog, new trick: The PHR-SPX system regulates arbuscular mycorrhizal symbiosis. Molecular Plant, 2022, 15, 225-227.	8.3	10
5	Structural and functional analyses explain Pea KAI2 receptor diversity and reveal stereoselective catalysis during signal perception. Communications Biology, 2022, 5, 126.	4.4	18
6	<scp><i>KARRIKIN INSENSITIVE2</i></scp> regulates leaf development, root system architecture and arbuscularâ€nycorrhizal symbiosis in <i>Brachypodium distachyon</i> . Plant Journal, 2022, 109, 1559-1574.	5.7	15
7	KAI2 regulates seedling development by mediating lightâ€induced remodelling of auxin transport. New Phytologist, 2022, 235, 126-140.	7.3	9
8	KARRIKIN UP-REGULATED F-BOX 1 (KUF1) imposes negative feedback regulation of karrikin and KAI2 ligand metabolism in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2112820119.	7.1	19
9	MAX2-independent transcriptional responses to rac-GR24 in Lotus japonicus roots. Plant Signaling and Behavior, 2021, 16, 1840852.	2.4	4
10	Controlled Assays for Phenotyping the Effects of Strigolactone-Like Molecules on Arbuscular Mycorrhiza Development. Methods in Molecular Biology, 2021, 2309, 157-177.	0.9	9
11	Bioassays for the Effects of Strigolactones and Other Small Molecules on Root and Root Hair Development. Methods in Molecular Biology, 2021, 2309, 129-142.	0.9	7
12	Factors affecting plant responsiveness to arbuscular mycorrhiza. Current Opinion in Plant Biology, 2021, 59, 101994.	7.1	49
13	Quantitative Mapping of Flavor and Pharmacologically Active Compounds in European Licorice Roots (<i>Glycyrrhiza glabra</i> L.) in Response to Growth Conditions and Arbuscular Mycorrhiza Symbiosis. Journal of Agricultural and Food Chemistry, 2021, 69, 13173-13189.	5.2	1
14	Acidovorax pan-genome reveals specific functional traits for plant beneficial and pathogenic plant-associations. Microbial Genomics, 2021, 7, .	2.0	6
15	The karrikin signaling regulator SMAX1 controls <i>Lotus japonicus</i> root and root hair development by suppressing ethylene biosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 21757-21765.	7.1	53
16	Extensive signal integration by the phytohormone protein network. Nature, 2020, 583, 271-276.	27.8	104
17	A Flexible, Low-Cost Hydroponic Co-Cultivation System for Studying Arbuscular Mycorrhiza Symbiosis. Frontiers in Plant Science, 2020, 11, 63.	3.6	4
18	Lotus japonicus karrikin receptors display divergent ligand-binding specificities and organ-dependent redundancy. PLoS Genetics, 2020, 16, e1009249.	3.5	26

CAROLINE GUTJAHR

#	Article	IF	CITATIONS
19	SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS Genetics, 2019, 15, e1008327.	3.5	122
20	Editorial: Rhizosphere Functioning and Structural Development as Complex Interplay Between Plants, Microorganisms and Soil Minerals. Frontiers in Environmental Science, 2019, 7, .	3.3	19
21	Ramf: An Open-Source R Package for Statistical Analysis and Display of Quantitative Root Colonization by Arbuscular Mycorrhiza Fungi. Frontiers in Plant Science, 2019, 10, 1184.	3.6	3
22	Systems Biology of Plant-Microbiome Interactions. Molecular Plant, 2019, 12, 804-821.	8.3	299
23	The Role of Strigolactones in Plant–Microbe Interactions. , 2019, , 121-142.		11
24	Transcriptional Regulation of Arbuscular Mycorrhiza Development. Plant and Cell Physiology, 2018, 59, 678-695.	3.1	86
25	Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. Current Opinion in Plant Biology, 2018, 44, 137-144.	7.1	102
26	The <i>Lotus japonicus</i> acylâ€acyl carrier protein thioesterase FatM is required for mycorrhiza formation and lipid accumulation of <i>Rhizophagus irregularis</i> . Plant Journal, 2018, 95, 219-232.	5.7	39
27	Root type and soil phosphate determine the taxonomic landscape of colonizing fungi and the transcriptome of fieldâ€grown maize roots. New Phytologist, 2018, 217, 1240-1253.	7.3	80
28	Symbiosis: Plasmodesmata Link Root-Nodule Organogenesis with Infection. Current Biology, 2018, 28, R1400-R1403.	3.9	2
29	Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist, 2018, 220, 1031-1046.	7.3	188
30	Editorial overview: Nothing in plant–biotic interactions makes sense…. Current Opinion in Plant Biology, 2018, 44, iii-vi.	7.1	0
31	Tracking Lipid Transfer by Fatty Acid Isotopolog Profiling from Host Plants to Arbuscular Mycorrhiza Fungi. Bio-protocol, 2018, 8, e2786.	0.4	3
32	Strigolactone Signaling and Evolution. Annual Review of Plant Biology, 2017, 68, 291-322.	18.7	470
33	Cell Biology: Control of Partner Lifetime inÂaÂPlant–Fungus Relationship. Current Biology, 2017, 27, R420-R423.	3.9	20
34	An N-acetylglucosamine transporter required for arbuscular mycorrhizal symbioses in rice and maize. Nature Plants, 2017, 3, 17073.	9.3	72
35	Positive Gene Regulation by a Natural Protective miRNA Enables Arbuscular Mycorrhizal Symbiosis. Cell Host and Microbe, 2017, 21, 106-112.	11.0	79
36	Lipid transfer from plants to arbuscular mycorrhiza fungi. ELife, 2017, 6, .	6.0	329

CAROLINE GUTJAHR

#	Article	IF	CITATIONS
37	Genetic Control of Lateral Root Formation in Cereals. Trends in Plant Science, 2016, 21, 951-961.	8.8	107
38	A CCaMK-CYCLOPS-DELLA Complex Activates Transcription of RAM1 to Regulate Arbuscule Branching. Current Biology, 2016, 26, 987-998.	3.9	182
39	Full Establishment of Arbuscular Mycorrhizal Symbiosis in Rice Occurs Independently of Enzymatic Jasmonate Biosynthesis. PLoS ONE, 2015, 10, e0123422.	2.5	41
40	Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science, 2015, 350, 1521-1524.	12.6	191
41	Calcium Signaling during Reproduction and Biotrophic Fungal Interactions in Plants. Molecular Plant, 2015, 8, 595-611.	8.3	44
42	Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6754-6759.	7.1	99
43	Lipid Droplets of Arbuscular Mycorrhizal Fungi Emerge in Concert with Arbuscule Collapse. Plant and Cell Physiology, 2014, 55, 1945-1953.	3.1	41
44	Control of arbuscular mycorrhiza development by nutrient signals. Frontiers in Plant Science, 2014, 5, 462.	3.6	83
45	Auxin Perception Is Required for Arbuscule Development in Arbuscular Mycorrhizal Symbiosis Â. Plant Physiology, 2014, 166, 281-292.	4.8	163
46	Phytohormone signaling in arbuscular mycorhiza development. Current Opinion in Plant Biology, 2014, 20, 26-34.	7.1	178
47	Cell and Developmental Biology of Arbuscular Mycorrhiza Symbiosis. Annual Review of Cell and Developmental Biology, 2013, 29, 593-617.	9.4	493
48	Mutation identification by direct comparison of whole-genome sequencing data from mutant and wild-type individuals using k-mers. Nature Biotechnology, 2013, 31, 325-330.	17.5	149
49	Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Frontiers in Plant Science, 2013, 4, 204.	3.6	121
50	Two <i><scp>L</scp>otus japonicus</i> symbiosis mutants impaired at distinct steps of arbuscule development. Plant Journal, 2013, 75, 117-129.	5.7	15
51	The halfâ€size ABC transporters STR1 and STR2 are indispensable for mycorrhizal arbuscule formation in rice. Plant Journal, 2012, 69, 906-920.	5.7	131
52	Root starch accumulation in response to arbuscular mycorrhizal colonization differs among Lotus japonicus starch mutants. Planta, 2011, 234, 639-646.	3.2	14
53	<i>Glomus intraradices</i> induces changes in root system architecture of rice independently of common symbiosis signaling. New Phytologist, 2009, 182, 829-837.	7.3	154
54	Presymbiotic factors released by the arbuscular mycorrhizal fungus <i>Gigaspora margarita</i> induce starch accumulation in <i>Lotus japonicus</i> roots. New Phytologist, 2009, 183, 53-61.	7.3	72

CAROLINE GUTJAHR

#	Article	IF	CITATIONS
55	Weights in the Balance: Jasmonic Acid and Salicylic Acid Signaling in Root-Biotroph Interactions. Molecular Plant-Microbe Interactions, 2009, 22, 763-772.	2.6	148
56	Cereal mycorrhiza: an ancient symbiosis in modern agriculture. Trends in Plant Science, 2008, 13, 93-97.	8.8	194
57	Divergence of Evolutionary Ways Among Common sym Genes: CASTOR and CCaMK Show Functional Conservation Between Two Symbiosis Systems and Constitute the Root of a Common Signaling Pathway. Plant and Cell Physiology, 2008, 49, 1659-1671.	3.1	103
58	The Molecular Components of Nutrient Exchange in Arbuscular Mycorrhizal Interactions. , 2008, , 37-59.		6
59	Arbuscular Mycorrhiza–Specific Signaling in Rice Transcends the Common Symbiosis Signaling Pathway. Plant Cell, 2008, 20, 2989-3005.	6.6	235
60	GER1,a GDSL Motif-Encoding Gene from Rice is a Novel Early Light- and Jasmonate-Induced Gene. Plant Biology, 2007, 9, 32-40.	3.8	39
61	Changes in soil chemistry associated with the establishment of forest gardens on eroded, acidified grassland soils in Sri Lanka. Biology and Fertility of Soils, 2007, 44, 163-170.	4.3	2
62	Acrylamide inhibits gravitropism and affects microtubules in rice coleoptiles. Protoplasma, 2006, 227, 211-222.	2.1	10
63	Cholodny–Went revisited: a role for jasmonate in gravitropism of rice coleoptiles. Planta, 2005, 222, 575-585.	3.2	68